The Bundle Theorem in fragments of projective Grassmann spaces

Mariusz Żynel mariusz@math.uwb.edu.pl

University of Białystok Institute of Mathematics

Combinatorics 2014 Gaeta 2014

Motivations and references

I. R. Wilcox

Modularity in the theory of lattices Ann, of Math. 40 (1939), 490-505

J. Kahn

Locally projective-planar lattices which satisfy the Bundle Theorem Math. Z. 175 (1980), 219-247

A. Kreuzer

Locally projective spaces which satisfy the Bundle Theorem J. Geom. 56 (1996), 87-98

K. Petelczyc, M. Zynel

The complement of a point subset in a projective space and a Grassmann space

J. Appl. Logic (to appear)

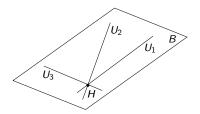
Our goal is to recover a deleted hyperplane from a projective Grassmann space.

Pencils

- V a vector space of dimension n with $3 \le n < \infty$
- $Sub_k(V)$ the set of all k-dimensional subspaces of V
- Assume that 0 < k < n.

For $H \in \text{Sub}_{k-1}(V)$, $B \in \text{Sub}_{k+1}(V)$ with $H \subset B$ a k-pencil is a set of the form

 $\mathbf{P}(H,B) := \{ U \in \mathsf{Sub}_k(V) \colon H \subset U \subset B \}.$



The point-line structure $\mathfrak{M} = \mathbf{P}_k(V) = \langle \operatorname{Sub}_k(V), \mathcal{P}_k(V) \rangle,$ where $\mathcal{P}_V(k)$ is the family of all *k*-pencils, is a Grassmann space.

• If 0 < k < n, then \mathfrak{M} is a partial linear space.

• If k = 1 or k = n - 1, then \mathfrak{M} is a *projective space*.

Basic properties and facts

- Every strong subspace of $\mathfrak M$ is a projective space.
- There are two disjoint classes of maximal strong subspaces in \mathfrak{M} .

Stars For $H \in \operatorname{Sub}_{k-1}(V)$ a star is a set of the form $S(H) = [H)_k = \{U \in \operatorname{Sub}_k(V) \colon H \subset U\}.$

Tops

For $B \in \operatorname{Sub}_{k+1}(V)$ a top is a set of the form $T(B) = (B]_k = \{U \in \operatorname{Sub}_k(V) \colon U \subset B\}.$

• Every line of \mathfrak{M} can be uniquely extended to a star and a top.

Basic properties and facts

- \bullet Every strong subspace of ${\mathfrak M}$ is a projective space.
- \bullet There are two disjoint classes of maximal strong subspaces in ${\mathfrak M}.$

Stars For $H \in \text{Sub}_{k-1}(V)$ a star is a set of the form $S(H) = [H)_k = \{U \in \text{Sub}_k(V) \colon H \subset U\}.$

Tops

For $B \in \operatorname{Sub}_{k+1}(V)$ a top is a set of the form $T(B) = (B]_k = \{U \in \operatorname{Sub}_k(V) \colon U \subset B\}.$

• Every line of \mathfrak{M} can be uniquely extended to a star and a top.

Basic properties and facts

- \bullet Every strong subspace of ${\mathfrak M}$ is a projective space.
- \bullet There are two disjoint classes of maximal strong subspaces in ${\mathfrak M}.$

Stars For $H \in \text{Sub}_{k-1}(V)$ a star is a set of the form $S(H) = [H)_k = \{U \in \text{Sub}_k(V) \colon H \subset U\}.$

Tops

For
$$B \in \operatorname{Sub}_{k+1}(V)$$
 a top is a set of the form

$$T(B) = (B]_k = \{U \in \operatorname{Sub}_k(V) \colon U \subset B\}.$$

 \bullet Every line of ${\mathfrak M}$ can be uniquely extended to a star and a top.

- W a fixed subspace of V
- m an integer such that $k \operatorname{codim}(W) \le m \le k, \dim(W)$
- $\mathcal{F}_{k,m}(W) := \{U \in \operatorname{Sub}_k(V) : \dim(U \cap W) = m\}$
- $\mathcal{G}_{k,m}(W) := \{L \cap \mathcal{F}_{k,m}(W) \colon L \in \mathcal{P}_k(V) \text{ and } |L \cap \mathcal{F}_{k,m}(W)| \ge 2\}$

The point-line structure

$$\mathbf{A}_{k,m}(V,W) = \big\langle \mathcal{F}_{k,m}(W), \mathcal{G}_{k,m}(W) \big\rangle$$

is called a spine space.

 K. Prażmowski, M. Żynel Automorphisms of spine spaces, Abh. Math. Sem. Univ. Hamb. 72 (2002), 59–77.

Bundles and planes in partial linear spaces

• The set [U] of all lines through a point U is called a *bundle*.

- Given three lines L_1, L_2, L_3 that form a triangle in a partial linear space, the *plane* $\Pi(L_1, L_2, L_3)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_1, L_2, L_3 in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2.
- Two lines $L_1, L_2 \in \mathcal{L}$ are said to be *coplanar*, which is written as $L_1 \pi L_2$, iff there is a plane containing them.

- The set [U] of all lines through a point U is called a *bundle*.
- Given three lines L₁, L₂, L₃ that form a triangle in a partial linear space, the plane Π(L₁, L₂, L₃) spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L₁, L₂, L₃ in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2.
- Two lines $L_1, L_2 \in \mathcal{L}$ are said to be *coplanar*, which is written as $L_1 \pi L_2$, iff there is a plane containing them.

- The set [U] of all lines through a point U is called a *bundle*.
- Given three lines L_1, L_2, L_3 that form a triangle in a partial linear space, the *plane* $\Pi(L_1, L_2, L_3)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_1, L_2, L_3 in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2.
- Two lines $L_1, L_2 \in \mathcal{L}$ are said to be *coplanar*, which is written as $L_1 \pi L_2$, iff there is a plane containing them.

- The set [U] of all lines through a point U is called a *bundle*.
- Given three lines L_1, L_2, L_3 that form a triangle in a partial linear space, the *plane* $\Pi(L_1, L_2, L_3)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_1, L_2, L_3 in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2.
- Two lines $L_1, L_2 \in \mathcal{L}$ are said to be *coplanar*, which is written as $L_1 \pi L_2$, iff there is a plane containing them.

Hyperplane complement in a Grassmann space

- W a fixed subspace of V with codim(W) = k
- $\mathfrak{H}(W) := \left\{ U \in \mathsf{Sub}_k(V) \colon U \cap W \neq 0 \right\}$ a hyperplane in \mathfrak{M}
- $S_{\mathcal{H}(W)} := \{ \mathsf{Sub}_k(V) \setminus \mathcal{H}(W) \}$
- $\mathcal{L}_{\mathcal{H}(W)} := \left\{ L \cap S_{\mathcal{H}(W)} \colon L \in \mathcal{P}_k(V) \text{ and } |L \cap S_{\mathcal{H}(W)}| \ge 2 \right\}$

$$\mathfrak{D} = \mathfrak{D}_{\mathfrak{M}}(\mathfrak{H}(W)) = \langle S_{\mathfrak{H}(W)}, \mathcal{L}_{\mathfrak{H}(W)} \rangle$$

is the complement of the hyperplane $\mathcal{H}(W)$ in \mathfrak{M} .

Fact

In every hyperplane of the form $\mathcal{H}(W)$ in \mathfrak{M} there are points collinear with no point outside $\mathcal{H}(W)$.

- $\mathfrak{D} = \langle \mathcal{F}_{k,0}(W), \mathcal{G}_{k,0}(W) \rangle = \mathbf{A}_{k,0}(V, W)$
- $\mathcal{H}(W) = \mathcal{F}_{k,1}(W) \cup \cdots \cup \mathcal{F}_{k,\min(k,n-k)}(W)$

Hyperplane complement in a Grassmann space

- W a fixed subspace of V with codim(W) = k
- $\mathfrak{H}(W) := \left\{ U \in \mathsf{Sub}_k(V) \colon U \cap W \neq 0 \right\}$ a hyperplane in \mathfrak{M}
- $S_{\mathcal{H}(W)} := \{ \mathsf{Sub}_k(V) \setminus \mathcal{H}(W) \}$
- $\mathcal{L}_{\mathcal{H}(W)} := \left\{ L \cap S_{\mathcal{H}(W)} \colon L \in \mathcal{P}_k(V) \text{ and } |L \cap S_{\mathcal{H}(W)}| \ge 2 \right\}$

$$\mathfrak{D} = \mathfrak{D}_{\mathfrak{M}} (\mathfrak{H}(W)) = ig \langle S_{\mathfrak{H}(W)}, \ \mathcal{L}_{\mathfrak{H}(W)} ig
angle$$

is the complement of the hyperplane $\mathcal{H}(W)$ in \mathfrak{M} .

Fact

In every hyperplane of the form $\mathcal{H}(W)$ in \mathfrak{M} there are points collinear with no point outside $\mathcal{H}(W)$.

- $\mathfrak{D} = \langle \mathcal{F}_{k,0}(W), \mathcal{G}_{k,0}(W) \rangle = \mathbf{A}_{k,0}(V, W)$
- $\mathcal{H}(W) = \mathcal{F}_{k,1}(W) \cup \cdots \cup \mathcal{F}_{k,\min(k,n-k)}(W)$

Hyperplane complement in a Grassmann space

- W a fixed subspace of V with codim(W) = k
- $\mathfrak{H}(W) := \left\{ U \in \mathsf{Sub}_k(V) \colon U \cap W \neq 0 \right\}$ a hyperplane in \mathfrak{M}

•
$$S_{\mathcal{H}(W)} := \{ \mathsf{Sub}_k(V) \setminus \mathcal{H}(W) \}$$

• $\mathcal{L}_{\mathcal{H}(W)} := \left\{ L \cap S_{\mathcal{H}(W)} \colon L \in \mathcal{P}_k(V) \text{ and } |L \cap S_{\mathcal{H}(W)}| \ge 2 \right\}$

$$\mathfrak{D} = \mathfrak{D}_{\mathfrak{M}} (\mathfrak{H}(W)) = ig \langle S_{\mathfrak{H}(W)}, \ \mathcal{L}_{\mathfrak{H}(W)} ig
angle$$

is the complement of the hyperplane $\mathcal{H}(W)$ in \mathfrak{M} .

Fact

In every hyperplane of the form $\mathcal{H}(W)$ in \mathfrak{M} there are points collinear with no point outside $\mathcal{H}(W)$.

- $\mathfrak{D} = \langle \mathcal{F}_{k,0}(W), \mathcal{G}_{k,0}(W) \rangle = \mathbf{A}_{k,0}(V, W)$
- $\mathcal{H}(W) = \mathcal{F}_{k,1}(W) \cup \cdots \cup \mathcal{F}_{k,\min(k,n-k)}(W)$

Lemma

(i) If
$$L \in \mathcal{A}_{k,1}(W)$$
, then $S(L), T(L) \subseteq \mathcal{H}(W)$.
(ii) If $L \in \mathcal{L}_{k,1}^{\alpha}(W)$, then $T(L) \notin \mathcal{H}(W)$ and $S(L) \subseteq \mathcal{H}(W)$.
(iii) If $L \in \mathcal{L}_{k,1}^{\omega}(W)$, then $S(L) \notin \mathcal{H}(W)$ and $T(L) \subseteq \mathcal{H}(W)$.

In what follows we assume that 2 < k < n - 2.

Corollary

For every point $U \in \mathcal{F}_{k,1}(W)$ there are $U_1, U_2, U_3 \in \mathcal{F}_{k,0}(W)$ such that U, U_1, U_2, U_3 form a tetrahedron in \mathfrak{M} .

Lemma

(i) If
$$L \in \mathcal{A}_{k,1}(W)$$
, then $S(L), T(L) \subseteq \mathcal{H}(W)$.
(ii) If $L \in \mathcal{L}_{k,1}^{\alpha}(W)$, then $T(L) \nsubseteq \mathcal{H}(W)$ and $S(L) \subseteq \mathcal{H}(W)$.
(iii) If $L \in \mathcal{L}_{k,1}^{\omega}(W)$, then $S(L) \nsubseteq \mathcal{H}(W)$ and $T(L) \subseteq \mathcal{H}(W)$.

In what follows we assume that 2 < k < n - 2.

Corollary

For every point $U \in \mathcal{F}_{k,1}(W)$ there are $U_1, U_2, U_3 \in \mathcal{F}_{k,0}(W)$ such that U, U_1, U_2, U_3 form a tetrahedron in \mathfrak{M} .

• Both in the Grassmann space \mathfrak{M} and in the hyperplane complement \mathfrak{D} the following is true.

Theorem (Bundle Theorem)

Let L_1, L_2, L_3, L_4 be lines such that no three of them are coplanar. If five of the six pairs $\{L_i, L_j\}, 1 \le i < j \le 4$ are coplanar, then so is the sixth pair.

• In locally-projective linear spaces (cf. [Kreuzer, 1996]) this theorem is used to prove that two lines determine a bundle uniquely.

- Let K be a maximal π-clique in D. There are two possibilities:
 (i) there is a point U in M such that U ∈ I for all L ∈ K, or
 (ii) there is a plane Π in D such that L ⊂ Π for all L ∈ K.
- They can be distinguished by requirement that:

 (*) there are three non-coplanar lines in *K*.

 The π-clique *K* is of type (i) iff it satisfies (*).
- There is a strong subspace in \mathfrak{D} containing \mathcal{K} .
- Every bundle [U] breaks up into π -cliques.

- Let K be a maximal π-clique in D. There are two possibilities:
 (i) there is a point U in M such that U ∈ L for all L ∈ K, or
 - (ii) there is a plane Π in \mathfrak{D} such that $L \subset \Pi$ for all $L \in \mathcal{K}$.
- They can be distinguished by requirement that:

 (*) there are three non-coplanar lines in *K*.

 The π-clique *K* is of type (i) iff it satisfies (*).
- \bullet There is a strong subspace in ${\mathfrak D}$ containing ${\mathcal K}.$
- Every bundle [U] breaks up into π -cliques.

- Let K be a maximal π-clique in D. There are two possibilities:
 (i) there is a point U in M such that U ∈ L for all L ∈ K, or
 (ii) there is a plane Π in D such that L ⊂ Π for all L ∈ K.
- They can be distinguished by requirement that:

 (*) there are three non-coplanar lines in *K*.

 The π-clique *K* is of type (i) iff it satisfies (*).
- \bullet There is a strong subspace in ${\mathfrak D}$ containing ${\mathcal K}.$
- Every bundle [U] breaks up into π -cliques.

- Let K be a maximal π-clique in D. There are two possibilities:
 (i) there is a point U in M such that U ∈ L for all L ∈ K, or
 (ii) there is a plane Π in D such that L ⊂ Π for all L ∈ K.
- They can be distinguished by requirement that:

 (*) there are three non-coplanar lines in *K*.

 The π-clique *K* is of type (i) iff it satisfies (*).
- \bullet There is a strong subspace in ${\mathfrak D}$ containing ${\mathcal K}.$
- Every bundle [U] breaks up into π -cliques.

Gluing π -cliques together

• X_1, X_2 – strong subspaces of different types in \mathfrak{D}

$$\begin{aligned} &\mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) : \iff U_1, U_2 \in X_1 \cap X_2 \land \\ & \left(\exists \ L_1 \in \mathcal{K}_{\pi}^{X_1}(U_1) \right) \left(\exists \ L_2 \in \mathcal{K}_{\pi}^{X_2}(U_2) \right) \left[\ L_1, L_2 \neq X_1 \cap X_2 \land \\ & T(L_1) \cap S(L_2) \text{ or } S(L_1) \cap T(L_2) \text{ is a proper line distinct from } X_1 \cap X_2 \end{aligned}$$

• X_1, X_2 – strong subspaces of the same type in \mathfrak{D}

$$\begin{split} \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) &: \iff (\exists \ U \in \mathcal{F}_{k,0}(W) \cup \mathcal{F}_{k,1}(W)) \\ \exists \text{ a maximal strong subspace } X \text{ of the other type than } X_1, X_2) \\ & \left[\ U \in X \land \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X}(U) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) \right] \end{split}$$

• σ is an equivalence relation; its equivalence classes are bundles.

To every point U ∈ F_{k,0}(W) ∪ F_{k,1}(W) we can associate a unique bundle [U]_D of lines of D.

Gluing π -cliques together

• X_1, X_2 – strong subspaces of different types in \mathfrak{D}

$$\begin{aligned} &\mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) : \iff U_1, U_2 \in X_1 \cap X_2 \land \\ & \left(\exists \ L_1 \in \mathcal{K}_{\pi}^{X_1}(U_1) \right) \left(\exists \ L_2 \in \mathcal{K}_{\pi}^{X_2}(U_2) \right) \left[\ L_1, L_2 \neq X_1 \cap X_2 \land \\ & \mathrm{T}(L_1) \cap \mathrm{S}(L_2) \text{ or } \mathrm{S}(L_1) \cap \mathrm{T}(L_2) \text{ is a proper line distinct from } X_1 \cap X_2 \end{aligned}$$

• X_1, X_2 – strong subspaces of the same type in \mathfrak{D}

$$\begin{split} \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) &: \iff (\exists \ U \in \mathcal{F}_{k,0}(W) \cup \mathcal{F}_{k,1}(W)) \\ (\exists \text{ a maximal strong subspace } X \text{ of the other type than } X_1, X_2) \\ & \left[\ U \in X \land \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X}(U) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) \ \right] \end{split}$$

• σ is an equivalence relation; its equivalence classes are bundles.

To every point U ∈ F_{k,0}(W) ∪ F_{k,1}(W) we can associate a unique bundle [U]_D of lines of D.

• X_1, X_2 – strong subspaces of different types in \mathfrak{D}

$$\begin{aligned} & \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) : \iff U_1, U_2 \in X_1 \cap X_2 \land \\ & \left(\exists \ L_1 \in \mathcal{K}_{\pi}^{X_1}(U_1) \right) \left(\exists \ L_2 \in \mathcal{K}_{\pi}^{X_2}(U_2) \right) \left[\ L_1, L_2 \neq X_1 \cap X_2 \land \\ & \mathrm{T}(L_1) \cap \mathrm{S}(L_2) \text{ or } \mathrm{S}(L_1) \cap \mathrm{T}(L_2) \text{ is a proper line distinct from } X_1 \cap X_2 \right] \end{aligned}$$

• X_1, X_2 – strong subspaces of the same type in \mathfrak{D}

$$\begin{split} \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) &: \iff (\exists \ U \in \mathcal{F}_{k,0}(W) \cup \mathcal{F}_{k,1}(W)) \\ (\exists \text{ a maximal strong subspace } X \text{ of the other type than } X_1, X_2) \\ & \left[\ U \in X \land \mathcal{K}_{\pi}^{X_1}(U_1) \ \sigma \ \mathcal{K}_{\pi}^{X}(U) \ \sigma \ \mathcal{K}_{\pi}^{X_2}(U_2) \ \right] \end{split}$$

- $\bullet~\sigma$ is an equivalence relation; its equivalence classes are bundles.
- To every point U ∈ F_{k,0}(W) ∪ F_{k,1}(W) we can associate a unique bundle [U]_D of lines of D.

Adjacency of bundles

- We will write $\mathcal{B}(\mathfrak{D})$ for the set of all bundles in \mathfrak{D} .
- If $a \in \mathcal{B}(\mathfrak{D})$ we write \bar{a} for the bundle of \mathfrak{M} with $a \subseteq \bar{a}$.
- For a point U of D and a bundle a ∈ B(D) we write U ~ a if there is a line L ∈ a such that U ∈ L, we write L = U, a.
- Frankly, two bundles $a, b \in \mathfrak{B}(\mathfrak{D})$ are adjacent iff they share a line.
 - $a \sim b : \iff (\exists U \in \mathcal{F}_{k,0}(W)) [U \sim a \land U \sim b \land U, a \pi U, b]$

Lemma

For two distinct bundles $a, b \in \mathfrak{B}(\mathfrak{D})$ we have $a \sim b$ iff there is a proper line L or $L \in \mathcal{L}_{k,1}^{\alpha}(W) \cup \mathcal{L}_{k,1}^{\omega}(W)$ such that $L \in \bar{a} \cap \bar{b}$.

Lines of bundles

 Given two distinct adjacent bundles a, b ∈ B(D) we can define the new line through a, b:

 $[a, b] := \{c \in \mathcal{B}(\mathfrak{D}): \text{ for all points } U \text{ of } \mathfrak{D} \text{ with } [U]_{\mathfrak{D}} \neq a, b, c$ if $U \sim a, b$, then $U \sim c$ and $\overline{U, a}, \overline{U, b}, \overline{U, c}$ are coplanar $\}.$

Lemma

If $a, b \in \mathbb{B}(\mathfrak{D})$, $a \neq b$, $a \sim b$, and $L \in \bar{a} \cap \bar{b}$, then $[a, b] = \{c \in \mathbb{B}(\mathfrak{D}) \colon L \in \bar{c}\}.$

Bundle space

- The set of all new lines will be written as $\mathfrak{L}(\mathfrak{D}) := \{[a,b]: a, b \in \mathcal{B}(\mathfrak{D}), a \sim b \text{ and } a \neq b\}.$
- The structure

$$\mathfrak{B}(\mathfrak{D}) \coloneqq ig\langle \mathfrak{B}(\mathfrak{D}), \mathfrak{L}(\mathfrak{D}) ig
angle$$

is called the *bundle space* over \mathfrak{D} . It is a partial linear space.

Proposition

The bundle space $\mathfrak{B}(\mathfrak{D})$ is definable in terms of \mathfrak{D} .

• The bundle space $\mathfrak{B}(\mathfrak{D})$ is isomorphic to

 $\mathfrak{D}' = \big\langle \mathcal{F}_{k,0}(W) \cup \mathcal{F}_{k,1}(W), \ \mathcal{G}_{k,0}(W) \cup \mathcal{L}_{k,1}^{\alpha}(W) \cup \mathcal{L}_{k,1}^{\omega}(W) \big\rangle.$

• This is a new proof of a know fact that \mathfrak{D}' is definable in \mathfrak{D} .

Bundle space

- The set of all new lines will be written as $\mathfrak{L}(\mathfrak{D}) := \{[a,b]: a, b \in \mathcal{B}(\mathfrak{D}), a \sim b \text{ and } a \neq b\}.$
- The structure

$$\mathfrak{B}(\mathfrak{D}) := ig\langle \mathfrak{B}(\mathfrak{D}), \mathfrak{L}(\mathfrak{D}) ig
angle$$

is called the *bundle space* over \mathfrak{D} . It is a partial linear space.

Proposition

The bundle space $\mathfrak{B}(\mathfrak{D})$ is definable in terms of \mathfrak{D} .

• The bundle space $\mathfrak{B}(\mathfrak{D})$ is isomorphic to

 $\mathfrak{D}' = \big\langle \mathcal{F}_{k,0}(W) \cup \mathcal{F}_{k,1}(W), \ \mathcal{G}_{k,0}(W) \cup \mathcal{L}_{k,1}^{\alpha}(W) \cup \mathcal{L}_{k,1}^{\omega}(W) \big\rangle.$

• This is a new proof of a know fact that \mathfrak{D}' is definable in \mathfrak{D} .

- The set of all new lines will be written as $\mathfrak{L}(\mathfrak{D}) := \big\{ [a,b] \colon a, b \in \mathcal{B}(\mathfrak{D}), a \sim b \text{ and } a \neq b \big\}.$
- The structure

$$\mathfrak{B}(\mathfrak{D}) := ig\langle \mathfrak{B}(\mathfrak{D}), \mathfrak{L}(\mathfrak{D}) ig
angle$$

is called the *bundle space* over \mathfrak{D} . It is a partial linear space.

Proposition

The bundle space $\mathfrak{B}(\mathfrak{D})$ is definable in terms of \mathfrak{D} .

• The bundle space $\mathfrak{B}(\mathfrak{D})$ is isomorphic to

 $\mathfrak{D}' = \big\langle \mathcal{F}_{k,0}(W) \cup \mathcal{F}_{k,1}(W), \ \mathcal{G}_{k,0}(W) \cup \mathcal{L}_{k,1}^{\alpha}(W) \cup \mathcal{L}_{k,1}^{\omega}(W) \big\rangle.$

 \bullet This is a new proof of a know fact that \mathfrak{D}' is definable in $\mathfrak{D}.$

Affine lines on the horizon

• The affine lines $\mathcal{A}_{k,1}(W)$ are not yet recovered.

• Let Π be a plane in \mathfrak{D}' . There are two possibilities:

(i) Π is a strong subspace of D', then
Π is a proper plane in D or it is a projective plane in A_{k,1}(V, W),
(ii) Π contains collinear and non-collinear points, then
Π is a semi-affine plane in A_{k,1}(V, W).

• Collinearity w.r.t. affine lines $\mathcal{A}_{k,1}(W)$ can be defined as follows:

 $L^{\tau}(a, b, c) : \iff (\exists a \text{ semi-affine plane } \Pi \text{ in } \mathfrak{D}') \\ [a, b, c \in \Pi \land \mathscr{V}(a, b, c)].$

Proposition (Prażmowski and Żynel, 2002)

For points a, b, c in \mathfrak{D}' we have $L^{\tau}(a, b, c)$ iff there is a line $L \in \mathcal{A}_{k,1}(W)$ such that $a, b, c \in L$.

Affine lines on the horizon

- The affine lines $\mathcal{A}_{k,1}(W)$ are not yet recovered.
- Let Π be a plane in $\mathfrak{D}'.$ There are two possibilities:
 - (i) Π is a strong subspace of D', then
 Π is a proper plane in D or it is a projective plane in A_{k,1}(V, W),
 (ii) Π contains collinear and non-collinear points, then
 Π is a semi-affine plane in A_{k,1}(V, W).
- Collinearity w.r.t. affine lines $A_{k,1}(W)$ can be defined as follows:

 $L^{\tau}(a, b, c) : \iff (\exists a \text{ semi-affine plane } \Pi \text{ in } \mathfrak{D}') \\ [a, b, c \in \Pi \land \not\sim(a, b, c)].$

Proposition (Prażmowski and Żynel, 2002)

For points a, b, c in \mathfrak{D}' we have $L^{\tau}(a, b, c)$ iff there is a line $L \in \mathcal{A}_{k,1}(W)$ such that $a, b, c \in L$.

Affine lines on the horizon

- The affine lines $\mathcal{A}_{k,1}(W)$ are not yet recovered.
- Let Π be a plane in \mathfrak{D}' . There are two possibilities:

(i) Π is a strong subspace of D', then
Π is a proper plane in D or it is a projective plane in A_{k,1}(V, W),
(ii) Π contains collinear and non-collinear points, then
Π is a semi-affine plane in A_{k,1}(V, W).

• Collinearity w.r.t. affine lines $\mathcal{A}_{k,1}(W)$ can be defined as follows:

$$L^{\tau}(a, b, c) : \iff (\exists a \text{ semi-affine plane } \Pi \text{ in } \mathfrak{D}') \\ [a, b, c \in \Pi \land \not\sim(a, b, c)].$$

Proposition (Prażmowski and Żynel, 2002)

For points a, b, c in \mathfrak{D}' we have $L^{\tau}(a, b, c)$ iff there is a line $L \in \mathcal{A}_{k,1}(W)$ such that $a, b, c \in L$.

 $\mathbf{A}_{k,1}(V,W)$ is definable in terms of $\mathbf{A}_{k,0}(V,W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k,2}(V, W)$, then $\mathbf{A}_{k,3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k,\min(k,n-k)}(V,W)$ is recoverable in $\mathfrak{D} = \mathbf{A}_{k,0}(V,W)$.

Theorem (Prażmowski and Zynel, 2002)

The hyperplane $\mathcal{H}(W)$ and the ambient space \mathfrak{M} are recoverable from the complement \mathfrak{D} .

 $\mathbf{A}_{k,1}(V,W)$ is definable in terms of $\mathbf{A}_{k,0}(V,W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k,2}(V, W)$, then $\mathbf{A}_{k,3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k,\min(k,n-k)}(V,W)$ is recoverable in $\mathfrak{D} = \mathbf{A}_{k,0}(V,W)$.

Theorem (Prażmowski and Zynel, 2002)

The hyperplane $\mathcal{H}(W)$ and the ambient space \mathfrak{M} are recoverable from the complement \mathfrak{D} .

 $\mathbf{A}_{k,1}(V,W)$ is definable in terms of $\mathbf{A}_{k,0}(V,W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k,2}(V, W)$, then $\mathbf{A}_{k,3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k,\min(k,n-k)}(V,W)$ is recoverable in $\mathfrak{D} = \mathbf{A}_{k,0}(V,W)$.

Theorem (Prażmowski and Zynel, 2002)

The hyperplane $\mathcal{H}(W)$ and the ambient space \mathfrak{M} are recoverable from the complement \mathfrak{D} .

 $\mathbf{A}_{k,1}(V,W)$ is definable in terms of $\mathbf{A}_{k,0}(V,W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k,2}(V, W)$, then $\mathbf{A}_{k,3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k,\min(k,n-k)}(V,W)$ is recoverable in $\mathfrak{D} = \mathbf{A}_{k,0}(V,W)$.

Theorem (Prażmowski and Żynel, 2002)

The hyperplane $\mathfrak{H}(W)$ and the ambient space \mathfrak{M} are recoverable from the complement \mathfrak{D} .

DONE:

• We have successfully recovered the ambient projective Grassmann space form its hyperplane complement.

TO DO:

- Express the relation σ in terms of the points, lines and planes of the complement \mathfrak{D} .
- Delete two hyperplanes from a Grassmann space and check how to recover the ambient space from their complement.

DONE:

• We have successfully recovered the ambient projective Grassmann space form its hyperplane complement.

TO DO:

- Express the relation σ in terms of the points, lines and planes of the complement \mathfrak{D} .
- Delete two hyperplanes from a Grassmann space and check how to recover the ambient space from their complement.

Thank you for your attention