probability theory erasmus programm, exercises - list 1

- 1. Let $a, b \in \mathbb{R}$. Show that intervals $[a, b), [a, b], (a, b], (a, b), (-\infty, a], (a, \infty), [a, \infty)$ and $\{a\}$ are Borel sets.
- 2. Consider the sample space Ω such that $|\Omega| = n$. What is the minimal and maximal possible number of events in that space?
- 3. Give and example of probability space such that the number of elementary events is greater than number of events.
- 4. Let Σ be a σ -algebra of subsets of Ω . Let P_1, P_2, \ldots, P_n be probability measures on (Ω, Σ) and c_1, c_2, \ldots, c_n are positive constants such that $c_1 + c_2 + \ldots + c_n = 1$. Show that $c_1P_1 + c_2P_2 + \ldots + c_nP_n$ is a probability measure.
- 5. Let $x \in \Omega$. Let us define the function $\delta_x(A) := \mathbf{1}_x(A)$ i.e. $\delta_x(A) = 1$ if $x \in A$ and $\delta_x(A) = 0$ if $x \notin A$. Show that δ_x is a probability measure on $(\Omega, 2^{\Omega})$.
- 6. The coin is tossed three times. Describe the probability space.
- 7. The coin is tossed until head turns up. Describe the probability space.
- 8. Prove the Theorem 1.
- 9. Let $A, B, C \in \Sigma$. Derive the formula on $P(A \cup B \cup C)$.
- 10. Let A and B be events with probabilities $P(A) = \frac{3}{4}$ and $P(B) = \frac{1}{3}$. Show that

$$\frac{1}{12} \le P(A \cap B) \le \frac{1}{3},$$

and give examples to show that both extremes are possible. Find corresponding bonds for $P(A \cup B)$.

- 11. A fair coin is tossed repeatedly. Show that, with probability one, head turns up sooner or later.
- 12. Given that $P(A) = \frac{3}{4}$ and $P(A \cap B) = \frac{1}{2}$ and moreover $P(A \setminus B) = P(B \setminus A)$ calculate P(A) and $P(B \setminus A)$.
- 13. Show that

$$P(A \triangle B) \le 1 - P(A \cap B) \le 2 - P(A) - P(B).$$