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Objectives

Our goal is to recover a deleted hyperplane

from a projective Grassmann space.
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Pencils

V – a vector space of dimension n with 3 ≤ n < ∞

Subk(V ) – the set of all k-dimensional subspaces of V

Assume that 0 < k < n.

For H ∈ Subk−1(V ), B ∈ Subk+1(V ) with H ⊂ B a k-pencil is a
set of the form

p(H,B) :=
{

U ∈ Subk(V ) : H ⊂ U ⊂ B
}

.

B

H

U1

U2

U3
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Grassmann spaces

The point-line structure

M = Pk(V ) =
〈

Subk(V ),Pk(V )
〉

,

where PV (k) is the family of all k-pencils, is a Grassmann space.

If 0 < k < n, then M is a partial linear space.

If k = 1 or k = n − 1, then M is a projective space.
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Basic properties and facts

Every strong subspace of M is a projective space.

There are two disjoint classes of maximal strong subspaces in M.

Stars

For H ∈ Subk−1(V ) a star is a set of the form

S(H) = [H)k = {U ∈ Subk(V ) : H ⊂ U}.

Tops

For B ∈ Subk+1(V ) a top is a set of the form

T(B) = (B ]k = {U ∈ Subk(V ) : U ⊂ B}.

Every line of M can be uniquely extended to a star and a top.
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Spine spaces

W – a fixed subspace of V

m – an integer such that k − codim(W ) ≤ m ≤ k, dim(W )

Fk,m(W ) := {U ∈ Subk(V ) : dim(U ∩ W ) = m}

Gk,m(W ) := {L ∩ Fk,m(W ) : L ∈ Pk(V ) and |L ∩ Fk,m(W )| ≥ 2}

The point-line structure

Ak,m(V ,W ) =
〈

Fk,m(W ),Gk,m(W )
〉

is called a spine space.

K. Prażmowski, M. Żynel
Automorphisms of spine spaces,
Abh. Math. Sem. Univ. Hamb. 72 (2002), 59–77.
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Bundles and planes in partial linear spaces

The set [U] of all lines through a point U is called a bundle.

Given three lines L1,L2,L3 that form a triangle in a partial linear
space, the plane Π(L1,L2,L3) spanned by this triangle is the set of
those points which lie on the lines that intersect two of those three
lines L1,L2,L3 in two distinct points.

In linear spaces where the dimension function can be defined we
can say that a plane is a subspace of dimension 2.

Two lines L1,L2 ∈ L are said to be coplanar, which is written as
L1 π L2, iff there is a plane containing them.
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Mariusz Żynel The Bundle Theorem...



Bundles and planes in partial linear spaces

The set [U] of all lines through a point U is called a bundle.

Given three lines L1,L2,L3 that form a triangle in a partial linear
space, the plane Π(L1,L2,L3) spanned by this triangle is the set of
those points which lie on the lines that intersect two of those three
lines L1,L2,L3 in two distinct points.

In linear spaces where the dimension function can be defined we
can say that a plane is a subspace of dimension 2.

Two lines L1,L2 ∈ L are said to be coplanar, which is written as
L1 π L2, iff there is a plane containing them.
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Hyperplane complement in a Grassmann space

W – a fixed subspace of V with codim(W ) = k

H(W ) :=
{

U ∈ Subk(V ) : U ∩ W 6= 0
}

– a hyperplane in M

SH(W ) :=
{

Subk(V ) \ H(W )
}

LH(W ) :=
{

L ∩ SH(W ) : L ∈ Pk(V ) and |L ∩ SH(W )| ≥ 2
}

D = DM

(

H(W )
)

=
〈

SH(W ), LH(W )

〉

is the complement of the hyperplane H(W ) in M.

Fact

In every hyperplane of the form H(W ) in M there are points

collinear with no point outside H(W ).

D =
〈

Fk,0(W ),Gk,0(W )
〉

= Ak,0(V ,W )

H(W ) = Fk,1(W ) ∪ · · · ∪ Fk,min(k,n−k)(W )
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Key facts about the complement

Lemma

(i) If L ∈ Ak,1(W ), then S(L),T(L) ⊆ H(W ).

(ii) If L ∈ Lα

k,1(W ), then T(L) * H(W ) and S(L) ⊆ H(W ).

(iii) If L ∈ Lω

k,1(W ), then S(L) * H(W ) and T(L) ⊆ H(W ).

In what follows we assume that 2 < k < n − 2.

Corollary

For every point U ∈ Fk,1(W ) there are U1,U2,U3 ∈ Fk,0(W ) such

that U,U1,U2,U3 form a tetrahedron in M.
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Bundle Theorem

Both in the Grassmann space M and in the hyperplane
complement D the following is true.

Theorem (Bundle Theorem)

Let L1,L2,L3,L4 be lines such that no three of them are coplanar.

If five of the six pairs {Li ,Lj}, 1 ≤ i < j ≤ 4 are coplanar, then so

is the sixth pair.

In locally-projective linear spaces (cf. [Kreuzer, 1996]) this theorem
is used to prove that two lines determine a bundle uniquely.
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Maximal π-clique and bundles

Let K be a maximal π-clique in D. There are two possibilities:

(i) there is a point U in M such that U ∈ L for all L ∈ K, or
(ii) there is a plane Π in D such that L ⊂ Π for all L ∈ K.

They can be distinguished by requirement that:

(∗) there are three non-coplanar lines in K.

The π-clique K is of type (i) iff it satisfies (∗).

There is a strong subspace in D containing K.

Every bundle [U] breaks up into π-cliques.
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Gluing π-cliques together

X1,X2 – strong subspaces of different types in D

KX1
π

(U1) σ KX2
π

(U2) : ⇐⇒ U1,U2 ∈ X1 ∩ X2 ∧
(

∃ L1 ∈ KX1
π

(U1)
)(

∃ L2 ∈ KX2
π

(U2)
)[

L1,L2 6= X1 ∩ X2 ∧

T(L1)∩S(L2) or S(L1)∩T(L2) is a proper line distinct from X1∩X2

]

X1,X2 – strong subspaces of the same type in D

KX1
π

(U1) σ KX2
π

(U2) : ⇐⇒ (∃ U ∈ Fk,0(W ) ∪ Fk,1(W ))

(∃ a maximal strong subspace X of the other type than X1,X2)
[

U ∈ X ∧ KX1
π

(U1) σ KX
π

(U) σ KX2
π

(U2)
]

σ is an equivalence relation; its equivalence classes are bundles.

To every point U ∈ Fk,0(W ) ∪ Fk,1(W ) we can associate a unique
bundle [U]D of lines of D.
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Adjacency of bundles

We will write B(D) for the set of all bundles in D.

If a ∈ B(D) we write ā for the bundle of M with a ⊆ ā.

For a point U of D and a bundle a ∈ B(D) we write U ∼ a if there

is a line L ∈ a such that U ∈ L, we write L = U, a.

Frankly, two bundles a, b ∈ B(D) are adjacent iff they share a line.

a ∼ b : ⇐⇒
(

∃ U ∈ Fk,0(W )
)[

U ∼ a ∧ U ∼ b ∧ U, a π U, b
]

U

b

a

Lemma

For two distinct bundles a, b ∈ B(D) we have a ∼ b iff there is a

proper line L or L ∈ Lα

k,1(W ) ∪ Lω

k,1(W ) such that L ∈ ā ∩ b̄.
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Lines of bundles

Given two distinct adjacent bundles a, b ∈ B(D) we can define the
new line through a, b:

[a, b] :=
{

c ∈ B(D) : for all points U of D with [U]D 6= a, b, c

if U ∼ a, b, then U ∼ c and U, a,U, b,U, c are coplanar
}

.

Ua

b
c

Lemma

If a, b ∈ B(D), a 6= b, a ∼ b, and L ∈ ā ∩ b̄, then

[a, b] =
{

c ∈ B(D) : L ∈ c̄
}

.
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Bundle space

The set of all new lines will be written as

L(D) :=
{

[a, b] : a, b ∈ B(D), a ∼ b and a 6= b
}

.

The structure
B(D) :=

〈

B(D),L(D)
〉

is called the bundle space over D. It is a partial linear space.

Proposition

The bundle space B(D) is definable in terms of D.

The bundle space B(D) is isomorphic to

D
′ =

〈

Fk,0(W ) ∪ Fk,1(W ), Gk,0(W ) ∪ Lα

k,1(W ) ∪ Lω

k,1(W )
〉

.

This is a new proof of a know fact that D
′ is definable in D.
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Affine lines on the horizon

The affine lines Ak,1(W ) are not yet recovered.

Let Π be a plane in D
′. There are two possibilities:

(i) Π is a strong subspace of D
′, then

Π is a proper plane in D or it is a projective plane in Ak,1(V ,W ),
(ii) Π contains collinear and non-collinear points, then

Π is a semi-affine plane in Ak,1(V ,W ).

Collinearity w.r.t. affine lines Ak,1(W ) can be defined as follows:

Lτ (a, b, c) : ⇐⇒ (∃ a semi-affine plane Π in D
′)

[

a, b, c ∈ Π ∧ 6∼(a, b, c)
]

.

Proposition (Prażmowski and Żynel, 2002)

For points a, b, c in D
′ we have Lτ (a, b, c) iff there is a line

L ∈ Ak,1(W ) such that a, b, c ∈ L.
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Recovery of the hyperplane H(W )

Proposition (Prażmowski and Żynel, 2002)

Ak,1(V ,W ) is definable in terms of Ak,0(V ,W ).

Continuing this procedure we can recover Ak,2(V ,W ), then
Ak,3(V ,W ), and so on.

Finally, Ak,min(k,n−k)(V ,W ) is recoverable in D = Ak,0(V ,W ).

Theorem (Prażmowski and Żynel, 2002)

The hyperplane H(W ) and the ambient space M are recoverable

from the complement D.
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Summary and final remarks

DONE:

We have successfully recovered the ambient projective Grassmann
space form its hyperplane complement.

TO DO:

Express the relation σ in terms of the points, lines and planes of
the complement D.

Delete two hyperplanes from a Grassmann space and check how to
recover the ambient space from their complement.
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Mariusz Żynel The Bundle Theorem...



Thank you for your attention


