The Bundle Theorem in fragments of projective Grassmann spaces

Mariusz Żynel
mariusz@math.uwb.edu.pl
University of Białystok
Institute of Mathematics

Combinatorics 2014
Gaeta 2014

Motivations and references

E L. R. Wilcox
Modularity in the theory of lattices
Ann, of Math. 40 (1939), 490-505
E J. Kahn
Locally projective-planar lattices which satisfy the Bundle Theorem
Math. Z. 175 (1980), 219-247
圊 A. Kreuzer
Locally projective spaces which satisfy the Bundle Theorem
J. Geom. 56 (1996), 87-98

國 K. Petelczyc, M. Żynel
The complement of a point subset in a projective space and a
Grassmann space
J. Appl. Logic (to appear)

Objectives

Our goal is to recover a deleted hyperplane from a projective Grassmann space.

Pencils

- V - a vector space of dimension n with $3 \leq n<\infty$
- $\operatorname{Sub}_{k}(V)$ - the set of all k-dimensional subspaces of V
- Assume that $0<k<n$.

For $H \in \operatorname{Sub}_{k-1}(V), B \in \operatorname{Sub}_{k+1}(V)$ with $H \subset B$ a k-pencil is a set of the form

$$
\mathbf{p}(H, B):=\left\{U \in \operatorname{Sub}_{k}(V): H \subset U \subset B\right\} .
$$

Grassmann spaces

The point-line structure

$$
\mathfrak{M}=\mathbf{P}_{k}(V)=\left\langle\operatorname{Sub}_{k}(V), \mathcal{P}_{k}(V)\right\rangle
$$

where $\mathcal{P}_{V}(k)$ is the family of all k-pencils, is a Grassmann space.

- If $0<k<n$, then \mathfrak{M} is a partial linear space.
- If $k=1$ or $k=n-1$, then \mathfrak{M} is a projective space.

Basic properties and facts

- Every strong subspace of \mathfrak{M} is a projective space.
- There are two disjoint classes of maximal strong subspaces in \mathfrak{M}.

Stars
For $H \in \operatorname{Sub}_{k-1}(V)$ a star is a set of the form $\mathrm{S}(H)=[H)_{k}=\left\{U \in \operatorname{Sub}_{k}(V): H \subset U\right\}$.

Tops
For $B \in \operatorname{Sub}_{k+1}(V)$ a top is a set of the form

$$
\mathrm{T}(B)=(B]_{k}=\left\{U \in \operatorname{Sub}_{k}(V): U \subset B\right\}
$$

- Every line of \mathfrak{M} can be uniquely extended to a star and a top.

Basic properties and facts

- Every strong subspace of \mathfrak{M} is a projective space.
- There are two disjoint classes of maximal strong subspaces in \mathfrak{M}.

Stars

For $H \in \operatorname{Sub}_{k-1}(V)$ a star is a set of the form

$$
S(H)=[H)_{k}=\left\{U \in \operatorname{Sub}_{k}(V): H \subset U\right\}
$$

Tops

For $B \in \operatorname{Sub}_{k+1}(V)$ a top is a set of the form

$$
\mathrm{T}(B)=(B]_{k}=\left\{U \in \operatorname{Sub}_{k}(V): U \subset B\right\}
$$

- Every line of \mathfrak{M} can be uniquely extended to a star and a top.

Basic properties and facts

- Every strong subspace of \mathfrak{M} is a projective space.
- There are two disjoint classes of maximal strong subspaces in \mathfrak{M}.

Stars

For $H \in \operatorname{Sub}_{k-1}(V)$ a star is a set of the form

$$
S(H)=[H)_{k}=\left\{U \in \operatorname{Sub}_{k}(V): H \subset U\right\}
$$

Tops

For $B \in \operatorname{Sub}_{k+1}(V)$ a top is a set of the form

$$
\mathrm{T}(B)=(B]_{k}=\left\{U \in \operatorname{Sub}_{k}(V): U \subset B\right\}
$$

- Every line of \mathfrak{M} can be uniquely extended to a star and a top.

Spine spaces

- W - a fixed subspace of V
- m - an integer such that $k-\operatorname{codim}(W) \leq m \leq k, \operatorname{dim}(W)$
- $\mathcal{F}_{k, m}(W):=\left\{U \in \operatorname{Sub}_{k}(V): \operatorname{dim}(U \cap W)=m\right\}$
- $\mathcal{G}_{k, m}(W):=\left\{L \cap \mathcal{F}_{k, m}(W): L \in \mathcal{P}_{k}(V)\right.$ and $\left.\left|L \cap \mathcal{F}_{k, m}(W)\right| \geq 2\right\}$

The point-line structure

$$
\mathbf{A}_{k, m}(V, W)=\left\langle\mathcal{F}_{k, m}(W), \mathcal{G}_{k, m}(W)\right\rangle
$$

is called a spine space.
(1) K. Prażmowski, M. Żynel

Automorphisms of spine spaces,
Abh. Math. Sem. Univ. Hamb. 72 (2002), 59-77.

Bundles and planes in partial linear spaces

- The set [U] of all lines through a point U is called a bundle.
- Given three lines L_{1}, L_{2}, L_{3} that form a triangle in a partial linear space, the plane $\Pi\left(L_{1}, L_{2}, L_{3}\right)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_{1}, L_{2}, L_{3} in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2 .
- Two lines $L_{1}, L_{2} \in \mathcal{L}$ are said to be coplanar, which is written as $L_{1} \pi L_{2}$, iff there is a plane containing them.
- The set [U] of all lines through a point U is called a bundle.
- Given three lines L_{1}, L_{2}, L_{3} that form a triangle in a partial linear space, the plane $\Pi\left(L_{1}, L_{2}, L_{3}\right)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_{1}, L_{2}, L_{3} in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2 .
- Two lines $L_{1}, L_{2} \in \mathcal{L}$ are said to be coplanar, which is written as $L_{1} \pi L_{2}$, iff there is a plane containing them
- The set [U] of all lines through a point U is called a bundle.
- Given three lines L_{1}, L_{2}, L_{3} that form a triangle in a partial linear space, the plane $\Pi\left(L_{1}, L_{2}, L_{3}\right)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_{1}, L_{2}, L_{3} in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2.
- Two lines $L_{1}, L_{2} \in \mathcal{L}$ are said to be coplanar, which is written as $L_{1} \pi L_{2}$, iff there is a plane containing them.
- The set $[U]$ of all lines through a point U is called a bundle.
- Given three lines L_{1}, L_{2}, L_{3} that form a triangle in a partial linear space, the plane $\Pi\left(L_{1}, L_{2}, L_{3}\right)$ spanned by this triangle is the set of those points which lie on the lines that intersect two of those three lines L_{1}, L_{2}, L_{3} in two distinct points.
- In linear spaces where the dimension function can be defined we can say that a plane is a subspace of dimension 2 .
- Two lines $L_{1}, L_{2} \in \mathcal{L}$ are said to be coplanar, which is written as $L_{1} \pi L_{2}$, iff there is a plane containing them.

Hyperplane complement in a Grassmann space

- W - a fixed subspace of V with $\operatorname{codim}(W)=k$
- $\mathcal{H}(W):=\left\{U \in \operatorname{Sub}_{k}(V): U \cap W \neq 0\right\}$ - a hyperplane in \mathfrak{M}
- $S_{\mathcal{H}(W)}:=\left\{\operatorname{Sub}_{k}(V) \backslash \mathcal{H}(W)\right\}$
- $\mathcal{L}_{\mathcal{H}(W)}:=\left\{L \cap S_{\mathcal{H}(W)}: L \in \mathcal{P}_{k}(V)\right.$ and $\left.\left|L \cap S_{\mathcal{H}(W)}\right| \geq 2\right\}$

$$
\mathfrak{D}=\mathfrak{D}_{\mathfrak{M}}(\mathcal{H}(W))=\left\langle S_{\mathcal{H}(W)}, \mathcal{L}_{\mathcal{H}(W)}\right\rangle
$$

is the complement of the hyperplane $\mathcal{H}(W)$ in \mathfrak{M}.

$$
\begin{aligned}
& \text { Fact } \\
& \text { In every hyperplane of the form } \mathcal{H}(W) \text { in } \mathfrak{M} \text { there are points } \\
& \text { collinear with no point outside } \mathcal{H}(W) \text {. }
\end{aligned}
$$

- $\mathfrak{D}=\left\langle\mathcal{F}_{k, 0}(W), \mathcal{G}_{k, 0}(W)\right\rangle=\mathbf{A}_{k, 0}(V, W)$
- $\mathcal{H}(W)=\mathcal{F}_{k, 1}(W) \cup \cdots \cup \mathcal{F}_{k \cdot \min (k, n-k)}(W)$

Hyperplane complement in a Grassmann space

- W - a fixed subspace of V with $\operatorname{codim}(W)=k$
- $\mathcal{H}(W):=\left\{U \in \operatorname{Sub}_{k}(V): U \cap W \neq 0\right\}$ - a hyperplane in \mathfrak{M}
- $S_{\mathcal{H}(W)}:=\left\{\operatorname{Sub}_{k}(V) \backslash \mathcal{H}(W)\right\}$
- $\mathcal{L}_{\mathcal{H}(W)}:=\left\{L \cap S_{\mathcal{H}(W)}: L \in \mathcal{P}_{k}(V)\right.$ and $\left.\left|L \cap S_{\mathcal{H}(W)}\right| \geq 2\right\}$

$$
\mathfrak{D}=\mathfrak{D}_{\mathfrak{M}}(\mathcal{H}(W))=\left\langle S_{\mathcal{H}(W)}, \mathcal{L}_{\mathcal{H}(W)}\right\rangle
$$

is the complement of the hyperplane $\mathcal{H}(W)$ in \mathfrak{M}.

Fact

In every hyperplane of the form $\mathcal{H}(W)$ in \mathfrak{M} there are points collinear with no point outside $\mathcal{H}(W)$.

- $\mathfrak{D}=\left\langle\mathcal{F}_{k, 0}(W), \mathcal{G}_{k, 0}(W)\right\rangle=\mathbf{A}_{k, 0}(V, W)$

Hyperplane complement in a Grassmann space

- W - a fixed subspace of V with $\operatorname{codim}(W)=k$
- $\mathcal{H}(W):=\left\{U \in \operatorname{Sub}_{k}(V): U \cap W \neq 0\right\}$ - a hyperplane in \mathfrak{M}
- $S_{\mathcal{H}(W)}:=\left\{\operatorname{Sub}_{k}(V) \backslash \mathcal{H}(W)\right\}$
- $\mathcal{L}_{\mathcal{H}(W)}:=\left\{L \cap S_{\mathcal{H}(W)}: L \in \mathcal{P}_{k}(V)\right.$ and $\left.\left|L \cap S_{\mathcal{H}(W)}\right| \geq 2\right\}$

$$
\mathfrak{D}=\mathfrak{D}_{\mathfrak{M}}(\mathcal{H}(W))=\left\langle S_{\mathcal{H}(W)}, \mathcal{L}_{\mathcal{H}(W)}\right\rangle
$$

is the complement of the hyperplane $\mathcal{H}(W)$ in \mathfrak{M}.

Fact

In every hyperplane of the form $\mathcal{H}(W)$ in \mathfrak{M} there are points collinear with no point outside $\mathcal{H}(W)$.

- $\mathfrak{D}=\left\langle\mathcal{F}_{k, 0}(W), \mathcal{G}_{k, 0}(W)\right\rangle=\mathbf{A}_{k, 0}(V, W)$
- $\mathcal{H}(W)=\mathcal{F}_{k, 1}(W) \cup \cdots \cup \mathcal{F}_{k, \min (k, n-k)}(W)$

Key facts about the complement

Lemma

(i) If $L \in \mathcal{A}_{k, 1}(W)$, then $\mathrm{S}(L), \mathrm{T}(L) \subseteq \mathcal{H}(W)$.
(ii) If $L \in \mathcal{L}_{k, 1}^{\alpha}(W)$, then $\mathrm{T}(L) \nsubseteq \mathcal{H}(W)$ and $\mathrm{S}(L) \subseteq \mathcal{H}(W)$.
(iii) If $L \in \mathcal{L}_{k, 1}^{\omega}(W)$, then $\mathrm{S}(L) \nsubseteq \mathcal{H}(W)$ and $\mathrm{T}(L) \subseteq \mathcal{H}(W)$.

> Corollary
> For every point $U \in \mathcal{F}_{k, 1}(W)$ there are $U_{1}, U_{2}, U_{3} \in \mathcal{F}_{k, 0}(W)$ such that U, U_{1}, U_{2}, U_{3} form a tetrahedron in \mathfrak{M}

Key facts about the complement

Lemma

(i) If $L \in \mathcal{A}_{k, 1}(W)$, then $\mathrm{S}(L), \mathrm{T}(L) \subseteq \mathcal{H}(W)$.
(ii) If $L \in \mathcal{L}_{k, 1}^{\alpha}(W)$, then $\mathrm{T}(L) \nsubseteq \mathcal{H}(W)$ and $\mathrm{S}(L) \subseteq \mathcal{H}(W)$.
(iii) If $L \in \mathcal{L}_{k, 1}^{\omega}(W)$, then $\mathrm{S}(L) \nsubseteq \mathcal{H}(W)$ and $\mathrm{T}(L) \subseteq \mathcal{H}(W)$.

In what follows we assume that $2<k<n-2$.

Corollary

For every point $U \in \mathcal{F}_{k, 1}(W)$ there are $U_{1}, U_{2}, U_{3} \in \mathcal{F}_{k, 0}(W)$ such that U, U_{1}, U_{2}, U_{3} form a tetrahedron in \mathfrak{M}.

Bundle Theorem

- Both in the Grassmann space \mathfrak{M} and in the hyperplane complement \mathfrak{D} the following is true.

Theorem (Bundle Theorem)

Let $L_{1}, L_{2}, L_{3}, L_{4}$ be lines such that no three of them are coplanar. If five of the six pairs $\left\{L_{i}, L_{j}\right\}, 1 \leq i<j \leq 4$ are coplanar, then so is the sixth pair.

- In locally-projective linear spaces (cf. [Kreuzer, 1996]) this theorem is used to prove that two lines determine a bundle uniquely.

Maximal π-clique and bundles

- Let \mathcal{K} be a maximal π-clique in \mathfrak{D}. There are two possibilities:
(i) there is a point U in \mathfrak{M} such that $U \in \bar{L}$ for all $L \in \mathcal{K}$, or (ii) there is a plane Π in \mathfrak{D} such that $L \subset \Pi$ for all $L \in \mathcal{K}$.
- They can be distinguished by requirement that:
$(*)$ there are three non-coplanar lines in \mathcal{K}. The π-clique \mathcal{K} is of type (i) iff it satisfies (*)
- There is a strong subspace in \mathfrak{D} containing \mathcal{K}.
- Every bundle [U] breaks up into π-cliques.

Maximal π-clique and bundles

- Let \mathcal{K} be a maximal π-clique in \mathfrak{D}. There are two possibilities:
(i) there is a point U in \mathfrak{M} such that $U \in \bar{L}$ for all $L \in \mathcal{K}$, or
(ii) there is a plane Π in \mathfrak{D} such that $L \subset \Pi$ for all $L \in \mathcal{K}$.
- They can be distinguished by requirement that:
$(*)$ there are three non-coplanar lines in \mathcal{K}.
The π-clique \mathcal{K} is of type (i) iff it satisfies $(*)$.
- There is a strong subspace in \mathfrak{D} containing \mathcal{K}.
- Every bundle [U] breaks up into π-cliques.

Maximal π-clique and bundles

- Let \mathcal{K} be a maximal π-clique in \mathfrak{D}. There are two possibilities:
(i) there is a point U in \mathfrak{M} such that $U \in \bar{L}$ for all $L \in \mathcal{K}$, or
(ii) there is a plane Π in \mathfrak{D} such that $L \subset \Pi$ for all $L \in \mathcal{K}$.
- They can be distinguished by requirement that:
$(*)$ there are three non-coplanar lines in \mathcal{K}.
The π-clique \mathcal{K} is of type (i) iff it satisfies $(*)$.
- There is a strong subspace in \mathfrak{D} containing \mathcal{K}.
- Every bundle [U] breaks up into π-cliques.

Maximal π-clique and bundles

- Let \mathcal{K} be a maximal π-clique in \mathfrak{D}. There are two possibilities:
(i) there is a point U in \mathfrak{M} such that $U \in \bar{L}$ for all $L \in \mathcal{K}$, or
(ii) there is a plane Π in \mathfrak{D} such that $L \subset \Pi$ for all $L \in \mathcal{K}$.
- They can be distinguished by requirement that:
$(*)$ there are three non-coplanar lines in \mathcal{K}.
The π-clique \mathcal{K} is of type (i) iff it satisfies $(*)$.
- There is a strong subspace in \mathfrak{D} containing \mathcal{K}.
- Every bundle [U] breaks up into π-cliques.

Gluing π-cliques together

- X_{1}, X_{2} - strong subspaces of different types in \mathfrak{D}

$$
\begin{aligned}
& \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right): \Longleftrightarrow U_{1}, U_{2} \in X_{1} \cap X_{2} \wedge \\
& \quad\left(\exists L_{1} \in \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right)\right)\left(\exists L_{2} \in \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right)\right)\left[L_{1}, L_{2} \neq X_{1} \cap X_{2} \wedge\right.
\end{aligned}
$$

$\mathrm{T}\left(L_{1}\right) \cap \mathrm{S}\left(L_{2}\right)$ or $\mathrm{S}\left(L_{1}\right) \cap \mathrm{T}\left(L_{2}\right)$ is a proper line distinct from $X_{1} \cap X_{2}$]

- X_{1}, X_{2} - strong subspaces of the same type in \mathfrak{D}

$$
\mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right): \Longleftrightarrow\left(\exists U \in \mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W)\right)
$$

(\exists a maximal strong subspace X of the other type than X_{1}, X_{2})

$$
\left[U \in X \wedge \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X}(U) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right)\right]
$$

- σ is an equivalence relation; its equivalence classes are bundles.
- To every point $U \in \mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W)$ we can associate a unique bundle $[U]_{\mathfrak{D}}$ of lines of \mathfrak{D}.

Gluing π-cliques together

- X_{1}, X_{2} - strong subspaces of different types in \mathfrak{D}

$$
\begin{aligned}
& \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right): \Longleftrightarrow U_{1}, U_{2} \in X_{1} \cap X_{2} \wedge \\
& \quad\left(\exists L_{1} \in \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right)\right)\left(\exists L_{2} \in \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right)\right)\left[L_{1}, L_{2} \neq X_{1} \cap X_{2} \wedge\right.
\end{aligned}
$$

$\mathrm{T}\left(L_{1}\right) \cap \mathrm{S}\left(L_{2}\right)$ or $\mathrm{S}\left(L_{1}\right) \cap \mathrm{T}\left(L_{2}\right)$ is a proper line distinct from $X_{1} \cap X_{2}$]

- X_{1}, X_{2} - strong subspaces of the same type in \mathfrak{D}

$$
\mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right): \Longleftrightarrow\left(\exists U \in \mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W)\right)
$$

(\exists a maximal strong subspace X of the other type than X_{1}, X_{2})

$$
\left[U \in X \wedge \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X}(U) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right)\right]
$$

- σ is an equivalence relation; its equivalence classes are bundles.

Gluing π-cliques together

- X_{1}, X_{2} - strong subspaces of different types in \mathfrak{D}

$$
\begin{aligned}
& \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right): \Longleftrightarrow U_{1}, U_{2} \in X_{1} \cap X_{2} \wedge \\
& \quad\left(\exists L_{1} \in \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right)\right)\left(\exists L_{2} \in \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right)\right)\left[L_{1}, L_{2} \neq X_{1} \cap X_{2} \wedge\right.
\end{aligned}
$$

$\mathrm{T}\left(L_{1}\right) \cap \mathrm{S}\left(L_{2}\right)$ or $\mathrm{S}\left(L_{1}\right) \cap \mathrm{T}\left(L_{2}\right)$ is a proper line distinct from $X_{1} \cap X_{2}$]

- X_{1}, X_{2} - strong subspaces of the same type in \mathfrak{D}

$$
\mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right): \Longleftrightarrow\left(\exists U \in \mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W)\right)
$$

(\exists a maximal strong subspace X of the other type than X_{1}, X_{2})

$$
\left[U \in X \wedge \mathcal{K}_{\pi}^{X_{1}}\left(U_{1}\right) \sigma \mathcal{K}_{\pi}^{X}(U) \sigma \mathcal{K}_{\pi}^{X_{2}}\left(U_{2}\right)\right]
$$

- σ is an equivalence relation; its equivalence classes are bundles.
- To every point $U \in \mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W)$ we can associate a unique bundle $[U]_{\mathfrak{D}}$ of lines of \mathfrak{D}.

Adjacency of bundles

- We will write $\mathcal{B}(\mathfrak{D})$ for the set of all bundles in \mathfrak{D}.
- If $a \in \mathcal{B}(\mathfrak{D})$ we write \bar{a} for the bundle of \mathfrak{M} with $a \subseteq \bar{a}$.
- For a point U of \mathfrak{D} and a bundle $a \in \mathcal{B}(\mathfrak{D})$ we write $U \sim a$ if there is a line $L \in$ a such that $U \in L$, we write $L=\overline{U, a}$.
- Frankly, two bundles $a, b \in \mathcal{B}(\mathfrak{D})$ are adjacent iff they share a line.

$$
a \sim b: \Longleftrightarrow\left(\exists U \in \mathcal{F}_{k, 0}(W)\right)[U \sim a \wedge U \sim b \wedge \overline{U, a} \pi \overline{U, b}]
$$

Lemma

For two distinct bundles $a, b \in \mathcal{B}(\mathfrak{D})$ we have $a \sim b$ iff there is a proper line L or $L \in \mathcal{L}_{k, 1}^{\alpha}(W) \cup \mathcal{L}_{k, 1}^{\omega}(W)$ such that $L \in \bar{a} \cap \bar{b}$.

Lines of bundles

- Given two distinct adjacent bundles $a, b \in \mathcal{B}(\mathfrak{D})$ we can define the new line through a, b :

$$
[a, b]:=\left\{c \in \mathcal{B}(\mathfrak{D}): \text { for all points } U \text { of } \mathfrak{D} \text { with }[U]_{\mathfrak{D}} \neq a, b, c\right.
$$ if $U \sim a, b$, then $U \sim c$ and $\overline{U, a}, \overline{U, b}, \overline{U, c}$ are coplanar $\}$.

Lemma

If $a, b \in \mathcal{B}(\mathfrak{D}), a \neq b, a \sim b$, and $L \in \bar{a} \cap \bar{b}$, then

$$
[a, b]=\{c \in \mathcal{B}(\mathfrak{D}): L \in \bar{c}\} .
$$

Bundle space

- The set of all new lines will be written as

$$
\mathfrak{L}(\mathfrak{D}):=\{[a, b]: a, b \in \mathcal{B}(\mathfrak{D}), a \sim b \text { and } a \neq b\} .
$$

- The structure

$$
\mathfrak{B}(\mathfrak{D}):=\langle\mathcal{B}(\mathfrak{D}), \mathfrak{L}(\mathfrak{D})\rangle
$$

is called the bundle space over \mathfrak{D}. It is a partial linear space.

Proposition
The bundle space $\mathfrak{B (D)}$ is definable in terms of $(D$

- The bundle space $\mathfrak{B}(\mathfrak{D})$ is isomorphic to

$$
D^{\prime}=\left\langle\mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W), \mathcal{G}_{k, 0}(W) \cup \mathcal{L}_{k, 1}^{a}(W) \cup \mathcal{L}_{k, 1}^{\omega}(W)\right\rangle
$$

- This is a new proof of a know fact that \mathfrak{D}^{\prime} is definable in \mathfrak{D}.

Bundle space

- The set of all new lines will be written as

$$
\mathfrak{L}(\mathfrak{D}):=\{[a, b]: a, b \in \mathcal{B}(\mathfrak{D}), a \sim b \text { and } a \neq b\} .
$$

- The structure

$$
\mathfrak{B}(\mathfrak{D}):=\langle\mathcal{B}(\mathfrak{D}), \mathfrak{L}(\mathfrak{D})\rangle
$$

is called the bundle space over \mathfrak{D}. It is a partial linear space.

Proposition

The bundle space $\mathfrak{B}(\mathfrak{D})$ is definable in terms of \mathfrak{D}.

- The bundle space $\mathfrak{B}(\mathfrak{D})$ is isomorphic to
$\mathfrak{D}^{\prime}=\left\langle\mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W), \mathcal{G}_{k, 0}(W) \cup \mathcal{L}_{k, 1}^{\alpha}(W) \cup \mathcal{L}_{k, 1}^{\omega}(W)\right\rangle$
- This is a new proof of a know fact that \mathfrak{D}^{\prime} is definable in $\sqrt[D]{ }$

Bundle space

- The set of all new lines will be written as

$$
\mathfrak{L}(\mathfrak{D}):=\{[a, b]: a, b \in \mathcal{B}(\mathfrak{D}), a \sim b \text { and } a \neq b\} .
$$

- The structure

$$
\mathfrak{B}(\mathfrak{D}):=\langle\mathcal{B}(\mathfrak{D}), \mathfrak{L}(\mathfrak{D})\rangle
$$

is called the bundle space over \mathfrak{D}. It is a partial linear space.

Proposition

The bundle space $\mathfrak{B}(\mathfrak{D})$ is definable in terms of \mathfrak{D}.

- The bundle space $\mathfrak{B}(\mathfrak{D})$ is isomorphic to

$$
\mathfrak{D}^{\prime}=\left\langle\mathcal{F}_{k, 0}(W) \cup \mathcal{F}_{k, 1}(W), \mathcal{G}_{k, 0}(W) \cup \mathcal{L}_{k, 1}^{\alpha}(W) \cup \mathcal{L}_{k, 1}^{\omega}(W)\right\rangle
$$

- This is a new proof of a know fact that \mathfrak{D}^{\prime} is definable in \mathfrak{D}.

Affine lines on the horizon

- The affine lines $\mathcal{A}_{k, 1}(W)$ are not yet recovered.
- Let Π be a plane in \mathfrak{D}^{\prime}. There are two possibilities:
(i) Π is a strong subspace of \mathfrak{D}^{\prime}, then
Π is a proper plane in \mathfrak{D} or it is a projective plane in $A_{k, 1}(V, W)$,
(ii) Π contains collinear and non-collinear points, then
Π is a semi-affine plane in $\mathbf{A}_{k, 1}(V, W)$
- Collinearity w.r.t. affine lines $\mathcal{A}_{k, 1}(W)$ can be defined as follows:
$\mathrm{L}^{\tau}(a, b, c): \Longleftrightarrow\left(\exists\right.$ a semi-affine plane Π in $\left.\mathfrak{D}^{\prime}\right)$

$$
a, b, c \in \Pi \wedge \nsim(a, b, c)] .
$$

Proposition (Prażmowski and Żynel, 2002)
For points a, b, c in \mathfrak{D}^{\prime} we have $\mathrm{L}^{\tau}(a, b, c)$ iff there is a line $L \in \mathcal{A}_{k, 1}(W)$ such that $a, b, c \in L$.

Affine lines on the horizon

- The affine lines $\mathcal{A}_{k, 1}(W)$ are not yet recovered.
- Let Π be a plane in \mathfrak{D}^{\prime}. There are two possibilities:
(i) Π is a strong subspace of \mathfrak{D}^{\prime}, then
Π is a proper plane in \mathfrak{D} or it is a projective plane in $\mathbf{A}_{k, 1}(V, W)$,
(ii) Π contains collinear and non-collinear points, then Π is a semi-affine plane in $\mathbf{A}_{k, 1}(V, W)$.
- Collinearity w.r.t. affine lines $\mathcal{A}_{k, 1}(W)$ can be defined as follows:
$\mathrm{L}^{\tau}(a, b, c): \Longleftrightarrow\left(\exists\right.$ a semi-affine plane Π in $\left.\mathfrak{D}^{\prime}\right)$

Proposition (Prażmowski and Żynel, 2002)
 For noints a, b, c in \mathfrak{D}^{\prime} we have $\mathbf{I}^{\tau}(a, b, c)$ iff there is a line $L \in \mathcal{A}_{k .1}(W)$ such that $a, b, c \in L$.

Affine lines on the horizon

- The affine lines $\mathcal{A}_{k, 1}(W)$ are not yet recovered.
- Let Π be a plane in \mathfrak{D}^{\prime}. There are two possibilities:
(i) Π is a strong subspace of \mathfrak{D}^{\prime}, then
Π is a proper plane in \mathfrak{D} or it is a projective plane in $\mathbf{A}_{k, 1}(V, W)$,
(ii) Π contains collinear and non-collinear points, then Π is a semi-affine plane in $\mathbf{A}_{k, 1}(V, W)$.
- Collinearity w.r.t. affine lines $\mathcal{A}_{k, 1}(W)$ can be defined as follows:

$$
\begin{aligned}
& \mathrm{L}^{\tau}(a, b, c): \Longleftrightarrow\left(\exists \text { a semi-affine plane } \Pi \text { in } \mathfrak{D}^{\prime}\right) \\
& {[a, b, c \in \Pi \wedge \nsim(a, b, c)] . }
\end{aligned}
$$

Proposition (Prażmowski and Żynel, 2002)

For points a, b, c in \mathfrak{D}^{\prime} we have $\mathrm{L}^{\tau}(a, b, c)$ iff there is a line $L \in \mathcal{A}_{k, 1}(W)$ such that $a, b, c \in L$.

Recovery of the hyperplane $\mathcal{H}(W)$

Proposition (Prażmowski and Żynel, 2002)
 $\mathbf{A}_{k, 1}(V, W)$ is definable in terms of $\mathbf{A}_{k, 0}(V, W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k, 2}(V, W)$, then $\mathbf{A}_{k, 3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k, \min (k, n-k)}(V, W)$ is recoverable in $\mathfrak{D}=\mathbf{A}_{k, 0}(V, W)$.

Theorem (Prażmowski and Żynel, 2002)
 The hypernlane $\mathcal{F}(M)$ and the ambient space \mathfrak{N} are recoverable from the complement $(D$

Recovery of the hyperplane $\mathcal{H}(W)$

Proposition (Prażmowski and Żynel, 2002)
 $\mathbf{A}_{k, 1}(V, W)$ is definable in terms of $\mathbf{A}_{k, 0}(V, W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k, 2}(V, W)$, then $\mathbf{A}_{k, 3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k, \min (k, n-k)}(V, W)$ is recoverable in $\mathscr{D}=\mathbf{A}_{k, 0}(V, W)$.

Theorem (Prażmowski and Żynel, 2002)
 The hyperplane $\mathcal{H}(W)$ and the ambient space \mathfrak{N} are recoverable from the complement \mathfrak{D}

Recovery of the hyperplane $\mathcal{H}(W)$

Proposition (Prażmowski and Żynel, 2002)
$\mathbf{A}_{k, 1}(V, W)$ is definable in terms of $\mathbf{A}_{k, 0}(V, W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k, 2}(V, W)$, then $\mathbf{A}_{k, 3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k, \min (k, n-k)}(V, W)$ is recoverable in $\mathfrak{D}=\mathbf{A}_{k, 0}(V, W)$.

Theorem (Prażmowski and Żynel, 2002)
 The hyperplane $\mathcal{F}(1 / /)$ and the ambient space \mathfrak{N} are recoverable from the complement $(D$

Recovery of the hyperplane $\mathcal{H}(W)$

Proposition (Prażmowski and Żynel, 2002)

$\mathbf{A}_{k, 1}(V, W)$ is definable in terms of $\mathbf{A}_{k, 0}(V, W)$.

- Continuing this procedure we can recover $\mathbf{A}_{k, 2}(V, W)$, then $\mathbf{A}_{k, 3}(V, W)$, and so on.
- Finally, $\mathbf{A}_{k, \min (k, n-k)}(V, W)$ is recoverable in $\mathfrak{D}=\mathbf{A}_{k, 0}(V, W)$.

Theorem (Prażmowski and Żynel, 2002)

The hyperplane $\mathcal{H}(W)$ and the ambient space \mathfrak{M} are recoverable from the complement \mathfrak{D}.

Summary and final remarks

DONE:

- We have successfully recovered the ambient projective Grassmann space form its hyperplane complement.
- Express the relation σ in terms of the points, lines and planes of the complement \mathfrak{D}.
- Delete two hyperplanes from a Grassmann space and check how to recover the ambient space from their complement.

Summary and final remarks

DONE:

- We have successfully recovered the ambient projective Grassmann space form its hyperplane complement.

TO DO:

- Express the relation σ in terms of the points, lines and planes of the complement \mathfrak{D}.
- Delete two hyperplanes from a Grassmann space and check how to recover the ambient space from their complement.

Thank you for your attention

