1 Zakład Bioinformatyki, Instytut Informatyki, Uniwersytet w Białymstoku
✉ Correspondence: Jarosław Kotowicz <j.kotowicz@uwb.edu.pl>
Parsed with column specification:
cols(
Acres = [31mcol_character()[39m,
FamilyIncome = [32mcol_double()[39m,
FamilyType = [31mcol_character()[39m,
NumBedrooms = [32mcol_double()[39m,
NumChildren = [32mcol_double()[39m,
NumPeople = [32mcol_double()[39m,
NumRooms = [32mcol_double()[39m,
NumUnits = [31mcol_character()[39m,
NumVehicles = [32mcol_double()[39m,
NumWorkers = [32mcol_double()[39m,
OwnRent = [31mcol_character()[39m,
YearBuilt = [31mcol_character()[39m,
HouseCosts = [32mcol_double()[39m,
ElectricBill = [32mcol_double()[39m,
FoodStamp = [31mcol_character()[39m,
HeatingFuel = [31mcol_character()[39m,
Insurance = [32mcol_double()[39m,
Language = [31mcol_character()[39m,
Income = [31mcol_character()[39m
)
Ostrzeżenie: zamykanie nieużywanego połączenia 3 (http://www.jaredlander.com/data/acsNew.csv)
Registered S3 method overwritten by 'dplyr':
method from
print.rowwise_df
Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
[30m-- [1mAttaching packages[22m --------------------------------------- tidyverse 1.3.0 --[39m
[30m[32m<U+221A>[30m [34mggplot2[30m 3.3.0 [32m<U+221A>[30m [34mdplyr [30m 0.8.5
[32m<U+221A>[30m [34mtibble [30m 3.0.1 [32m<U+221A>[30m [34mstringr[30m 1.4.0
[32m<U+221A>[30m [34mtidyr [30m 1.0.2 [32m<U+221A>[30m [34mforcats[30m 0.5.0
[32m<U+221A>[30m [34mpurrr [30m 0.3.4 [39m
[30m-- [1mConflicts[22m ------------------------------------------ tidyverse_conflicts() --
[31mx[30m [34mdplyr[30m::[32mfilter()[30m masks [34mstats[30m::filter()
[31mx[30m [34mdplyr[30m::[32mlag()[30m masks [34mstats[30m::lag()[39m
Jak nie należy wywoływać (brak nazw zmiennych w środowisku)
Błąd w poleceniu 'sort(x[complete.cases(x)])':
nie znaleziono obiektu 'FamilyIncomesd'
Prawidłowy sposób wywołania
Anderson-Darling normality test
data: dane$FamilyIncomeSd
A = 132.37, p-value < 2.2e-16
Interpretacja wyniku!
Można dołączyć nazwy zmiennych z ramki danych do zmiennych globalnych
I wywołać test
Anderson-Darling normality test
data: FamilyIncomeSd
A = 132.37, p-value < 2.2e-16
Interpretacja wyniku!
Usunięcie nazwy zmiennych ze środowiska
Ponownie nie działa
Błąd w poleceniu 'sort(x[complete.cases(x)])':
nie znaleziono obiektu 'FamilyIncomesd'
Test Kołomogorowa-Smirnowa
warto㤼㹣ci powt昼㸳rzone nie powinny by攼㸶 obecne w te㤼㹣cie Kolmogorowa-Smirnowa
One-sample Kolmogorov-Smirnov test
data: dane$FamilyIncomeSd
D = 0.15075, p-value < 2.2e-16
alternative hypothesis: two-sided
Interpretacja wyniku!
[1] 6.661647e-17
[1] 1
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: a
D = 0.66, p-value < 2.2e-16
alternative hypothesis: two-sided
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: a
D = 0.024471, p-value = 0.5872
alternative hypothesis: two-sided
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: a
D = 0.11141, p-value = 3.313e-11
alternative hypothesis: two-sided
Interpretacja wyniku!
Parsed with column specification:
cols(
Acres = [31mcol_character()[39m,
FamilyIncome = [32mcol_double()[39m,
FamilyType = [31mcol_character()[39m,
NumBedrooms = [32mcol_double()[39m,
NumChildren = [32mcol_double()[39m,
NumPeople = [32mcol_double()[39m,
NumRooms = [32mcol_double()[39m,
NumUnits = [31mcol_character()[39m,
NumVehicles = [32mcol_double()[39m,
NumWorkers = [32mcol_double()[39m,
OwnRent = [31mcol_character()[39m,
YearBuilt = [31mcol_character()[39m,
HouseCosts = [32mcol_double()[39m,
ElectricBill = [32mcol_double()[39m,
FoodStamp = [31mcol_character()[39m,
HeatingFuel = [31mcol_character()[39m,
Insurance = [32mcol_double()[39m,
Language = [31mcol_character()[39m,
Income = [31mcol_character()[39m
)
Shapiro-Francia normality test
data: FamilyIncomeSd
W = 0.73234, p-value < 2.2e-16
Interpretacja wyniku!
Cramer-von Mises normality test
data: x.norm01
W = 0.039185, p-value = 0.6967
Interpretacja wyniku!
Jak nie robić! (podczytuje wartości domyślne)
One-sample Kolmogorov-Smirnov test
data: x.norm01
D = 0.037062, p-value = 0.1282
alternative hypothesis: two-sided
Interpretacja wyniku!
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: x.norm32
D = 0.74095, p-value < 2.2e-16
alternative hypothesis: two-sided
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: x.norm32
D = 0.037062, p-value = 0.1282
alternative hypothesis: two-sided
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: x.unif
D = 0.50657, p-value < 2.2e-16
alternative hypothesis: two-sided
Interpretacja wyniku!
One-sample Kolmogorov-Smirnov test
data: x.unif
D = 0.016202, p-value = 0.9555
alternative hypothesis: two-sided
Interpretacja wyniku!
Two-sample Kolmogorov-Smirnov test
data: x.unif[1:100] and x.unif[901:1000]
D = 0.12, p-value = 0.4676
alternative hypothesis: two-sided
Interpretacja wyniku!
Two-sample Kolmogorov-Smirnov test
data: x.unif[1:100] and x.unif[901:1000]
D^- = 0.07, p-value = 0.6126
alternative hypothesis: the CDF of x lies below that of y
Interpretacja wyniku!
Two-sample Kolmogorov-Smirnov test
data: x.unif[1:100] and x.unif[901:1000]
D^+ = 0.12, p-value = 0.2369
alternative hypothesis: the CDF of x lies above that of y
F test to compare two variances
data: x.norm01 and x.norm32
F = 0.25, num df = 999, denom df = 999, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2208247 0.2830300
sample estimates:
ratio of variances
0.25
Interpretacja wyniku!
Ansari-Bradley test
data: x.norm01 and x.norm32
AB = 537652, p-value = 8.709e-09
alternative hypothesis: true ratio of scales is not equal to 1
Interpretacja wyniku!
Mood two-sample test of scale
data: x.norm01[1:100] and x.norm01[901:1000]
Z = 0.98507, p-value = 0.3246
alternative hypothesis: two.sided
Interpretacja wyniku!
Call:
lm(formula = FamilyIncome ~ NumPeople, data = dane)
Residuals:
Min 1Q Median 3Q Max
-150196 -55913 -22018 25329 905682
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 88377 5336 16.563 < 2e-16 ***
NumPeople 6647 1450 4.583 4.84e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 96970 on 2271 degrees of freedom
Multiple R-squared: 0.009163, Adjusted R-squared: 0.008727
F-statistic: 21 on 1 and 2271 DF, p-value: 4.836e-06
Interpretacja wyniku!
Call:
lm(formula = FamilyIncomeSd ~ NumPeople, data = dane)
Residuals:
Min 1Q Median 3Q Max
-1.5421 -0.5741 -0.2261 0.2601 9.2986
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.23209 0.05478 -4.237 2.36e-05 ***
NumPeople 0.06825 0.01489 4.583 4.84e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9956 on 2271 degrees of freedom
Multiple R-squared: 0.009163, Adjusted R-squared: 0.008727
F-statistic: 21 on 1 and 2271 DF, p-value: 4.836e-06
Interpretacja wyniku!