1 Zakład Bioinformatyki, Instytut Informatyki, Uniwersytet w Białymstoku
✉ Correspondence: Jarosław Kotowicz <j.kotowicz@uwb.edu.pl>
download.file(url = "https://fueleconomy.gov/feg/epadata/vehicles.csv.zip",
destfile = "vehicles.csv.zip")
próbowanie adresu URL 'https://fueleconomy.gov/feg/epadata/vehicles.csv.zip'
Content type 'application/x-zip-compressed' length 1597020 bytes (1.5 MB)
downloaded 1.5 MB
Parsed with column specification:
cols(
.default = col_double(),
drive = [31mcol_character()[39m,
eng_dscr = [31mcol_character()[39m,
fuelType = [31mcol_character()[39m,
fuelType1 = [31mcol_character()[39m,
make = [31mcol_character()[39m,
model = [31mcol_character()[39m,
mpgData = [31mcol_character()[39m,
phevBlended = [33mcol_logical()[39m,
trany = [31mcol_character()[39m,
VClass = [31mcol_character()[39m,
guzzler = [33mcol_logical()[39m,
trans_dscr = [31mcol_character()[39m,
tCharger = [33mcol_logical()[39m,
sCharger = [31mcol_character()[39m,
atvType = [31mcol_character()[39m,
fuelType2 = [33mcol_logical()[39m,
rangeA = [33mcol_logical()[39m,
evMotor = [33mcol_logical()[39m,
mfrCode = [33mcol_logical()[39m,
c240Dscr = [33mcol_logical()[39m
# ... with 4 more columns
)
See spec(...) for full column specifications.
27932 parsing failures.
row col expected actual file
4430 guzzler 1/0/T/F/TRUE/FALSE G 'vehicles.csv'
4431 guzzler 1/0/T/F/TRUE/FALSE G 'vehicles.csv'
4432 guzzler 1/0/T/F/TRUE/FALSE G 'vehicles.csv'
4433 guzzler 1/0/T/F/TRUE/FALSE G 'vehicles.csv'
4442 guzzler 1/0/T/F/TRUE/FALSE G 'vehicles.csv'
.... ....... .................. ...... ..............
See problems(...) for more details.
vehicles.csv <- read.csv("vehicles.csv")
vehicles.csv <- vehicles.csv %>%
select(cityE, cityUF, evMotor, highwayE)
vehicles.csv.test <- vehicles.csv %>%
filter(is.na(evMotor)!=TRUE & evMotor!="") %>%
select(evMotor)
vehicles.evM <- vehicles_csv %>% select(evMotor)
vehicles.test <- vehicles.csv %>% select(evMotor) %>% bind_cols(vehicles.evM) %>% filter(evMotor != "")
[1] 3.452712 3.862487 6.762493 9.113025 4.964333 3.072050 1.886295 8.796903 1.889214 3.497148
[1] 9.619885
[1] 1
[1] -1
Liczby pseudolosowe z rozkładów gamma i t-Studenta.
[1] 0.141113702 0.011058933 0.004633047 0.134021354 0.201444871 0.221894552 0.414136641 0.123855898 0.012947569
[10] 0.092161444
[1] 0.07343334 1.37104862 1.04494751 -0.30928986 0.54942319 0.89946908 0.28351875 -0.59885696 -0.03943426
[10] 1.07777070
[1] 0.6152318 -0.6148539 -0.2797890 -0.9907686 0.7603531 0.1572298 -0.9681729 -0.3357833 -0.3689049 -1.6977490
[,1] [,2] [,3] [,4] [,5]
[1,] 3.452712 3.452712 0.3003430 0.45135970 0.46611172
[2,] 3.862487 3.862487 0.3451166 1.17629995 1.36542137
[3,] 6.762493 6.762493 0.7508558 0.95823194 0.96849329
[4,] 9.113025 9.113025 1.1939920 -0.02843529 -0.03280980
[5,] 4.964333 4.964333 0.4809303 -0.03505054 -0.03584358
[6,] 3.072050 3.072050 0.2615365 -3.26642904 -2.64232707
[7,] 1.886295 1.886295 0.1578529 0.22125619 0.21892872
[8,] 8.796903 8.796903 0.2790636 0.50718021 0.45654820
[9,] 1.889214 1.889214 1.0230030 1.20199293 1.20620569
[10,] 3.497148 3.497148 0.5648129 -0.46349670 -0.47004098
[,1] [,2] [,3] [,4] [,5]
[1,] 6.9717810 6.9717810 0.3156483 0.4693202 0.3116449
[2,] 6.9717810 6.9717810 0.3156483 0.4693202 0.3116449
[3,] 0.3156483 0.3156483 0.1218292 0.1236594 0.1019312
[4,] 0.4693202 0.4693202 0.1236594 1.6767504 1.4685502
[5,] 0.3116449 0.3116449 0.1019312 1.4685502 1.3012110
[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 1.0000000 0.3424963 0.1372660 0.1034700
[2,] 1.0000000 1.0000000 0.3424963 0.1372660 0.1034700
[3,] 0.3424963 0.3424963 1.0000000 0.2736006 0.2560104
[4,] 0.1372660 0.1372660 0.2736006 1.0000000 0.9942160
[5,] 0.1034700 0.1034700 0.2560104 0.9942160 1.0000000
One Sample t-test
data: macierz[, 1]
t = 3.2692, df = 9, p-value = 0.009696
alternative hypothesis: true mean is not equal to 2
95 percent confidence interval:
2.840828 6.618504
sample estimates:
mean of x
4.729666
One Sample t-test
data: macierz[, 1]
t = -1.5214, df = 9, p-value = 0.1625
alternative hypothesis: true mean is not equal to 6
95 percent confidence interval:
2.840828 6.618504
sample estimates:
mean of x
4.729666
One Sample t-test
data: macierz[, 1]
t = -0.0004001, df = 9, p-value = 0.9997
alternative hypothesis: true mean is not equal to 4.73
95 percent confidence interval:
2.840828 6.618504
sample estimates:
mean of x
4.729666
Welch Two Sample t-test
data: macierz[, 1] and macierz[, 2]
t = 0, df = 18, p-value = 1
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.480829 2.480829
sample estimates:
mean of x mean of y
4.729666 4.729666