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We consider an extendible endomorphism α of a C∗-algebra A. We associate to it a
canonical C∗-dynamical system (B, β) that extends (A, α) and is “reversible” in the
sense that the endomorphism β admits a unique regular transfer operator β∗. The theory
for (B, β) is analogous to the theory of classic crossed products by automorphisms, and
the key idea is to describe the counterparts of classic notions for (B, β) in terms of the
initial system (A, α). We apply this idea to study the ideal structure of a non-unital
version of the crossed product C∗(A, α, J) introduced recently by the author and A. V.

Lebedev. This crossed product depends on the choice of an ideal J in (ker α)⊥, and if
J = (ker α)⊥ it is a modification of Stacey’s crossed product that works well with non-
injective α’s. We provide descriptions of the lattices of ideals in C∗(A, α, J) consisting of
gauge-invariant ideals and ideals generated by their intersection with A. We investigate
conditions under which these lattices coincide with the set of all ideals in C∗(A, α, J).
In particular, we obtain simplicity criteria that besides minimality of the action require
either outerness of powers of α or pointwise quasinilpotence of α.

Keywords: C∗-algebra; endomorphism; crossed product; ideal structure; simplicity;
reversible extension.
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1. Introduction

The theory of crossed products of C∗-algebras by endomorphisms was initiated by
the ideas of Cuntz [13]. The original constructions were spatial, involved injective
endomorphisms and one of their main aims was to produce new examples of sim-
ple C∗-algebras [43, 14, 45, 39, 40, 46]. A universal definition of a crossed product
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by an endomorphism was given by Stacey [47]. When adapted to semigroup con-
text [10, 1] it was investigated by many authors in connection with Toeplitz alge-
bras of semigroups of isometries [2, 34], Bost–Connes Hecke algebras arising from
number fields [35, 7], phase transitions [32] or short exact sequences and tensor
products [36].

Despite of these achievements one has to note that the universal definition pro-
posed by Stacey, even though it makes sense for an arbitrary endomorphism, is
not correct when the underlying endomorphism is not injective. The reason is that
Stacey’s (multiplicity one) crossed product A ×1

α N is isometric. This means, cf.
[47, Definition 3.1], that the endomorphism α implementing the dynamics on the
C∗-algebra A is represented in A×1

α N via the relation

ι(α(a)) = uι(a)u∗, a ∈ A, (1.1)

where u is an isometry in M(A×1
α N), and ι : A→ A×1

α N is the universal homo-
morphism. This readily implies that ι cannot be injective when α is not injective.
Accordingly, the crossed product A×1

α N in fact does not depend on (A,α) but on
the “smaller” quotient system (A/R,αR) where R = ker ι and αR(a+R) = α(a)+R
is a monomorphism of A/R (cf. Remark 4.4). In other words, speaking about non-
injective endomorphisms in this context has only formal character.

In the case A is unital, the authors of [31] proposed an alternative construction
of a C∗-algebra generated by a faithful copy of A and an operator u satisfying (1.1),
so that u is an isometry exactly when α is a monomorphism. The point of departure
in [31] is the remark that the relation (1.1) imply that

u is a (power) partial isometry and u∗uι(a) = ι(a)u∗u, a ∈ A. (1.2)

The universal C∗-algebra generated by objects satisfying (1.1), and hence automat-
ically (1.2), was introduced and studied (in the semigroup case) in [37]. However,
this algebra should be viewed as a certain Toeplitz extension of the C∗-algebra
we seek; in particular it is not a generalization of the classic crossed product. As
argued in [31], in order to obtain a smaller algebra one should impose an additional
relation. This relation can be phrased in terms of objects appearing in (1.2) via the
formula

J = {a ∈ A : u∗uι(a) = ι(a)} (1.3)

where J is an ideal in A. Stipulating that ι is faithful, one deduces that J must be
contained in the annihilator (ker α)⊥ of the kernel of α. For any ideal J in (ker α)⊥

the crossed product C∗(A,α, J) studied in [31] is a universal C∗-algebra with respect
to relations (1.1), (1.3). The appropriate modification of Stacey’s crossed product is
the C∗-algebra C∗(A,α) := C∗(A,α, (ker α)⊥) corresponding to J = (ker α)⊥. Sig-
nificantly, see [31], the C∗-algebras C∗(A,α, J) can be naturally modeled as relative
Cuntz–Pimnser algebras [38]. In this picture Stacey’s crossed product corresponds
to Pimsner’s original construction [44] while C∗(A,α) corresponds to Katsura’s [19]
modification of Pimsner’s C∗-algebras.
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We also note that there are good reasons for studying C∗(A,α, J) with J varying
from {0} to (ker α)⊥ rather than focusing only on the unrelative crossed product
C∗(A,α). For instance: (1) when J = {0} we arrive at the partial isometric crossed
product of [37]; (2) as we will see below, quotients of the unrelative crossed product
by gauge-invariant ideals in general have the form C∗(A,α, J) where J � (ker α)⊥;
(3) compressions of weighted composition operators often generate C∗-algebras of
type C∗(A,α, J) where the dependence on J is essential, cf. [25, Theorem 5.6].

In this paper, motivated by applications to non-unital C∗-algebras, cf. for
instance [3, 36], we extend the definition of C∗(A,α, J). In our setting it applies to
C∗-dynamical systems (A,α) consisting of a (possibly non-unital) C∗-algebraA and
an endomorphism α : A→ A that extends to the strictly continuous endomorphism
α : M(A) → M(A), cf. [1]. We call (A,α) a reversible C∗-dynamical system if α
shifts (ker α)⊥ onto a corner in A and ker α is a complemented ideal in A. Then
there exists a unique transfer operator α∗ for α [16, 12], such that α∗ ◦α is a condi-
tional expectation on α(A), cf. [24, 29]. For such systems the C∗-algebra C∗(A,α)
coincides with Exel’s crossed product A �α,α∗ N, introduced in [16] and adapted
to non-unital case in [12], see also [29]. The structure of C∗(A,α) = A �α,α∗ N is
relatively similar to that of the classic crossed product by an automorphism, see
[4], [24, Remark 1.1], or [28]. We note that in general the theories of Exel’s crossed
products and crossed products considered in this paper are different. As explained
in [29] they can be naturally unified in the realm of crossed products by completely
positive maps.

Our strategy to investigate C∗(A,α, J) is similar, but yet slightly different, to
the very popular method of dilations and corners, see [33] as well as [13, 14, 43,
47, 45]. The latter method works only for injective endomorphisms and allows one
to regard crossed products by endomorphisms as (full) corners in crossed products
by automorphisms. Therefore it gives a realization of the crossed product only
up to Morita equivalence. This might be too insensitive tool when studying more
subtle problems such as, for instance, spectra of elements of the algebras under
consideration.

In our approach we start with an arbitrary C∗-dynamical system (A,α) and an
ideal J in (ker α)⊥. We construct a canonical reversible C∗-dynamical system (B, β)
that extends (A,α). We call (B, β) a natural reversible J-extension of (A,α). It is
defined as a direct limit in the category of C∗-dynamical systems, and identified as
a universal object in the sense to be specified below. Examples of such objects in the
commutative case were studied in [30, 25], and when A is unital were constructed
in [23]. In particular, it follows that we have a natural isomorphism

C∗(A,α, J) ∼= C∗(B, β).

Our main goal is to use the above isomorphism to get a description of the ideal
structure of C∗(A,α, J). The tactics is as follows. First, we develop or extend to
non-unital case the tools that apply to C∗(B, β), cf. [28, 4]. Second, by an analysis
of the relationship between (A,α) and (B, β) we derive results for general crossed
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Fig. 1. Relationships between the lattices of ideals.

products C∗(A,α, J). The general relationship, established in this way, between
the lattices of ideals of various type is presented by the diagram on Fig. 1; here
the arrow A ⇒ B indicates that there is an order retractiona from the lattice A
onto the lattice B, and A⇔ B means that A and B are order isomorphic (precise
descriptions will be given above).

For reversible C∗-dynamical systems the theory looks quite similar to the classic
theory for automorphic actions. For instance, adopting parts of [28] to non-unital
case, we identify a condition on (B, β) under which all ideals in C∗(A,α, J) are
gauge-invariant (see Corollary 4.2). One of the difficult problems is to phrase such
conditions in terms of (A,α) and J , which we do in full generality in the commuta-
tive case (Proposition 4.9). Moreover, as it can be well seen from our analysis, an
essential difference comparing to the classic theory arise for systems (A,α) where
the kernel ker α is not a complemented ideal in A. For such systems, even in the
unrelative crossed product C∗(A,α), not all gauge-invariant ideals are generated
by their intersection with A. In order to describe such ideals in general (Theorem
4.1) we need a pair of ideals in A. Similar facts were first observed in the context of
graph C∗-algebras [8] and for general relative Cuntz–Pimsner are described in [21].

Another new phenomenon occurs in the study of simplicity of C∗(A,α, J) (The-
orem 4.2). We show that C∗(A,α, J) is not simple unless it is the unrelative crossed
product C∗(A,α) and (A,α) is minimal. The minimality condition we use (Defini-
tion 4.4) is slightly more subtle then the corresponding condition used in the unital
case, see [43, 39, 40, 46]. Moreover, the simplicity of C∗(A,α) implies the following
dynamical dichotomy: either

(1) α is pointwise quasinilpotent, or
(2) α is a monomorphism and no power αn, n > 0, is inner.

aAn order preserving surjection r : A → B which has an order preserving right inverse.
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Conversely, for a minimal (A,α) we show that (1) is sufficient for simplicity of
C∗(A,α), and if A is unital we infer from [46, Theorem 4.1] that (2) implies C∗(A,α)
is simple. We also examine condition (2) in the non-unital case, for reversible sys-
tems and arbitrary systems on commutative algebras (see respectively Corollary 4.3
and Theorem 4.4). We remark that condition (2) is related to the classic theorem
of Kishimoto [22] while (1) cannot occur for non-injective α.

It is fair to say that we could analyze C∗(A,α, J) as a relative Cuntz–Pimsner
algebra (or even as a C∗-algebra of an ideal in a right tensor C∗-precategory, cf.
[26, Example 2.20]). Such analysis would heavily rely on the results of [21]; we
briefly explain it in the appendix section. However, our direct approach has several
advantages. It makes the content accessible for the broader audience and allows the
presentation to be self-contained. Hopefully, more direct arguments shed more light
on the investigated problems and open the door to further future generalizations, for
instance, in the purely algebraic setting, cf. [6]. Last but not least, we think that the
method of using reversible extensions developed in the paper has a potential. For
example, we plan to use it in forthcoming papers to tackle endomorphisms ofC0(X)-
algebras and to analyze spectra of the related weighted composition operators,
cf. [5].

The content of the paper is essentially divided into two parts.
Sections 2 and 3 are “space free” — all considerations are performed in a cate-

gory of C∗-dynamical systems C∗-dyna. In Sec. 2 we discus reversible C∗-dynamical
systems which are special objects in C∗-dyna. We also introduce and study the
notion of J-covariance for morphisms in C∗-dyna. In Sec. 3 we construct the natu-
ral reversible J-extension (B, β) of a C∗-dynamical system (A,α) as a certain direct
limit in C∗-dyna, and characterize it as a universal object (Theorem 3.1). Invari-
ant ideals and J-pairs for (A,α) are introduced in Sec. 3.2. The important tool is
Theorem 3.2 where we describe invariant ideals in (B, β), and the corresponding
quotient subsystems, in terms of J-pairs for (A,α).

In Sec. 4 we investigate representation theory for C∗-dynamical systems. In
Sec. 4.1 we generalize the notion of a J-covariant representation of (A,α), [31,
Definition 1.7], and show that such representations can be treated as J-covariant
morphisms from (A,α) to reversible C∗-dynamical systems. This allows us to apply
the previously elaborated tools to study the crossed product C∗(A,α, J), which we
define in Sec. 4.2. In particular, we describe the lattice of its gauge-invariant ideals
in Theorem 4.1 and establish the simplicity criteria in Theorem 4.2. In Sec. 4.5
we exploit the notion of topological freeness defined for reversible C∗-dynamical
systems. Finally, we illustrate the theory with a discussion of the commutative
case, see Sec. 4.6.

We close the paper with an appendix indicating how to analyzeC∗(A,α, J) using
the general theory of relative Cuntz–Pimsner algebras. We focus here mainly on the
ideal structure, but this also leads to criteria for other properties of C∗(A,α, J) such
as nuclearity or exactness.
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1.1. Preliminaries and notation

All ideals in C∗-algebras are assumed to be closed and two sided. We denote by
I⊥ = {a ∈ A : aI = {0}} the annihilator of an ideal I in a C∗-algebra A (it is the
largest ideal in A with the property that I⊥ ∩ I = {0}). An ideal I in A is called
essential if I⊥ = {0}. A multiplier algebra M(A) of A can be characterized as a
maximal unital C∗-algebra containing A as an essential ideal. We will denote the
unit in M(A) simply by 1. Occasionally we will use the same symbol for units in
different algebras but this should not cause confusion. One of the models for M(A)
is where the elements of M(A) are viewed as functions on A possessing (necessarily
unique) adjoints:

M(A) = {m : A→ A : ∃m∗:A→A (ma)∗b

= a∗(m∗b) for all a, b ∈ A}.
Another approach is to view M(A) as a completion of A in the strict topology. A
net mλ in M(A) converges strictly to m ∈ M(A) if and only if mλa → ma and
m∗
λa → m∗a in A, for any a ∈ A. Since we will need notation only for closures in

the strict topology we adopt the convention that for any subset I of A

I stands for the strict closure of I ⊆ A in M(A).

By homomorphisms, epimorphisms, etc. between C∗-algebras we always mean ∗-
preserving maps. A continuous mapping T : A→ B between C∗-algebrasA andB is
said to be extendible, cf. [1], if it extends to a (necessarily unique) strictly continuous
mapping T : M(A)→M(B). A homomorphism T : A→ B is extendible if and only
if for some (and hence any) approximate unit {µλ} in A the net {T (µλ)} converges
strictly in M(B). Then T is determined by the formula T (m)b = limT (mµλ)b,
m ∈ M(A), b ∈ B. If the net {T (µλ)} converges strictly to the unit in M(B)
homomorphism T is called non-degenerate.

The following relations between strict closures and strictly continuous extensions
will be of constant use in the paper.

Lemma 1.1. Let I be an ideal in A and I its strict closure in M(A). We have

I = {b ∈M(A) : bA ⊆ I} and I
⊥

= I⊥

where I
⊥

is the annihilator of I in M(A) and I⊥ is the strict closure of the anni-
hilator of I in A. If T : A→ B is an extendible homomorphism, then

ker T = ker T , (ker T )⊥ = (ker T )⊥.

Proof. Clearly {b ∈ M(A) : bA ⊆ I} is strictly closed and contains I, whence
I ⊆ {b ∈ M(A) : bA ⊆ I}. Moreover, if b ∈ M(A) is such that bA ⊆ I and {µλ}
is an approximate unit in A, then {bµλ} ⊆ I is a net converging strictly to b.
Therefore I = {b ∈ M(A) : bA ⊆ I}. Now let b ∈ M(A). Using what we have just
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proved we get

b ∈ I⊥ ⇔ bI = {0} ⇔ bIA = {0} ⇔ bI = {0}
⇔ bAI = {0} ⇔ bA ⊆ I⊥ ⇔ b ∈ I⊥.

This shows the first part of the assertion. For the second part note that we have
ker T ⊆ ker T , and the reverse inclusion follows because

b ∈ ker T ⇒ T (bA) = T (b)T (A) = 0⇒ bA ⊆ ker T ⇒ b ∈ ker T .

Now we get (ker T )⊥ = (ker T )⊥ = (ker T )⊥.

If I is an ideal in A we denote by qI : A → A/I the quotient map, and occa-
sionally when the context is clear we suppress the subscript I and write simply q.
We extend the standard notation concerning the sum of ideals in C∗-algebras, and
if D0, D2, . . . , Dn, . . . are linear subspaces in a C∗-algebra we put

n∑
k=0

Dk :=

{
n∑
k=0

dk : dk ∈ Dk

}
and

∞∑
k=0

Dk := span{dk : dk ∈ Dk, k ∈ N}.

Hence
∑∞

k=0Dk is the closure of the increasing sum of the spaces
∑n
k=0Dk, n ∈ N.

Similarly, we put CD := {cd : c ∈ C, b ∈ D} whenever an action of C on D

makes sense. By Cohen–Hewitt factorization theorem a homomorphism T : A→ B

between C∗-algebras A and B is non-degenerate if and only if T (A)B = B.

2. The Category of C∗-Dynamical Systems

We start by introducing the category of C∗-dynamical systems which we will work
with.

Definition 2.1. A C∗-dynamical system is a pair (A,α) where A is a C∗-algebra
and α : A→ A is an extendible endomorphism. A morphism from a C∗-dynamical
system (A,α) to a C∗-dynamical system (B, β) is a non-degenerate homomorphism
T : A→ B such that T ◦α = β◦T . We will signalize this by writing (A,α) T→ (B, β).
The arising category will be denoted by C∗-dyna.

Passage to strictly continuous extensions yields a functor from C∗-dyna onto
its full subcategory whose objects are endomorphisms of unital C∗-algebras.

Lemma 2.1. If (A,α) T→ (B, β) then (M(A), α) T→ (M(B), β).

Proof. Clear by strict density of A in M(A) and strict continuity of α, β and T .
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2.1. Reversible C∗-dynamical system

We distinguish certain objects in C∗-dyna which will view as reversible systems.
In the commutative case they correspond to partial homeomorphisms, see [30, 25],
and Sec. 4.6. In noncommutative setting the role of an inverse to an endomorphism
plays a complete transfer operator.

Transfer operators [16] and complete transfer operators [4] were originally intro-
duced for unital C∗-algebras. Nevertheless, they can be easily adapted to our con-
text. Let (A,α) be a C∗-dynamical system. A transfer operator for (A,α) is a
positive linear map L : A→ A such that

L(α(a)b) = aL(b), for all a, b ∈ A. (2.1)

The transfer operator L is a complete transfer operator if it satisfies

α(L(a)) = α(1)aα(1), for all a ∈ A. (2.2)

The following statement could be deduced from the results of [29], cf. also [24]. For
the sake of completeness we give an independent proof.

Proposition 2.1. A C∗-dynamical system (A,α) admits a complete transfer oper-
ator if and only if the range α(A) is a hereditary subalgebra of A (hence a corner)
and the kernel ker α is a complemented ideal in A.

Moreover, if it exists, the complete transfer operator for (A,α) is unique and is
given by the formula

α∗(a) = α−1(α(1)aα(1)), a ∈ A, (2.3)

where α−1 is the inverse to the isomorphism α : (ker α)⊥ → α(A) = α(1)Aα(1).

Proof. Suppose that α∗ is a complete transfer operator for (A,α). It follows from
(2.2) that α(A) = α(1)Aα(1) and α ◦ α∗ ◦ α = α. Hence α(A) is a hereditary
subalgebra of A and the map p := α∗ ◦ α is an idempotent acting on A. Relations
α = α ◦ p and p = α∗ ◦ α imply that ker p = ker α. Moreover, (2.1) implies that
α∗(A) ⊆ (ker α)⊥ and hence p(A) ⊆ (ker α)⊥. Since p is an idempotent this shows
that p(A) = (ker α)⊥. As a consequence we also get α∗(A) = (ker α)⊥. To prove
that ker α is a complemented ideal it suffices to show that p is multiplicative. Since
α is injective on p(A) = (ker α)⊥, this follows from the calculation

α(p(a · b)) = α(a · b) = α(a)α(b) = α(p(a))α(p(b)) = α(p(a) · p(b)),
where a, b ∈ A. In particular, α : (ker α)⊥ → α(1)Aα(1) is an isomorphism. Taking
into account (2.2) and α∗(A) = (ker α)⊥ we get (2.3).

Conversely, if α(A) is hereditary in A it is automatically the corner α(1)Aα(1).
If additionally the ideal ker α is complemented then α : (ker α)⊥ → α(1)Aα(1) is
an isomorphism. In this case one easily checks that (2.3) defines a complete transfer
operator.
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Definition 2.2. If a C∗-dynamical system (A,α) possesses the (necessarily unique)
complete transfer operator we denote it by α∗ and we call (A,α) a reversible C∗-
dynamical system.

Remark 2.1. It readily follows from (2.3) that the complete transfer operator α∗
is a generalized inverse to α, that is we have α = α ◦ α∗ ◦ α and α∗ = α∗ ◦ α ◦ α∗.
Moreover, one can show, cf. [29], that if the complete transfer operator exists it is
the unique transfer operator satisfying α = α ◦ α∗ ◦ α.

A complete transfer operator always admits a strictly continuous extension and
in particular is a transfer operator in the sense of [12], cf. [29].

Proposition 2.2. A C∗-dynamical system (A,α) is reversible if and only if the
extended system (M(A), α) is reversible.

If (A,α) is reversible, the complete transfer operator α∗ for (M(A), α) is a strict
continuous extension of α∗, and {αn∗ (1)}n∈N is a decreasing sequence of central
projections in M(A) with αn∗ (1)A = ker(αn)⊥.

Proof. By Lemma 1.1, ker α = ker α. Thus ker α is complemented in A if and
only if ker α is complemented in M(A). Now, if (M(A), α) is reversible then α(A) =
α(A) = α(α∗(A)) = α(1)Aα(1) is hereditary in A, and hence (A,α) is reversible
by Proposition 2.1. Conversely, if (A,α) is reversible then for any net {aλ} ⊆ A

strictly convergent to a ∈ M(A) the net {α(1)aλα(1)} = {α(α∗(aλ))} ⊆ α(M(A))
is convergent to α(1)aα(1). It follows that α(M(A)) = α(1)M(A)α(1) is hereditary
in M(A) and hence (M(A), α) is reversible by Proposition 2.1.

Suppose now that the systems (A,α) and (M(A), α) are reversible. Then α∗ is a
strictly continuous extension of α∗ because it is given by (2.3) where α−1 is replaced
by the inverse to the strictly continuous isomorphism α : (ker α)⊥ = (ker α)⊥ →
α(A) = α(1)M(A)α(1). Furthermore, for each n ∈ N, αn∗ is the complete transfer
operator for (A,αn). In particular, αn∗ (1) is a projection onto ker(αn)⊥.

2.2. Extensions and covariant morphisms

Definition 2.3. If T is an injective morphism (A,α) T→ (B, β) we call it an embed-
ding of (A,α) into (B, β), and say that (B, β) is an extension of (A,α). If T is an
isomorphism then (A,α) and (B, β) are equivalent (in the category C∗-dyna).

Note that if T is an embedding of (A,α) to (B, β) then

ker α = T−1(ker β), (ker α)⊥ ⊇ T−1((ker β)⊥).

These relations could be interpreted as follows: the extended endomorphism β may
enlarge the kernel of α but only outside A, and if it does, it may shrink the annihi-
lator of the kernel inside A. Thus the ideal J = T−1((ker β)⊥) is a parameter that
measures how far can ker β from ker α go. We have {0} ⊆ J ⊆ (ker α)⊥ and when
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J = (ker α)⊥ the relationship between the kernels is the strongest. This leads us
to the following definition.

Definition 2.4. Let J be an ideal in (ker α)⊥. We will say that (B, β) is a J-
covariant extension of (A,α), or briefly a J-extension of (A,α), if there exists an
embedding (A,α) T→ (B, β) such that

J = T−1((ker β)⊥). (2.4)

In this event T will be called a J-covariant embedding, or briefly J-embedding, of
(A,α) into (B, β). If J = (ker α)⊥ instead of J-covariant extension and J-covariant
embedding we will use terms covariant extension and covariant embedding.

It is useful to extend the above notion of covariance to (not necessarily injective)
morphisms (A,α) T→ (B, β). But, in general, since kerT ⊆ T−1((ker β)⊥) one can
not expect to have equality (2.4) for an ideal J in (ker α)⊥. One of possible ways
to circumvent this problem is to replace (2.4) by an inclusion.

Definition 2.5. Let J be an ideal in (ker α)⊥. We say that a morphism (A,α) T→
(B, β) is covariant on J if

J ⊆ T−1((ker β)⊥).

We say T is covariant if it is covariant on (ker α)⊥.

Remark 2.2. An embedding T is J-covariant if and only if J is the largest ideal
on which T is covariant as a morphism. In particular, T is a covariant embedding
if and only if T is an injective covariant morphism.

We show now certain properties of extensions and morphisms we will use latter.
They already indicate a special role played by covariant morphisms.

Lemma 2.2. If (A,α) T→ (B, β) is morphism, then

T−1((ker β)⊥) = T
−1

((ker β)⊥), (2.5)

recall that the bar on the left-hand side denotes the strict closure. In particular,

(i) (A,α) T→ (B, β) is covariant on J ⊆ (ker α)⊥ if and only if (M(A), α) T→
(M(B), β) is covariant on J ⊆ (ker α)⊥,

(ii) (A,α) T→ (B, β) is J-covariant embedding if and only if (M(A), α) T→
(M(B), β) is J-covariant embedding,

(iii) (A,α) T→ (B, β) is a covariant morphism if and only if (M(A), α) T→ (M(B), β)
is a covariant morphism.
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Proof. By Lemma 1.1 we have (ker β)⊥ = (ker β)⊥. Hence

T−1((ker β)⊥) ⊆ T−1
((ker β)⊥)⇒ T−1((ker β)⊥) ⊆ T−1

((ker β)⊥).

For the reverse inclusion note that for any b ∈ T−1
((ker β)⊥) we have

T (bA) = T (b)T (A) ⊆ (ker β)⊥ ∩B = (ker β)⊥ ∩B = (ker β)⊥.

Hence bA ⊆ T−1((ker β)⊥) and therefore b ∈ T−1((ker β)⊥) by Lemma 1.1. This
proves (2.5). The second part of the assertion is now straightforward.

Lemma 2.3. Let (A,α) T→ (B, β) and suppose that ker α and ker β are comple-
mented ideals in A and B, respectively. The following conditions are equivalent :

(i) T is covariant,
(ii) T (1(ker α)⊥) ≤ 1(ker β)⊥ ,

(iii) T (1(ker α)⊥) = 1(ker β)⊥ ,

where 1(ker α)⊥ ∈M(A) and 1(ker β)⊥ ∈M(B) denote the projections onto (ker α)⊥

and (ker β)⊥, respectively.

Proof. By passing to extended systems, see Lemma 2.2(iii), we may assume that
both A and B are unital. Then T is unital and 1(ker α)⊥ and 1(ker β)⊥ are units
in (ker α)⊥ and (ker β)⊥, respectively. Now, one readily sees that the inclusion
(ker α)⊥ ⊆ T−1((ker β)⊥) is equivalent to the inequality T (1(ker α)⊥) ≤ 1(ker β)⊥ .
Hence (i) is equivalent to (ii). Moreover, T ◦ α = β ◦ T implies that T (1ker α) ≤
1ker β where 1ker α and 1ker β are units in ker α and ker β, respectively. Thus, as
T is unital, the inequality T (1(ker α)⊥) ≥ 1(ker β)⊥ is always satisfied. Hence (ii) is
equivalent to (iii).

In connection with the following statements recall, see Proposition 2.2, that if
α∗ is a complete transfer operator for (A,α), then α∗(1) is the unit in (ker α)⊥ =
(ker α)⊥.

Proposition 2.3. Suppose (A,α) and (B, β) are reversible C∗-dynamical systems.
For any morphism (A,α) T→ (B, β) the following conditions are equivalent :

(i) T is covariant,
(ii) β∗ ◦ T = T ◦ α∗,
(iii) T (α∗(1)) ≤ β∗(1),
(iv) T (α∗(1)) = β∗(1).

Proof. Equivalences (i)⇔ (iii)⇔ (iv) follow from Lemma 2.3. The implication
(ii)⇒ (iv) is immediate. To close the cycle we show that (i)⇒ (ii). To this end
recall that the mappings A � a �→ (α∗ ◦ α)(a) = α∗(1)a ∈ (ker α)⊥ and
A � a �→ (α ◦ α∗)(a) = α(1)aα(1) ∈ α(1)Aα(1) are projections. Similarly, for
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(B, β). Now using covariance of T we get T (α∗(a)) ∈ (ker β)⊥, for any a ∈ A.
Therefore

T (α∗(a)) = β∗(β(T (α∗(a)))) = β∗(T (α(α∗(a)))) = β∗(T (α(1)aα(1)))

= β∗(β(1)T (a)β(1)) = β∗(T (a)).

Lemma 2.4. Suppose that (A,α) T→ (B, β) is an embedding and (B, β) is a
reversible C∗-dynamical system. Then T is J-covariant where

J = {a ∈ A : β∗(1)T (a) = T (a)}.

Proof. We have {a ∈ A : β∗(1)T (a) = T (a)} = {a ∈ A : T (a) ∈ (ker β)⊥} =
T−1((ker β)⊥).

Composition with covariant embeddings does not affect the covariance.

Lemma 2.5. Let (B, β) S→ (C, γ) be a covariant embedding. A morphism (A,α) T→
(B, β) is covariant on J if and only if (A,α) S◦T→ (C, γ) is covariant on J .

Proof. We have (S ◦ T )−1((ker γ)⊥) = T−1(S−1(ker γ)⊥) = T−1((ker β)⊥).

We finish this subsection by noting that C∗-dyna is a category with direct limits.

Proposition 2.4. A direct sequence

(B0, β0)
T0−→ (B1, β1)

T1−→ (B2, β2)
T2−→ · · ·

has a direct limit (B, β) in the category C∗-dyna, where B = lim−−→{Bn, Tn} is the
C∗-algebraic direct limit and β is the induced endomorphism.

Moreover, if all of the bonding maps Tn, n ∈ N, are covariant morphism then
the natural morphisms (Bn, βn)

φn−→ (B, β) are also covariant.

Proof. Let n ∈ N. Notice first that the natural homomorphism φn : Bn → B is
non-degenerate. Indeed, any element in B can be approximated by φm(bm) ∈ B for
certain bm ∈ Bm and m > n. As a composition of finite number of non-degenerate
homomorphisms, the homomorphism Tm,n := Tm ◦ · · · ◦ Tn+1 ◦ Tn : Bn → Bm
is non-degenerate. Thus bm = Tm,n(an)cm for certain an ∈ Bn, cm ∈ Bm. Hence
φm(bm) = φn(an)φm(cm) and this proves our claim.

Clearly, the formula β(φn(b)) := φn(βn(b)), b ∈ Bn, n ∈ N, yields a well-defined
endomorphism β : B → B. To see it is extendible let {µλ} be an approximate unit
in B0. As φ0 is non-degenerate, {φ0(µλ)} is an approximate unit in B. It follows
that the (bounded and self-adjoint) net {β(φ0(µλ))} converges strictly in M(B)
because for any b ∈ Bn, n ∈ N, the net

β(φ0(µλ))φn(b) = φn(Tn,0(β0(µλ))b)

converges to φn(Tn,0(β0(1))b). Hence β is extendible and (B, β) ∈ C∗-dyna.
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Let (C, γ) be an arbitrary C∗-dynamical system equipped with morphisms

(Bn, βn)
ψn−→ (C, γ) such that ψn+1 ◦ Tn = ψn for all n ∈ N. Then the universal

property of the C∗-algebraic direct limit B implies that there is a homomorphism
Ψ : B → C such that Ψ ◦ φn = ψn, n ∈ N. In particular, Ψ is non-degenerate
because each of ψn is. Since

(Ψ ◦ β) ◦ φn = Ψ ◦ φn ◦ βn = ψn ◦ βn = γ ◦ ψn = (γ ◦Ψ) ◦ φn,

we conclude that (B, β) Ψ→ (C, γ) is a morphism, and (B, β) is the direct limit in
C∗-dyna.

Now suppose that all of the bonding maps Tm, m ∈ N, are covariant and let
a ∈ (ker βn)⊥ for a fixed n ∈ N. Covariance implies that for any m > n we have
Tm,n(a) ∈ (ker βm)⊥. Now let φk(b) ∈ ker β where b ∈ Bk and k > n. For any
m > k we have Tm,n(a)Tm,k(b) ∈ (ker βm)⊥ and φm(βm(Tm,n(a)Tm,k(b))) = 0.
Using these relations and the explicit formula for norm in the direct limit B we get

‖φn(a)φk(b)‖ = lim
m→∞ ‖Tm,n(a)Tm,k(b)‖ = lim

m→∞ ‖βm(Tm,n(a)Tm,k(b))‖

= lim
m→∞ ‖φm(βm(Tm,n(a)Tm,k(b)))‖ = 0.

Hence φn(a)φk(b) = 0 and this implies that φn(a) ∈ (ker β)⊥. Accordingly,

(Bn, βn)
φn−→ (B, β) is covariant.

Remark 2.3. The direct limit system (B, β) sits in both its strictly continuous
extension (M(B), β) and the direct limit system associated to the direct sequence
obtained by strictly continuous extensions:

(M(B0), β0)
T 0−→ (M(B1), β1)

T 1−→ (M(B2), β2)
T 2−→ · · · . (2.6)

In fact, with obvious identifications we have B ⊆ lim−−→{M(Bn), Tn} ⊆ M(B).

3. Natural Reversible Extensions of C∗-Dynamical Systems
and Invariant Ideals

We fix a C∗-dynamical system (A,α) and an ideal J in (ker α)⊥. Our first aim is to
construct a universal reversible C∗-dynamical system (B, β) which is a J-extension
of (A,α). Next we study relationship between invariant ideals in (B, β) and (A,α).
In the sequel, we will abbreviate the long phrase “reversible C∗-dynamical system
which is a J-extension” to the short expression “reversible J-extension”.

3.1. The main construction

We will define the system (B, β) as a direct limit of certain approximating C∗-
dynamical systems (Bn, βn), n ∈ N, that are constructed as follows. Denote by
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q : A→ A/J the quotient map and for each n ∈ N put

An := αn(1)Aαn(1).

Define the C∗-algebra Bn as a direct sum of the form

Bn = q(A0)⊕ q(A1)⊕ · · · ⊕ q(An−1)⊕An.
Let βn : Bn → Bn be given by

βn(a0 ⊕ a1 ⊕ · · · ⊕ an) = a1 ⊕ a2 ⊕ · · · ⊕ q(an)⊕ α(an).

Clearly, βn is an extendible endomorphism. Thus we have a sequence (Bn, βn),
n ∈ N, of C∗-dynamical systems with (B0, β0) = (A,α).

Define the bonding homomorphisms Tn : Bn → Bn+1, n ∈ N, as schematically
presented by the diagram

Bn

Tn

��

= q(A0)

id

��

⊕ · · · ⊕ q(An−1)

id

��

⊕ An

q

��

α

����
��

��
��

�

Bn+1 = q(A0) ⊕ · · · ⊕ q(An−1) ⊕ q(An) ⊕ An+1

(3.1)

and formally given by the formula

Tn(a0 ⊕ · · · ⊕ an−1 ⊕ an) = a0 ⊕ · · · ⊕ an−1 ⊕ q(an)⊕ α(an),

where ak ∈ q(Ak), k = 0, . . . , n − 1, and an ∈ An. Since J ⊆ (ker α)⊥, the homo-
morphisms Tn are injective. Plainly, Tn ◦βn = βn+1 ◦Tn, n ∈ N. Hence we have the
direct sequence of embeddings:

(A,α) = (B0, β0)
T0−→ (B1, β1)

T1−→ (B2, β2)
T2−→ · · · . (3.2)

Theorem 3.1. Let (B, β) be the direct limit of the direct sequence (3.2). Then
(B, β) is a reversible J-extension of (A,α), with an embedding T, possessing the
following properties :

(i) B =
∑∞

n=0 β
n∗ (T (A)) and J = {a ∈ A : β∗(1)T (a) = T (a)}.

(ii) If (C, γ) is a reversible J-extension of (A,α) and S is the corresponding
embedding, then there is a unique covariant embedding S̃ of (B, β) into (C, γ)
such that S = S̃ ◦ T, i.e. the diagram

(A,α)
T

�����
��

���
�

S

		��
��

��
��

�

(B, β)
eS 

 (C, γ)

commutes.
(iii) Any reversible extension of (A,α) that possesses one of the properties of (B, β)

described in item (i) or item (ii) is equivalent to (B, β).
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Proof. Let n > 0. We have (ker βn)⊥ = 0 ⊕ q(A1) ⊕ · · · ⊕ q(An−1) ⊕ An. Thus
by the form of the bonding map Tn, we see that (Bn, βn)

Tn−→ (Bn+1, βn+1) is a
covariant embedding and clearly (A,α) T0−→ (B1, β1) is a J-embedding. Accordingly,
denoting by φn : Bn → B the natural embeddings into the direct limit B, we deduce
from Lemma 2.5 and Proposition 2.4, that T := φ0 is a J-embedding of (A,α) into
(B, β).

To prove that (B, β) is reversible, recall that we may treat lim−−→{M(Bn), Tn}
as a C∗-subalgebra of M(B), cf. Remark 2.3. In particular, for each n > 0 the
projection from Bn onto (ker βn)⊥, which we denote by pn, is an element of M(Bn),
and Tn(pn) = pn+1. It follows that φn(pn) is the projection from B onto (ker β)⊥.
Hence (ker β)⊥ is a complemented ideal in B. Similarly, for each n > 0 we have
Tn(βn(1)) = βn+1(1), and therefore β(1) = φn(βn(1)). To see that β(B) is a
hereditary subalgebra it suffices to note that β(1)Bβ(1) ⊆ β(B). To show the
latter put Ep(a) := pap, for any a, p ∈M(A). Then

β(1)(φn(q(a0)⊕ · · · ⊕ q(an−1)⊕ an))β(1)

equals to

φn(q(Eα(1)(a0))⊕ · · · ⊕ q(Eαn(1)(an−1))⊕ Eαn+1(1)(an)),

which in turn equals to

β(φn+1(0⊕ q(Eα(1)(a0))⊕ · · · ⊕ q(Eαn(1)(an−1))⊕ Eαn+1(1)(an))).

Thus β(B) = β(1)Bβ(1) and by Proposition 2.1 the system (B, β) is reversible.
Moreover, if follows from the above calculation and (2.3) that the complete transfer
operator β∗ maps φn(Bn) into φn+1(Bn+1) where

β∗((φn(q(a0)⊕ · · · ⊕ q(an−1)⊕ an)))
equals to

φn+1(0⊕ q(Eα(1)(a0))⊕ · · · ⊕ q(Eαn(1)(an−1))⊕ Eαn+1(1)(an)).

This proves the initial part of the assertion.
(i) Recall that T = φ0. Using the above description of β∗ one checks that for

bk ∈ Ak, k = 0, . . . , n, we have

(βk∗ ◦ T )(bk) = φn(0 ⊕ · · · ⊕ 0⊕ q(bk)⊕ q(α(bk))⊕ · · · ⊕ q(αn−k−1(bk))⊕ αn−k(an)).
Thus putting bk = ak −

∑k−1
i=0 α

k−i(ai) where ak ∈ Ak, k = 0, . . . , n, and summing
over k we get

φn(q(a0)⊕ · · · ⊕ q(an−1)⊕ an) =
n∑
k=0

(βk∗ ◦ T )

(
ak −

k−1∑
i=0

αk−i(ai)

)
.

Hence B ⊆ ∑∞
n=0 β

n
∗ (T (A)). As the reverse inclusion is obvious we get B =∑∞

n=0 β
n
∗ (T (A)). We have J = {a ∈ A : β∗(1)T (a) = T (a)} by Lemma 2.4.
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(ii) We claim that the desired covariant embedding (B, β)
eS−→ (C, γ) can be

defined by the formula

S̃(φn(q(a0)⊕ q(a1)⊕ · · · ⊕ an)) = QS(a0) + γ∗(QS(a1)) + · · ·+ γn∗ (S(an)),

(3.3)

where Q := (1−γ∗(1)) is a central projection in M(C), see Proposition 2.2. To this
end notice that S(αk(1)) = γk(1), k ∈ N, and J = {a ∈ A : γ∗(1)S(a) = S(a)}, cf.
Lemma 2.4. Thus one deduces that

Ak/J � q(a) �→ QS(a) ∈ Qγk(1)S(A)γk(1)

is a well-defined isomorphism. Moreover, composing it with the isomorphism γk∗ :
γk(C) = γk(1)Cγk(1)→ γk∗(1)C we get the injective homomorphism

Ak/J � q(a) �→ γk∗ (QS(a)) ∈ γk∗(Q)C. (3.4)

Similarly, for each n ∈ N, we get the injective homomorphism

An � a �→ γn∗ (S(a)) ∈ γn∗ (1)C. (3.5)

Now, since the projections {γk∗(1)}k∈N are decreasing and central in M(C) we see
that the projections

γk∗(Q) = γk∗(1)− γk+1
∗ (1), k = 0, . . . , n− 1, and γn∗ (1)

are pair-wise orthogonal and central in M(C). Hence the direct sum of mappings
(3.4) for k = 0, 1, . . . , n − 1 and the mapping (3.5), establishes an injective homo-
morphism from Bn =

⊕n−1
k=0 q(Ak) ⊕ An to C =

⊕n−1
k=0 γ

k
∗(Q)C ⊕ γn∗ (1)C. As

φn : Bn → B is injective, we conclude that the formula (3.3) yields a well-defined
injective homomorphism from φn(Bn) into C. To see that it actually defines a
homomorphism from B to C note that

S(an) = QS(an) + γ∗(1)S(an) = QS(an) + γ∗(γ(S(an)))

= QS(an) + γ∗(S(α(an))),

and hence by (3.3), we get

S̃(φn(q(a0)⊕ · · · ⊕ an)) = S̃(φn+1(q(a0)⊕ · · · ⊕ q(an)⊕ α(an)))

= S̃(φn+1(Tn(q(a0)⊕ · · · ⊕ an))).

Hence S̃ : B → C is an injective homomorphism.
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Clearly, S = S̃ ◦T . In particular, S̃ : B → C is non-degenerate because S : A→
C is. Furthermore, for a ∈ γk(1)Cγk(1), k > 0, we have

γ(γk∗ (a)) = γ(1)γk−1
∗ (a)γ(1) = γk−1

∗ (γk(1)aγk(1)) = γk−1
∗ (a).

Therefore, in view of (3.3), since γ(Q) = 0, we get

γ(S̃(φn(q(a0)⊕ q(a1)⊕ · · · ⊕ an))) = S(Qa1) + γ∗(QS(a2)) + · · · + γn−1
∗ (S(an))

= S̃(β(φn(a0 ⊕ a1 ⊕ · · · ⊕ an))).

Hence γ ◦ S̃ = S̃ ◦ β and (B, β)
eS−→ (C, γ) is an embedding. Moreover, since

S̃(β∗(1)) = S̃(φ1(0⊕ α(1))) = γ∗(S(α(1))) = γ∗(γ(1)) = γ∗(1),

S̃ is covariant by Lemma 2.3.
This proves the existence part. Uniqueness of S̃ follows immediately from the

relations B =
∑∞

n=0 β
n
∗ (T (A)) and γ∗ ◦ S̃ = S̃ ◦ β∗, cf. Lemma 2.3.

(iii) Suppose (A,α) S→ (C, γ) is an embedding of (A,α) into a reversible C∗-
dynamical system (C, γ). If C =

∑∞
n=0 γ

n
∗ (S(A)) and J = {a ∈ A : γ∗(1)S(a) =

S(a)}, then S is a J-embedding, see Lemma 2.4, and in view of item (i) the embed-

ding (B, β)
eS→ (C, γ) whose existence is guaranteed by item (ii) is surjective. Hence

(B, β) and (C, γ) are equivalent.
If (C, γ) possesses the property described in item (ii) then there is a covariant

embedding (C, γ)
eT→ (B, β) such that T = T̃ ◦S. Appealing again to Lemma 2.3 we

get

T̃ ◦ γ∗ ◦ S = β∗ ◦ T̃ ◦ S = β∗ ◦ T.
Thus by item (i) the embedding T̃ is onto B. Consequently, (B, β) and (C, γ) are
equivalent.

We extend [23, Definition 3.4] to non-unital case as follows.

Definition 3.1. Let (A,α) be a C∗-dynamical system, J an ideal in (ker α)⊥ and
(B, β) the direct limit of (3.2). We call (B, β) the natural reversible J-extension of
(A,α). If J = (ker α)⊥ we drop the prefix “J-”.

Remark 3.1. In the sequel we will usually identify A with the corresponding
subalgebra ofB. Then the natural reversible J-extension (B, β) can be characterized
as a reversible C∗-dynamical system satisfying

B =
∞∑
n=0

βn∗ (A), β∗(1)A ∩A = J, β|A = α.

To extend the above picture, so that it covers also the algebras Bn, n ∈ N, we
put q := 1 − β∗(1) (this makes a perfect match with our previous notation on the
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quotient map A → A/J). We identify the algebra Bn, n ∈ N, with its image in B

by the mapping

Bn �
n⊕
k=0

q(ak)⊕ an �→
n−1∑
k=0

βk∗ (qak) + βn∗ (an) ∈ B.

With this identification we have

Bn =
n−1∑
k=0

βk∗ (qAk) + βn∗ (An) =
n−1∑
k=0

βk∗ (q)βk∗ (A) + βn∗ (A)

=
n−1∑
k=0

βk∗ (q)B + βn∗ (A). (3.6)

The above sums are actually direct sums of C∗-algebras because the projections
β
n

∗ (1) and β
k

∗(q) = β
k

∗(1)− βk+1

∗ (1), k = 0, . . . , n− 1, are pairwise orthogonal and
central in M(B), cf. Proposition 2.2.

3.2. Invariant ideals and J-pairs

Now we introduce invariant ideals and discuss the relevant notions and facts that
will lead us to description of such ideals in natural reversible extensions defined in
the previous subsection.

Definition 3.2. We say that an ideal I in A is a positively invariant ideal in (A,α)
if α(I) ⊆ I. Any such ideal I induces a quotient C∗-dynamical system (A/I, αI)
where αI(a+ I) = α(a) + I for all a ∈ A. We will refer to (A/I, αI) as a subsystem
of (A,α).

When regarding negative invariance, as in the case of extensions, it is useful to
consider a family of such notions parametrized by an ideal.

Definition 3.3. Let I and J be ideals in A where J ⊆ (ker α)⊥. We say that I
is J-negatively invariant ideal in (A,α) if J ∩ α−1(I) ⊆ I. If I is both positively
invariant and J-negatively invariant we say that I is J-invariant. If J = (ker α)⊥

we drop the prefix “J-”.

When α is an automorphism invariance of I means that α(I) = I. More gener-
ally, we have the following.

Lemma 3.1. Suppose (A,α) is a reversible C∗-dynamical system and let I be an
ideal in A. The following conditions are equivalent :

(i) I is invariant in (A,α),
(ii) α(I) ⊆ I and α∗(I) ⊆ I,
(iii) α(I) = α(1)Iα(1),
(iv) α∗(I) = α∗(1)I.
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In particular, if I is invariant the system (A/I, αI) is reversible and the set of
invariant ideals in (A,α), ordered by inclusion, is a lattice.

Proof. (i)⇔ (ii) By the form of the complete transfer operator, see (2.3), we have
α−1(I) = ker α⊕α∗(I). Thus negative invariance of I is equivalent to the inclusion
α∗(I) ⊆ I.

(ii) ⇒ (iii) Inclusion α(I) ⊆ I implies that α(I) ⊆ α(1)Iα(1), while both of the
inclusions in (ii) imply that α(1)Iα(1) = α(α∗(I)) ⊆ I.

(iii) ⇒ (iv) We have α∗(I) = α∗(α(1)Iα(1)) = α∗(α(I)) = α∗(1)I.
(iv)⇒ (ii) We have α(I) = α(α∗(1)I) = α(α∗(I)) = α(1)Iα(1) ⊆ I and α∗(I) =

α∗(1)I ⊆ I.
The remaining part of the assertion is now straightforward.

Note that an ideal I is J-invariant if and only if the system (A/I, αI) is well
defined and qI(J) ⊆ (ker αI)⊥. Thus J-invariant ideals correspond to subsystems
of (A,α) which “admit J-extensions”. Alternatively, J-invariant ideals in (A,α) can
be viewed as parts of invariant ideals in J-extensions of (A,α).

Lemma 3.2. Let T be a J-embedding of (A,α) into a certain C∗-dynamical system
(B, β). If Ĩ is an invariant ideal in (B, β) then

I := T−1(Ĩ) (3.7)

is a J-invariant ideal in (A,α). In particular, T factors through to an qI(I ′)-

embedding (A/I, αI)
TeI−→ (B/Ĩ, βeI) where I ′ is an ideal in A such that

J ⊆ I ′ and I ′ ∩ α−1(I) = I. (3.8)

If (B, β) is reversible then I ′ = {a ∈ A : (1− β∗(1))T (a) ∈ Ĩ}.

Proof. Since T (α(I)) = β(T (I)) = β(T (T−1(Ĩ))) ⊆ β(Ĩ) ⊆ Ĩ we have α(I) ⊆ I.
To show the negative J-invariance of I note first that

T (α−1(I)) = T ((T ◦ α)−1(Ĩ)) = T ((β ◦ T )−1(Ĩ)) = T (T−1(β−1(Ĩ))) ⊆ β−1(Ĩ).

Therefore by negative invariance of Ĩ we have

T (J ∩ α−1(I)) ⊆ (ker β)⊥ ∩ T (α−1(I)) ⊆ (ker β)⊥ ∩ β−1(Ĩ) ⊆ Ĩ .
Hence J ∩ α−1(I) ⊆ I, and I is J-invariant. Plainly, TeI(a + I) = T (a) + Ĩ

defines an embedding of the subsystem (A/I, αI) into (B/Ĩ, βeI). By definition TeI is
T−1

eI
((ker βeI)

⊥)-covariant. Letting I ′ := q−1
I (T−1

eI
((ker βeI)

⊥)) we obtain the asser-
tion. In particular, since α−1(I) = q−1

I (ker αI) = q−1
I (T−1

eI
(ker βeI)), the relations

J ∩ α−1(I) ⊆ I, T−1
eI

((ker βeI)
⊥) ∩ ker αI = {0}

imply (3.8).
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Suppose now that (B, β) is reversible and note that by Lemma 3.1 also the
subsystem (B/Ĩ, βeI) is reversible; its complete transfer operator is given by β∗,eI(b+

Ĩ) = β∗(b) + Ĩ, b ∈ B. Hence applying Lemma 2.4 to the embedding TeI we get

a ∈ I ′ ⇔ qI(a) ∈ T−1
eI

((ker βeI)
⊥)⇔ β∗,eI(1)TeI(qI(a)) = TeI(qI(a))

⇔ β∗(1)T (a) + Ĩ = T (a) + Ĩ ⇔ (1− β∗(1))T (a) ∈ Ĩ .

Remark 3.2. In general the ideal I ′ above carries an essential data concerning
the ideal Ĩ, which is not visible from the standpoint of I and J . Indeed, when
I is a J-invariant ideal then I + J is the minimal ideal satisfying (3.8). On one
hand, in the favorable situation when A = ker α ⊕ (ker α)⊥ and J = (ker α)⊥,
any ideal satisfying (3.8) has to be of the form I ′ = I + J (as we then have
I ′ = (I ′ ∩ ker α) ⊕ (I ′ ∩ (ker α)⊥) ⊆ I + J). On the other hand, as the following
example shows when ker α is not complemented in A there might be ideals I ′

satisfying (3.8) that are strictly larger than I + J .

Example 3.1. Let A = C([0, 1]) and α(a) = a ◦ ϕ where ϕ : [0, 1] → [0, 1] is
given by ϕ(x) := x/2. Put J = (ker α)⊥ = C0([0, 1

2 )) and let I be the ideal
C0([0, 1]\K) where K = {0, 1, 1

2 ,
1
4 ,

1
8 , . . .}. Since α(I) = C0([0, 1]\ϕ−1(K)) = I

and α−1(I) = C0([0, 1]\ϕ(K)) ⊆ I, the ideal I is positively invariant and both of
the ideals

I ′1 := C0([0, 1)), I ′2 := C0([0, 1)\{1/2})
satisfy relations (3.8). Actually these are the only such ideals. The only difference
between I ′1 and I ′2 is “located” in the boundary {1/2} of the hull of ker α (which
is not empty because ker α is not complemented in A).

The above remark and example lead us to the following definition.

Definition 3.4. Let I, I ′, J be ideals in A where J ⊆ (ker α)⊥. We say that (I, I ′)
is a J-pair for (A,α) if

I is positively invariant, J ⊆ I ′ and I ′ ∩ α−1(I) = I.

Note that then I is automatically J-invariant. We equip the set of J-pairs for (A,α)
with a natural partial order induced by inclusion: (I1, I ′1) ⊆ (I2, I ′2)

def⇐⇒ I1 ⊆ I2
and I ′1 ⊆ I ′2.

J-pairs arise naturally from morphisms.

Lemma 3.3. A morphism (A,α) T→ (B, β) is covariant on J ⊆ (ker α)⊥ if and
only if

I := ker T and I ′ := T−1((ker β)⊥)

form a J-pair (I, I ′).
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Proof. Since I = T−1({0}) is positively invariant and I ⊆ I ′ we have I ⊆ I ′ ∩
α−1(I). The reverse inclusion holds because for a ∈ I ′ ∩ α−1(I) we have T (a) ∈
(ker β)⊥ and β(T (a)) = T (α(a)) = 0, which implies that a ∈ ker T = I. Hence
I ′ ∩ α−1(I) = I. Thus (I, I ′) is a J-pair if and only if T is covariant on J .

3.3. Invariant ideals in natural reversible extensions

Now we are in a position to provide the description of invariant ideals in natural
reversible extensions.

Theorem 3.2. Let (B, β) be a natural reversible J-extension of (A,α) and retain
the identifications and notation from Remark 3.1. We have an order preserving
bijection between J-pairs (I, I ′) for (A,α) and invariant ideals Ĩ in (B, β), given by

I = Ĩ ∩A, I ′ = {a ∈ A : qa ∈ Ĩ}, (3.9)

Ĩ ∩Bn =
n−1∑
k=0

βk∗ (qI ′) + βn∗ (I), n ∈ N. (3.10)

In particular, the set of J-pairs is a lattice. Moreover, denoting by (B(I,I′), β(I,I′))
the natural reversible qI(I ′)-extension of the subsystem (AI , αI) we have

(B/Ĩ, βeI)
∼= (B(I,I′), β(I,I′)),

where Ĩ is the invariant ideal corresponding to a J-pair (I, I ′).

Proof. Let Ĩ be an invariant ideal in (B, β). Lemma 3.2 tells us that (3.9) defines
a J-pair (I, I ′). To show that Ĩ is determined by (I, I ′) it suffices to verify (3.10).
But the latter is simple. Indeed, taking into account the direct sum decomposition
(3.6), we get that the sum

∑n−1
k=0 β

k
∗ (qak) + βn∗ (an), where ak ∈ Ak, is in Ĩ if and

only if its summands are in Ĩ. By Lemma 3.1 we have β(Ĩ) ⊆ Ĩ and β∗(Ĩ) ⊆ Ĩ.
Hence we see that βk∗ (qak) is in Ĩ if and only if ak ∈ I ′. Similarly βn∗ (an) is in Ĩ if
and only if an ∈ I.

Accordingly, we have shown that (3.9) yields an injective map from the set of
invariant ideals in (B, β) to the set of J-pairs for (A,α). To prove it is surjective let
(I, I ′) be an arbitrary J-pair for (A,α) and view (B, β) as the direct limit of (3.2).
Put Ik := αk(1)Iαk(1) and I ′k := αk(1)I ′αk(1), k ∈ N. For each n ∈ N, the formula

Ĩn := q(I ′0)⊕ q(I ′1)⊕ · · · ⊕ q(I ′n−1)⊕ In,
defines an ideal in Bn (recall that q : A → A/J is the quotient map). Relations
saying that (I, I ′) is a J-pair imply that Ĩn+1∩Tn(Bn) = Tn(Ĩn), n ∈ N. Hence with
the identifications from Remark 3.1, we deduce that the closure Ĩ of the ascending
sum

⋃
n∈N

Ĩn is an ideal in B satisfying (3.9) and (3.10). We still need to show that
Ĩ is invariant in (B, β). Using description of β∗ given in the proof of Theorem 3.1
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we get

β∗(Ĩn) = 0⊕ q(I ′1)⊕ q(I ′2)⊕ · · · ⊕ q(I ′n)⊕ In+1 ⊆ Ĩn+1.

Therefore β∗(Ĩ) ⊆ Ĩ. Similarly, we have β(Ĩ) ⊆ Ĩ because

β(Ĩn+1) = q(I ′1)⊕ q(I ′2)⊕ · · · ⊕ q(I ′n)⊕ In+1 ⊆ Ĩn.
Consequently, Ĩ is invariant by Lemma 3.1. This shows the bijective correspondence
between J-pairs in (A,α) and invariant ideals in (B, β). Plainly, it preserves the
order. In particular, by Lemma 3.1 both the set of invariant ideals in (B, β) and
the set of J-pairs in (A,α) are lattices.

Now fix an ideal Ĩ invariant in (B, β) and let (I, I ′) be the corresponding J-pair.
Let (BeI , β

eI) be the direct limit of the direct sequence

(BeI
0 , β

eI
0 )

T
eI
0−→ (BeI

1 , β
eI
1)

T
eI
1−→ (BeI

2 , β
eI
2)

T
eI
2−→ · · · ,

where

B
eI
n := qI′(A0)⊕ qI′(A1)⊕ · · · ⊕ qI′(An−1)⊕ qI(An),

β
eI
n(qI′(a0)⊕ · · · ⊕ qI′(an−1)⊕ qI(an)) := qI′(a1)⊕ · · · ⊕ qI′(an)⊕ qI(α(an))

and

T
eI
n(qI′(a0)⊕ · · · ⊕ qI′(an−1)⊕ qI(an)) = qI′(a0)⊕ · · · ⊕ qI′(an)⊕ qI(α(an))

for ak ∈ Ak, k = 0, . . . , n. Note that, as α(I) ⊆ I and I ⊆ I ′, the C∗-dynamical
systems (BeI

n, β
eI
n) and their bonding maps T eI

n are well defined.
Since I, J ⊆ I ′ we have the natural isomorphisms

(A/J)/q(I ′) ∼= A/I ′ ∼= (A/I)/qI(I ′). (3.11)

It is not hard to convince yourself that they induce natural equivalences

(B/Ĩ, βeI) ∼= (BeI , β
eI) ∼= (B(I,I′), β(I,I′)).

Indeed, let (B(I,I′)
0 , β

(I,I′)
0 )

T
(I,I′)
0−→ (B(I,I′)

1 , β
(I,I′)
1 )

T
(I,I′)
1−→ (B(I,I′)

2 , β
(I,I′)
2 )

T
(I,I′)
2−→ · · ·

be the direct sequence defining (B(I,I′), β(I,I′)) and retain the notation from the
first part of the proof. Then the isomorphisms (3.11) extend (by direct sums and
restrictions) to isomorphisms making the following diagram commutative

B
eI
n

T
eI

n

��

∼= Bn/Ĩn ∼= qeI(Bn) ∼= Bn/Ĩn

Tn

��

∼= B
(I,I′)
n

T (I,I′)
n

��
B

eI
n+1

∼= Bn+1/Ĩn+1
∼= qeI(Bn+1) ∼= Bn+1/Ĩn+1 = B

(I,I′)
n

The horizontal isomorphisms establish equivalences (BeI
n, β

eI
n) ∼= (Bn/Ĩn, (βn)eIn

) ∼=
(B(I,I′)

1 , β
(I,I′)
1 ) which imply equivalences of the limiting systems.
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Corollary 3.1. Suppose ker α is a complemented ideal in A and let (B, β) be a
natural reversible extension of (A,α). We have an order preserving bijection between
the invariant ideals in systems (A,α) and (B, β). It is given by the relations

I = Ĩ ∩A, Ĩ =
∞∑
n=0

βn∗ (I). (3.12)

Moreover, the subsystem (B/Ĩ, βeI) corresponding to Ĩ is equivalent to the natural
reversible extension of the subsystem (A/I, αI) corresponding to I.

Proof. Within the notation of Theorem 3.2 we necessarily have I ′ = I + (ker α)⊥

(see Remark 3.2) and q = 1 − β∗(1) projects A onto ker α. Therefore qI ′ = I ∩
ker α ⊆ I, and consequently formula (3.10) implies that Ĩ =

∑∞
n=0 β

n
∗ (I). Since

qI(I ′) = qI((ker α)⊥) = (ker αI)⊥ the second part of the assertion follows from
Theorem 3.2.

Remark 3.3. For an arbitrary C∗-dynamical system (A,α) and an ideal J in
(ker α)⊥ relations (3.12) establish an order preserving bijection between the J-
invariant ideals in (A,α) and invariant ideals in (B, β) that are generated by their
intersection with A. Indeed, the latter ideals correspond via bijection from Theo-
rem 3.2 to J-pairs of the form (I, I + J) and as q(I + J) = qI the formula (3.10)
reduces to Ĩ =

∑∞
n=0 β

n
∗ (I).

It is not an immediate fact that the set of J-invariant ideals in (A,α) is a lattice.

Corollary 3.2. For any C∗-dynamical system (A,α) and any ideal J in (ker α)⊥

the set of J-invariant ideals in (A,α) is a lattice.

Proof. Let I1 and I2 be J-invariant ideals. It is evident that the intersection I1∩I2
is a J-invariant ideal, which yields a natural meet operation. For the existence of
join operation note that (I1, I1 + J) and (I2, I2 + J) are J-pairs, and therefore by
Theorem 3.2 there exists the join J-pair:

(I, I ′) = (I1, I1 + J) ∨ (I2, I2 + J).

Plainly, I is a J-invariant ideal containing I1 and I2. Moreover, if I1, I2 ⊆ K for a
certain J-invariant ideal K then

(I1, I1 + J), (I2, I2 + J) ⊆ (K,K + J)⇒ (I, I ′) ⊆ (K,K + J)⇒ I ⊆ K.
That is, I is the minimal J-invariant ideal containing I1, I2. Hence J-invariant ideals
form a lattice.

Another consequence of Theorem 3.2 is that the universal property of natural
reversible J-extensions described in item (ii) of Theorem 3.1 can be extended to
not necessarily injective morphisms.
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Corollary 3.3. Let (B, β) be a natural reversible J-extension of (A,α). If (A,α) S→
(C, γ) is a morphism covariant on J and (C, γ) is reversible then S extends uniquely

to a covariant morphism (B, β)
eS→ (C, γ).

Proof. By Lemma 3.3, I := ker S and I ′ := S−1((ker γ)⊥) form a J-pair for
(A,α). Clearly, S factors through to a q(I ′)-embedding (A/I, αI)

SI−→ (C, γ). Hence
by Theorem 3.1, using the notation and equivalence from Theorem 3.2, SI extends

uniquely to the covariant embedding (B/Ĩ, βeI) ∼= (B(I,I′), β(I,I′))
eSI−→ (C, γ). Thus

S̃ = S̃I ◦ qeI defines the desired extended morphism. It is unique because the invari-
ant ideal Ĩ = ker S̃ is uniquely determined by (I, I ′).

4. Representations of C∗-Dynamical Systems. Crossed Products

We adopt the point of view that crossed products are C∗-algebras encoding repre-
sentation theory of C∗-dynamical systems. A fundamental remark for our analysis
is that any representation of (A,α) can be viewed as a morphism to a reversible
C∗-dynamical system. Thus the notion of covariance transfers naturally from mor-
phisms to representations. This leads us to the introduction of relative crossed
products C∗(A,α, J).

4.1. Covariant representations and morphisms to reversible

systems

Representations of (A,α) are defined in the following straightforward manner, cf.
[31, Definition 1.1].

Definition 4.1. A representation of a C∗-dynamical system (A,α) on a Hilbert
space H is a pair (π, U) where π : A → B(H) is a non-degenerate representation
and U ∈ B(H) is such that

Uπ(a)U∗ = π(α(a)), a ∈ A. (4.1)

If π is injective we say (π, U) is a faithful. We denote by C∗(π, U) the C∗-algebra
generated by π(A)∪π(A)U and refer to it as to the C∗-algebra generated by (π, U).

Remark 4.1. One can show (see Proposition 4.4) that if (π, U) is a representa-
tion of (A,α) then π : A → C∗(π, U) is a non-degenerate homomorphism and
U ∈M(C∗(π, U)). Thus we could consider abstract representations (π, U) of (A,α)
where π : A → C is a non-degenerate homomorphism into a C∗-algebra C and
U ∈M(C) is such that (4.1) holds. But then composing π with any non-degenerate
representation of C on H we get back to Definition 4.1.

It is a remarkable consequence of multiplicativity of α that any representation
of (A,α) defines a morphism to a reversible C∗-dynamical system.
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Proposition 4.1. Let (π, U) be a representation of (A,α) in a C∗-algebra C. Then
U is a (power) partial isometry,

B :=
∞∑
n=0

U∗nπ(A)Un

is a C∗-algebra and

UBU∗ ⊆ B, U∗BU ⊆ B, U∗U ∈ B′ (4.2)

where B′ is the commutant of B. In particular, putting β(·) := U(·)U∗ we get that
(B, β) is a reversible C∗-dynamical system with the complete transfer operator given
by β∗(·) := U∗(·)U .

Proof. Since π : A → B(H) is non-degenerate it extends uniquely to the strictly
continuous unital homomorphism π : M(A) → B(H). Moreover, non-degeneracy
of π and strict continuity of α readily imply that (π, U) is a representation of
(M(A), α). Since for each n ∈ N, π(αn(1)) = U∗nUn is a projection, U is a power
partial isometry. By [31, Lemma 1.2] we have U∗nUn ∈ π(M(A))′ and hence all the
more U∗nUn ∈ π(A)′.

Let β(·) := U(·)U∗ and β∗(·) := U∗(·)U . For each N ∈ N, the self-adjoint linear
space

∑N
n=0 β

k
∗ (π(A)) is a ∗-algebra because for l ≤ k and a, b ∈ A, we have

βk∗ (π(a))βl∗(π(b)) = U∗kπ(a)βk(1)Uk−lβl(1)π(b)U l

= U∗kπ(aαk(1))Uk−l(U∗(k−l)Uk−l)π(αk(1)b)U l

= U∗kπ(aαk(1))Uk−lπ(αl(1)b)U∗(k−l)Uk

= βk∗ (π(aαk(1)αk−l(b))) ∈ βk∗ (π(A)).

Hence B :=
∑∞

k=0 β
k∗ (π(A)) is a C∗-algebra. Relations U∗BU ⊆ B and U∗U ∈

B′ are now straightforward. Moreover, for any a ∈ A and k > 0 the projection
U∗k−1Uk−1 commutes with π(α(1)) ∈ π(M(A)) and thus we have

β(βk∗ (π(a))) = π(α(1))(U∗k−1Uk−1)U∗k−1π(a)U∗k−1(U∗k−1Uk−1)π(α(1))

= βk−1
∗ (π(αk(1)aαk(1))).

This implies that UBU∗ ⊆ B. Using relations (4.2) it is easy to see that (B, β) is a
reversible C∗-dynamical system. Indeed, for a, b ∈ B we have

β(ab) = U(U∗U)abU∗ = Ua(U∗U)bU∗ = β(a)β(b),

aβ∗(b) = a(U∗U)U∗bU = (U∗U)aU∗bU = β∗(β(a)b)

and β(β∗(a)) = β(1)aβ(1).

Remark 4.2. Let (π, U) be a representation of (A,α) and let (B, β) be the asso-
ciated C∗-dynamical system defined in the assertion of Proposition 4.1. Treating π
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as a morphism (A,α) π→ (B, β) we have

{a ∈ A : U∗Uπ(a) = π(a)} = π−1((ker β)⊥),

cf. Lemma 2.4. Thus if J is an ideal in (ker α)⊥ then the morphism (A,α) π→ (B, β)
is covariant on J if and only if the representation (π, U) is covariant on J in the
following sense.

Definition 4.2 (cf. [31, Definition 1.7]). Let (π, U) be a representation of (A,α)
and let J be an ideal in (ker α)⊥. We say that (π, U) is covariant on J if

J ⊆ {a ∈ A : U∗Uπ(a) = π(a)}. (4.3)

If the above inclusion is the equality we say (π, U) is a J-covariant representation.
If (π, U) is covariant on (ker α)⊥ we say (π, U) is a covariant representation.

By Remark 4.2 we can immediately translate Lemmas 2.2, 2.3 and Proposi-
tion 2.3 from the language of morphisms to the language of representations. For
example, from Proposition 2.3 we get the following.

Proposition 4.2. Let (A,α) be a reversible system and (π, U) its representation.
The following conditions are equivalent :

(i) (π, U) is covariant,
(ii) U∗π(a)U = π(α∗(a)) for all a ∈ A,
(iii) π(α∗(1)) ≤ U∗U,
(iv) π(α∗(1)) = U∗U .

We also immediately conclude with the following statement, cf. [23, Theo-
rem 3.7].

Proposition 4.3. Let (B, β) be a natural reversible J-extension of a C∗-dynamical
system (A,α) where J is an ideal in (ker α)⊥. We have a one-to-one correspondence
between representations (π, U) of (A,α) covariant on J and covariant representa-
tions (π̃, U) of (B, β) where

π = π̃|A, π̃

(
n∑
k=0

β∗(ak)

)
=

n∑
k=0

U∗π(ak)U, ak ∈ A, k = 0, . . . , n.

Under this correspondence ker π̃ is an invariant ideal in (B, β) corresponding to
the J-pair for (A,α) given by

I = ker π, I ′ = {a ∈ A : U∗Uπ(a) = π(a)}.
In particular, π̃ is faithful if and only if π is faithful and J = {a ∈ A : U∗Uπ(a) =
π(a)}.

Proof. In view of Remark 4.2 it suffices to apply Corollary 3.3 and Theorem 3.2.
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4.2. Crossed products

We define the relevant crossed products in universal terms. They can be treated as
a subclass of crossed products we proposed in [26, Definition 4.9], or in [29]. If A is
unital they coincide with those constructed and investigated in [31].

Definition 4.3. Let (A,α) be a C∗-dynamical system and J an ideal in (ker α)⊥.
A crossed product of A by α relative to J is the C∗-algebra C∗(A,α, J) := C∗(ι, u)
generated by a representation (ι, u) of (A,α) which is universal with respect to
covariance on J ; i.e. we require that if (π, U) is a representation of (A,α) covariant
on J then

ι(a) �→ π(a), u �→ U

extends to the homomorphism π � U from C∗(A,α, J) onto C∗(π, U). If J =
(ker α)⊥ we write C∗(A,α) := C∗(A,α, (ker α)⊥) and call it the (unrelative)
crossed product of A by α.

Proposition 4.4. For any C∗-dynamical system (A,α) and any ideal J in
(ker α)⊥, the crossed product C∗(A,α, J) exists and is unique (up to natural
isomorphism).

Moreover,

(i) the universal representation (ι, u) is faithful, J-covariant, and we have

C∗(A,α, J) = span{u∗nι(a)um : a ∈ A, n,m ∈ N}, u ∈M(C∗(A,α, J)).

(ii) C∗(A,α, J) sits naturally as an ideal in C∗(M(A), α, J).
(iii) if (B, β) is a natural reversible J-extension of (A,α) we have natural isomor-

phism

C∗(A,α, J) ∼= C∗(B, β),

and C∗(B, β) is the closure of a ∗-algebra consisting of elements of the form

b =
n∑
k=1

u∗nι(b−k) + ι(b0) +
n∑
k=1

ι(bk)un, b±k ∈ B, k = 0, ±1, . . . ,±n,

(4.4)

where (ι, u) denotes the universal covariant representation of (B, β).

Proof. Uniqueness of C∗(A,α, J) follows from universality. The existence can be
shown by standard arguments, see [9]. But we deduce it, along the way, from the con-
structions performed in [31] for unital C∗-algebras. Namely, by [31, Theorem 1.11,
Proposition 3.7] we know that the crossed product C∗(M(A), α, J) exists and is
generated by a faithful J-covariant representation (ι, u) of (M(A), α) on a certain
Hilbert space H . Let ι := ι|A. We claim that, modulo non-degeneracy issues to be
explained below, the pair (ι, u) is the universal J-covariant representation of (A,α).
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Indeed, by [31] we know that C∗(M(A), α, J) = span{u∗nι(a)um : a ∈ M(A),
n,m ∈ N}. Consider the self-adjoint Banach space C∗(A,α, J) := span{u∗nι(a)um :
a ∈ A, n,m ∈ N}. Let a, b ∈ M(A) and k, l,m, n ∈ N, where for instance m ≤ l.
Calculations similar to that in the proof of Proposition 4.1 give

(u∗kι(a)ul)(u∗mι(b)un) = u∗kι(aαl−m(αm(1)b))un+l−m.

Hence if either a or b is in A the product is in u∗kι(A)un+l−m. This shows that
C∗(A,α, J) is an ideal in C∗(M(A), α, J). In particular, C∗(A,α, J) is a C∗-algebra
generated by ι(A)∪ ι(A)u, and the orthogonal projection P from H onto the essen-
tial space C∗(A,α, J)H for C∗(A,α, J) commutes with elements of C∗(M(A), α, J).
Significantly, P commutes with u. Furthermore, since u∗kι(A) = u∗kι(αk(1))ι(A) =
u∗kι(αk(A)A) = ι(A)u∗kι(A) we see that C∗(A,α, J) contains ι(A) as a non-
degenerate C∗-algebra. Thus ι(A)H = PH and ι(a) = ι(a)P for all a ∈ A. Accord-
ingly, restricting ι and u to PH we see that (ι, u) is a faithful representation of
(A,α) on PH . It is J-covariant because

{a ∈ A : u∗uι(a)P = ι(a)P} = {a ∈ A : u∗uι(a) = ι(a)} = A ∩ J = J,

cf. Lemma 1.1. Universality of (ι, u) follows from Lemma 2.2 (i), cf. Remark 4.2,
and the universality of C∗(M(A), α, J). Operator u restricted to PH identifies with
a multiplier of C∗(A,α, J) in an obvious way. This shows parts (i) and (ii).

Part (iii) follows from Proposition 4.3 and part (i) of the present assertion, plus
a simple observation that for b ∈ B we have

u∗m(b)un =

{
u∗(m−n)ι(βn∗ (b)), if m ≥ n,
ι(βm∗ (b))un−m, if m < n.

Remark 4.3. In the sequel, we will assume the identification

C∗(A,α, J) = C∗(B, β),

where (B, β) is the natural reversible J-extension of (A,α). Moreover, we will write
(ι, u) for both the universal covariant representation of (B,α) and the universal
J-covariant representation of (A,α).

Remark 4.4. One can define the crossed product C∗(A,α, J) for an arbitrary
ideal J in A. Just let C∗(A,α, J) = C∗(ι(A), u) be the C∗-algebra generated by a
representation (ι, u) of (A,α) universal with respect to representations satisfying
(4.3). However, if J � (ker α)⊥ the universal representation (ι, u) is not faithful.
Moreover, by the reduction procedure described in [31, Sec. 5.3], see also [26, Exam-
ple 6.24],

R :=
{
a ∈ A : αn(a) ∈ J for all n ∈ N and lim

n→∞αn(a) = 0
}
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is the smallest positively invariant ideal in (A,α) such that qR(J) ⊆ (ker αR)⊥,
and we have a natural isomorphism

C∗(A,α, J) ∼= C∗(A/R,αR, qR(J)).

Thus this seemingly more general situation reduces easily to that of Definition 4.3.
For the particular case of Stacey’s crossed product A×1

α N we have

A×1
α N = C∗(A,α,A) ∼= C∗(A/R,αR) where R =

{
a ∈ A : lim

n→∞αn(a) = 0
}
.

Here (A/R,αR) can be regarded as the largest subsystem of (A,α) such that αR is
a monomorphism.

Let now (A,α) and J ⊆ (ker α)⊥ be fixed. By universality of the representation
(ι, u) generating C∗(A,α, J) we have a (point-wise continuous) circle action T =
{z ∈ C : |z| = 1} � z �→ γz ∈ Aut(C∗(A,α, J)) determined by

γz(ι(a)) = ι(a), γz(u) = zu, a ∈ A, z ∈ T.

We denote this action by γ and refer to it as the gauge action on C∗(A,α, J).
One infers from Proposition 4.4 that the algebra ι(B), where (B, β) is the natural
reversible J-extension of (A,α), is the fixed point algebra for the gauge action γ.
Integration over the Haar measure µ on T gives a conditional expectation

E(a) =
∫

T

γz(a)dµ, a ∈ C∗(A,α, J),

from C∗(A,α, J) onto ι(B). We get the following version of a standard result often
called gauge-invariant uniqueness theorem.

Proposition 4.5. Let (π, U) be a faithful J-covariant representation. The following
conditions are equivalent :

(i) π � U : C∗(A,α, J)→ C∗(π, U) is an isomorphism,
(ii) we have the equality J = {a ∈ A : U∗Uπ(a) = π(a)} and there is a circle

action γπ on C∗(π, U) such that

γπz (π(a)) = π(a), γπz (U) = zU, a ∈ A, z ∈ T,

(iii) we have the equality J = {a ∈ A : U∗Uπ(a) = π(a)} and there is a condi-
tional expectation from C∗(π, U) onto

∑∞
n=0 U

∗nπ(A)Un, sending the spaces
U∗nπ(A)Um to zero when m �= n.

Proof. Implications (i) ⇒ (ii) ⇒ (iii) follow easily from the discussion above and
the last part of Proposition 4.3. To show (iii)⇒ (i) assume that Eπ is a conditional
expectation from C∗(π, U) onto

∑∞
n=0 U

∗nπ(A)Un, as described above. By the last
part of Proposition 4.3, π � U |B = π̃ ◦ ι is a faithful representation of B. By part
(iii) of Proposition 4.4 it suffices to show that π�U(b) �= 0 if b is a nonzero element
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given by (4.4). But if b �= 0 is given by (4.4), then u∗kι(b−k) �= 0 or ι(bk)uk �= 0 for
some k = 0,±1, . . . ,±n. Fix such k. Since

0 < u∗kι(b−k)ι(b−k)∗uk + ι(bk)uku∗kι(bk∗) = ι(βk∗ (b−kb∗−k) + bkβ
k

∗(1)b∗k) ∈ ι(B)

we get

0 < π̃(ι(βk∗ (b−kb∗−k) + bkβ
k

∗(1)b∗k)) ≤ Eπ(π � U(bb∗)).

This implies that π � U(b) �= 0.

4.3. Gauge-invariant ideals

Representations π�U of C∗(A,α, J) satisfying condition (ii) in Proposition 4.5 are
sometimes called gauge-invariant representations. Kernels of such representations
are gauge-invariant ideals in C∗(A,α, J), i.e. ideals that are invariant under the
gauge action on C∗(A,α, J). Clearly, such ideals form a lattice. We describe this
lattice in two steps.

Proposition 4.6. Let (B, β) be a reversible C∗-dynamical system. Relations

Ĩ = {b ∈ B : ι(b) ∈ I}, (4.5)

I =
∞∑
k=1

u∗kι(Ĩ) + ι(Ĩ) +
∞∑
k=1

ι(Ĩ)uk, (4.6)

establish an order isomorphism between the lattices of gauge-invariant ideals I in
C∗(B, β) and invariant ideals Ĩ in (B, β). Moreover, under the above correspondence
we have

C∗(B, β)/I ∼= C∗(B/Ĩ, βeI). (4.7)

Proof. Let Ĩ be an invariant ideal in (B, β) and define I by (4.6). To see that
I is an ideal in C∗(B, β) recall that the projections u∗kuk, k ∈ N, commute with
elements of ι(B), and u∗ι(b)u = ι(β∗(b)), b ∈ B, see Propositions 4.2 and 2.2. Hence
for a, b ∈ B and m ≥ n, we get

ι(a)um · u∗nι(b) = ι(aβm−n(β
n
(1)b))um−n,

u∗nι(b) · ι(a)um = ι(βn∗ (ba))um−n.

Thus (by invariance of Ĩ) if either a or b is in Ĩ then both of the above products
are in I. By passing to adjoints, we arrive at a similar conclusion for m < n.
Accordingly, in view of Proposition 4.4(iii), I is an ideal in C∗(B, β). Clearly, I
is gauge-invariant and (4.5) holds. To show (4.7) denote by (ιeI , ueI) the universal
representation generating the crossed product C∗(B/Ĩ, βeI) and note that (ιeI◦qeI , ueI)
is a covariant representation of (B, β). Therefore we have the epimorphism

C∗(B, β) Ψ�→ C∗(B/Ĩ, βeI) where Ψ(ι(b)) = ιeI(qeI(b)), Ψ(u) = ueI .
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Since I ⊆ ker Ψ this mapping factors through to an epimorphism

C∗(B, β)/I ΨI�→ C∗(B/Ĩ, βeI) where ΨI ◦ qI = Ψ.

As I is gauge-invariant, the gauge action on C∗(B, β) factors through to
C∗(B, β)/I. With this circle action on C∗(B, β)/I, ΨI becomes a gauge-invariant
epimorphism which is injective on the fixed point algebra qI(ι(B)). Hence by the
general gauge-invariant uniqueness theorem, cf., for instance, [11, Theorem 4.5.1],
ΨI is injective on C∗(B, β)/I. This proves (4.7).

Let now I ′ be an arbitrary ideal in C∗(B, β) and put Ĩ := {b ∈ B : ι(b) ∈ I′}.
Then ι(β(Ĩ)) = uι(Ĩ)u∗ ⊆ I′ and ι(β∗(Ĩ)) = u∗ι(Ĩ)u ⊆ I′. Thus Ĩ is invariant in
(B, β) by Lemma 3.1. Plainly, the gauge-invariant ideal I given by (4.6) is contained
in I ′. Accordingly, the identity factors through to the epimorphism

C∗(B, β)/I Φ�→ C∗(B, β)/I ′.
If I ′ is gauge-invariant then both of the algebras C∗(B, β)/I and C∗(B, β)/I ′
are equipped with circle actions induced from C∗(B, β). Epimorphism Φ is gauge-
invariant with respect to these actions and Φ is injective on the fixed point algebra
of the circle action on C∗(B, β)/I. Hence Φ is an isomorphism, again by [11, The-
orem 4.5.1]. Consequently, I = I ′.

Remark 4.5. The last part of the proof above shows that relation (4.5) establishes
an order preserving surjection from the lattice of all ideals in C∗(B, β) onto the
lattice of invariant ideals in (B, β). Thus the lattice of gauge-invariant ideals in
C∗(B, β) can be regarded as an order-retract of the lattice of all ideals.

Combining the above statement with Theorem 3.2 we obtain a general result.

Theorem 4.1. Let (A,α) be a C∗-dynamical system and J an ideal in (ker α)⊥.
We have an order isomorphism from the lattice of gauge-invariant ideals I in
C∗(A,α, J) onto the lattice of J-pairs (I, I ′) for (A,α). It is determined by relations

I = {a ∈ A : ι(a) ∈ I}, I ′ = {a ∈ A : (1− u∗u)ι(a) ∈ I},
I is generated by ι(I) + (1− u∗u)ι(I ′).

(4.8)

For ideals satisfying the above relations we have

C∗(A,α, J)/I ∼= C∗(A/I, αI , qI(I ′)).

Restricting the above order isomorphism we get an order preserving bijective corre-
spondence between ideals I in C∗(A,α, J) which are generated by their intersection
with ι(A), and J-invariant ideals I in (A,α). This restricted correspondence is
determined by relations

I = {a ∈ A : ι(a) ∈ I}, I = span{u∗mι(a)un : a ∈ I, n,m ∈ N}, (4.9)

and for the corresponding ideals we have

C∗(A,α, J)/I ∼= C∗(A/I, αI , qI(J)).
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Proof. We obtain the desired order isomorphism by composing the isomorphisms
from Proposition 4.6 and Theorem 3.2. Moreover, using (twice) the isomorphism
from Proposition 4.4(iii), the equivalence of C∗-dynamical systems from Theo-
rem 3.2 and the isomorphism (4.7) we get

C∗(A,α, J)/I ∼= C∗(B, β)/I ∼= C∗(B/Ĩ, βeI) ∼= C∗(B(I,I′), β(I,I′))

∼= C∗(A/I, αI , qI(I ′)).

This proves the first part of the assertion.
For the second part note that the ideal I in C∗(A,α, J) generated by I :=

I ∩ ι(A) corresponds, via the above isomorphism, to the J-pair (I, I + J), see also
Remark 3.3.

Corollary 4.1. Suppose ker α is a complemented ideal in A. Relations (4.9)
establish an order isomorphism between the lattices of gauge-invariant ideals I in
C∗(A,α) and invariant ideals Ĩ in (A,α). Under this correspondence we have

C∗(A,α)/I ∼= C∗(A/I, αI).

In particular, in this case every gauge-invariant ideal I in C∗(A,α) is generated by
its intersection with ι(A).

Proof. Apply the fact that any (ker α)⊥-pair in (A,α) is of the form (I, I +
(ker α)⊥) where I is invariant in (A,α), cf. Remark 3.2. In particular, we have
qI((ker α)⊥) = (ker αI)⊥.

4.4. Simplicity

Now we use the above result to study simplicity of C∗(A,α, J). We will juxtapose
the conditions we get with [46, Theorem 4.1; 42, Corollary 1], which provide certain
sufficient conditions for simplicity of C∗(A,α) when α is a monomorphism. To deal
with non-injective α we will use Corollary 4.4 from the next subsection, and a notion
of pointwise quasinilpotence, which seems to be a novelty in the present context.

Definition 4.4. We say that α is minimal provided that there are no nontrivial
invariant ideals in (A,α). We call α pointwise quasinilpotent if limn→∞ αn(a) = 0,
for all a ∈ A. A monomorphism α is called inner if there is an isometry v ∈M(A)
such that α(a) = vav∗, a ∈ A.

Note that if α has no positively invariant ideals then α is necessarily a minimal
monomorphism. Moreover, if α is a monomorphism and A is unital, it can be shown
that α is minimal if and only if there are no positively invariant ideals in (A,α), cf.
[46, 40].

Theorem 4.2. If the algebra C∗(A,α, J) is simple then J = (ker α)⊥, α is minimal
and either α is pointwise quasinilpotent or α is a monomorphism and no power αn,
n > 0, is inner.
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If α is minimal each of the following conditions implies that C∗(A,α) is simple:

(i) α is pointwise quasinilpotent,
(ii) α is injective, A is unital, and no power αn, n > 0, is inner,
(iii) α is injective with hereditary range, A is separable, and no power αn, n > 0,

is inner.

Proof. As ({0}, J) and ({0}, (ker α)⊥) are always J-pairs, Theorem 4.1 implies
that C∗(A,α, J) is not simple unless J = (ker α)⊥. Similarly, C∗(A,α) is not simple
unless there are no invariant ideals in (A,α). Moreover, one readily sees that

I :=
{
a ∈ A : lim

n→∞αn(a) = 0
}

is an invariant ideal in (A,α). Thus if C∗(A,α) is simple then α is minimal and
either I = A or I = {0}, that is either α is pointwise quasinilpotent or α is a
monomorphism.

Suppose then that α is a monomorphism and for some n > 0, αn is inner so
that αn(a) = vav∗, for all a ∈ A, where v ∈ M(A) is an isometry. We claim that
we may reduce our considerations to the case (A,α) is a reversible C∗-dynamical
system. Indeed, if (B, β) is the natural reversible extension of (A,α) then the natural
reversible extension of (A,αn) can be identified with (B, βn). But (id, v) is a faithful
covariant representation of (A,αn) in A, cf. Remark 4.1. Thus by Proposition 4.3
we have the isomorphism B ∼= ∑∞

k=0 v
∗kAvk = A under which βn(b) = vbv∗, b ∈ B,

and v ∈M(B). This proves our claim. Let us then assume that (A,α) is reversible.
In view of Proposition 4.2 we have αn∗ (a) = v∗av for all a ∈ M(A). In particular
αn∗ (v) = v∗vv = v. For each m = 1, . . . , n we put vm := αm∗ (v). Note that for a ∈ A
we have

vma = αm∗ (v)a = αm∗ (vαm(a)) = αm∗ (αm+n(a)v) = αn(a)αm∗ (v) = αn(a)vm.

Since αn(1)v = v, all the more αm(1)v = v and thus we get

v∗mvm = αm∗ (v∗αm(αm∗ (v))) = αm∗ (v∗αm(1)vαm(1)) = αm∗ (v∗v) = αm∗ (1) = 1.

Thus vm ∈ M(A) are isometries such that αn(a) = vmav
∗
m for all a ∈ A. These

isometries commute. Indeed, αn(vk) = vkvkv
∗
k = vkα

n(1) = vkvmv
∗
m and αn(vk) =

vmvkv
∗
m imply that vkvm = vkvm, for m, k = 1, . . . , n. Moreover, for m = 1, . . . , n

(and v0 = v) we have α(vm) = α(1)vm−1α(1) = vm−1α(1). Thus putting

w := v0v1 · · · vn−1

we get an isometry in M(A) such that

waw∗ = αn
2
(a), a ∈ A, and α(w) = wα(1). (4.10)

Now assume that A is faithfully represented as a C∗-subalgebra of B(H) acting
non-degenerately on H . Put H̃ := H ⊕α(1)H ⊕ · · · ⊕αn2−1(1)H . Using (4.10) one
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readily checks that the formulae

π(a) := diag(a, α(a), . . . , αn
2−1(a)), U =



0 α(1) 0 ... 0

0 0 α2(1) ... 0
...

...
...

. . .
...

0 0 0 ... αn
2−1(1)

w 0 0 ... 0


define a covariant representation (π, U) of (A,α) on H̃ . Moreover, Un

2
= π(w)

where π is the extension of π onto M(A). Hence (π, U) gives rise to a representation
π � U of C∗(A,α) which is faithful on ι(A) but not globally faithful because for
any a ∈ A we have

(π � U)(ι(wa) − un2
ι(a)) = 0.

This contradicts the simplicity of C∗(A,α).
Part (i) follows from Theorem 4.1 and Corollary 4.4 (which we prove in next

section). Part (ii) follows from [46, Theorem 4.1], and part (iii) follows from [42,
Corollary 1] (note that the proof of [42, Theorem 1] is based on results of [41] which
were proved under assumption that A is separable and this assumption seems to
be essential).

4.5. Topological freeness for reversible C∗-dynamical systems

Throughout this subsection (B, β) stands for a reversible C∗-dynamical system.
One can think of (B, β) as of the natural J-reversible extension of a certain (not
necessarily reversible) C∗-dynamical system (A,α). We will adopt this viewpoint
in Corollary 4.4.

Let B̂ be the spectrum of B equipped with the Jacobson topology. As it is
generally accepted, we will abuse notation and use π to denote both an irreducible
representation of B and its equivalence class in B̂. Since β∗(B) = (ker β)⊥ is an
ideal in B and β(B) = β(1)Bβ(1) is a hereditary subalgebra of B we have natural
identifications of spectra of β∗(B) and β(B) with open subsets of B̂:

β̂∗(B) = {π ∈ B̂ : π(β∗(B)) �= 0}, β̂(B) = {π ∈ B̂ : π(β(B)) �= 0}.
With these identifications the homeomorphisms dual to the mutually inverse iso-
morphisms β : β∗(B) → β(B) and β∗ : β(B) → β∗(B) yield partial homeomor-
phisms of B̂:

β̂ : β̂(B)→ β̂∗(B), β̂−1 = β̂∗ : β̂∗(B)→ β̂(B),

cf. also [31, 28]. More precisely, let π : B → B(H) be a representation. If π ∈
β̂∗(B) then β̂∗(π) is the unique (up to unitary equivalence) irreducible extension of
π ◦ β∗ : β(B) → B(H) up to irreducible representation β̂∗(π) : B → B(H̃) where
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β̂∗(π)(β(B))H̃ = H ⊆ H̃ . If π ∈ β̂(B), then β̂(π) is the unique extension of π ◦ β :
β∗(B)→ B(β(B)H) up to the (irreducible) representation β̂(π) : B → B(β(B)H).

Definition 4.5. We say that a partial homeomorphism ϕ of a topological space X
is topologically free if the set of its periodic points of any given period n > 0 has
empty interior.

The following statements could be deduced from the results of [27], in the same
fashion as [28, Theorem 2.19]. However, we can omit the use of Hilbert bimodules
by reducing the problem to the unital case treated [28, Theorem 2.19], cf. also
[31, Theorem 3.1].

Theorem 4.3. Let (B, β) be a reversible C∗-dynamical system. If the dual partial
homeomorphism β̂ is topologically free then for every faithful covariant representa-
tion (π, U) of (B, β), π � U : C∗(B, β)→ C∗(π, U) is an isomorphism.

Proof. The extended system (M(B), β) is reversible, see Proposition 2.2. With
natural identifications B̂ is an open and dense subset of M̂(B) and β̂ is restriction

of the partial homeomorphism β̂ of M̂(B) dual to β. Thus topological freeness

of β is equivalent to topological freeness of β̂. Moreover, by Lemma 2.2(iii), cf.
Remark 4.2, (π, U) is a faithful covariant representation of (M(B), β). Hence by
[28, Theorem 2.19(i)], π � U : C∗(M(B), β) → C∗(π, U) is an isomorphism which
(with the identification from Proposition 4.4(ii)) restricts to the isomorphism π�U :
C∗(B, β)→ C∗(π, U).

Remark 4.6. There are reasons to believe that topological freeness and the iso-
morphism property described in the assertion of Theorem 4.3 are equivalent, at
least for a large class of C∗-algebras. For instance, by [41, Theorem 10.4] this is
the case when β is an automorphism and B is separable. We adapt a standard
construction to show that this is true when B is commutative.

Example 4.1 (Orbit representation). Let B be commutative. By an orbit in
(B̂, β̂) we mean a maximal set O ⊆ B̂ whose elements can be indexed by Z, Z+,
Z−, or {1, . . . , n}, for n > 0, in such a way that β̂(xk) = xk+1, if xk, xk+1 ∈ O,
and β̂(xn) = x1 in the case O is a periodic orbit with minimal period n. To each O
we attach a covariant representation (πO, UO) of (B, β) on the Hilbert space 	2(O)
with orthonormal basis δxk

, xk ∈ O. We let πO to be the diagonal representation
given by πO(a)δxk

= xk(a)δxk
, xk ∈ O. We define U as the shift

UOδxk
= δxk−1 if xk−1 ∈ O, and UOδxk

= 0 if xk−1 /∈ O,
unless O = {x1, . . . , xn} is periodic and k = 1 in which case we put UOδx1 = xn.
The direct sums

π :=
⊕

πO, U :=
⊕

UO
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over all orbits in (B̂, β̂) define a faithful covariant representation of (B, β). Suppose
now that β̂ is not topologically free. Hence there is a nonempty open set U consisting
of periodic points of period n. Then for any nonzero element b ∈ ⋂x∈ bB\U ker x we
have

0 �= b − bun ∈ ker(π � U).

Hence π � U is not faithful. In particular, ker(π � U) is not gauge-invariant, cf.
Proposition 4.5.

Since invariant ideals in (B, β) correspond to open sets invariant under β̂, The-
orem 4.3 leads us to a condition implying that all ideals in C∗(B, β) are gauge-
invariant.

Definition 4.6. Let ∆ be a domain of a partial homeomorphism ϕ of X . A set
V ⊆ X is ϕ-invariant if ϕ(V ∩∆) = V ∩ ϕ(∆). We say that ϕ is (residually) free,
if it is topologically free when restricted to any closed invariant set.

Corollary 4.2. If β̂ is free then all ideals in C∗(B, β) are gauge-invariant and thus
we have natural isomorphisms between the lattices of the following objects :

(i) ideals in C∗(B, β),
(ii) invariant ideals in (B, β),
(iii) open β̂-invariant subsets of β.

Moreover, if B is commutative then β̂ is free if and only if all ideals in C∗(B, β)
are gauge-invariant.

Proof. Let I′ be an ideal in C∗(B, β) and denote by I the ideal in C∗(B, β)
generated by ι(B) ∩ I′. Recalling the last part of the proof of Proposition 4.6, we
have the epimorphism

C∗(B/Ĩ, βeI)
∼= C∗(B, β)/I Φ�→ C∗(B, β)/I ′

which is injective on the image of B/Ĩ. As Ĩ is invariant, the spectrum of B/Ĩ is

identified with the β̂-invariant closed set B̂\̂̃I and then β̂eI becomes a restriction of

β̂. Thus if β̂ is free then (B̂/Ĩ, β̂eI) is topologically free. Therefore, by Theorem 4.3,
Φ is an isomorphism and consequently I ′ = I is gauge-invariant.

Assume that B is commutative and β̂ is not free. Then there is an invariant
ideal Ĩ in (B, β) such that the partial homeomorphism β̂eI is not topologically free.
By Example 4.1 there is an ideal I ′ in C∗(B/Ĩ, βeI), which is not gauge-invariant.
Denoting by I the (gauge-invariant) ideal in C∗(B, β) generated by ι(Ĩ) and identi-
fying C∗(B/Ĩ, βeI) with C∗(B, β)/I we get an ideal q−1

I (I ′) in C∗(B, β) which fails
to be gauge-invariant.

Corollary 4.3. If β is a minimal monomorphism with hereditary range and β̂ is
topologically free, then C∗(B, β) is simple.
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Remark 4.7. If β is injective topological freeness of β̂ implies that no power αn,
n > 0, is inner. Hence Corollary 4.3 is consistent with Theorem 4.2(ii), see also
Remark 4.6.

We finish this subsection with an application to general C∗-dynamical systems.

Lemma 4.1. Let (A,α) be a C∗-dynamical system, J an ideal in (ker α)⊥ and
(B, β) the natural reversible J-extension of (A,α). Then α is pointwise quasinilpo-
tent if and only if β is pointwise quasinilpotent.

Proof. With the notation from the proof of Theorem 3.1, β is determined by the
formulas β(φ0(a0)) = φ0(α(a0)) and

β(φn(q(a0)⊕ · · · ⊕ q(an−1)⊕ an)) = φn−1(q(a1)⊕ · · · ⊕ q(an−1)⊕ an),
for n > 0, ak ∈ Ak, k = 0, . . . , n. Thus β is pointwise quasinilpotent on⋃
n∈N

φn(Bn) if and only if α is pointwise quasinilpotent on A. The assertion follows
by the density of

⋃
n∈N

φn(Bn) in B.

Corollary 4.4. Let (A,α) be a C∗-dynamical system and J an ideal in (ker α)⊥.
If α is pointwise quasinilpotent then all ideals in C∗(A,α, J) are gauge-invariant.

Proof. In view of Corollary 4.2 and Lemma 4.1 it suffices to note that if a reversible
C∗-dynamical system (B, β) is such that β is pointwise quasinilpotent, then β̂ is
free. But if β̂ is not free then β̂eI , for a certain subsystem (B/Ĩ, βeI) of (B, β), is not

topologically free. This implies that there exists b ∈ B/Ĩ, a representation π ∈ B̂/Ĩ
and a number n such that 0 �= ‖π(b)‖ = ‖π(βnk

eI
(b))‖ for all k ∈ N. Hence β cannot

be pointwise quasinilpotent.

4.6. Commutative C∗-dynamical systems

We fix a locally Hausdorff space X and a C∗-dynamical system (A,α) where A =
C0(X) is the algebra of continuous functions on X that vanish at infinity. We also
fix an ideal J ⊆ (ker α)⊥ and denote by (B, β) the natural reversible J-extension
of (A,α). Clearly, B is also commutative. We will identify B with C0(X̃) for some
locally compact Hausdorff space X̃. Then, for a ∈ A and b ∈ B, we have

α(a)(x) =

{
a(ϕ(x)), x ∈ ∆,

0, x /∈ ∆,
β(b)(x) =

{
b(ϕ̃(x̃)), x̃ ∈ ∆̃,

0, x̃ /∈ ∆̃,

where ϕ : ∆ → X and ϕ̃ : ∆̃ → X̃ are proper continuous mappings defined
respectively on clopen subsets ∆ ⊆ X and ∆̃ ⊆ X̃ (they are closed because α and β
are extendible). One deduces from Propositions 2.1, 2.2 that ϕ̃ is a homeomorphism
onto a clopen set ϕ̃(∆̃) ⊆ X̃ and β∗ is actually an extendible endomorphism given
by the similar formula as β but with ϕ̃ replaced with ϕ̃−1.
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We dualize our construction of (B, β) to obtain a description of (X̃, ϕ̃) in terms
of (X,ϕ). This end let Y ⊆ X be the hull of the ideal J , that is Y is the closed set
such that

J = C0(X\Y ).

Note that the relation J ⊆ (ker α)⊥ is equivalent to the equality Y ∪ϕ(∆) = X . In
the unital case the following description, using a different approach, was obtained
in [25, Theorem 3.5], and under an additional assumption in [30, Theorem 3.5].

Proposition 4.7. Up to a homeomorphism X̃ is the following subspace of the
product space

∏
n∈N

(X ∪ {0}), where {0} is an abstract clopen singleton:

X̃ =
∞⋃
N=0

XN ∪X∞,

where

XN = {(x0, x1, . . . , xN , 0, . . .) : xn ∈ ∆, ϕ(xn) = xn−1, n = 1, . . . , N, xN ∈ Y },
and

X∞ = {(x0, x1, . . .) : xn ∈ ∆, ϕ(xn) = xn−1, n ≥ 1}.
Then ∆̃ = {(x0, x1, . . .) ∈ X̃ : x0 ∈ ∆}, ϕ̃(∆̃) = {(x0, x1, . . .) ∈ X̃ : x1 �= 0}, and

ϕ̃(x0, x1, . . .) = (ϕ(x0), x0, x1, . . .), ϕ̃−1(x0, x1, . . .) = (x1, . . .).

Proof. Let ∆n := ϕ−n(∆) be the natural domain of the partial mapping ϕn.
Dualizing diagram (3.1) we see that direct sequence (3.2) dualizes to the following
inverse sequences

B̂0
= X

B̂1

bT1

��

= Y

id

��

� ∆1

ϕ

�����������

B̂2

bT2

��

= Y

id

��

� Y ∩∆1

id

��

� ∆2

ϕ

����������

bT3 id id id
ϕ

where � denotes the direct sum of topological spaces. Now it is easy to see that
the inverse limit lim←−−{B̂n, T̂n} can be identified with the space X̃ described in the
assertion. For instance, if x̃ = (x0, x1, x2, . . .) is an element of the inverse limit,
then we have two alternatives: either every coordinate of x̃ “lies on the diagonal”
of the above diagram, and then x̃ identifies as the element of X∞; or only N first
coordinates of x̃ “lie on the diagonal” and next ones “slide off the diagonal” fixing
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at xN — then we identify x̃ with the element of XN by replacing the tail of xN ’s
with tail of zeros. We leave the remaining tedious details to the reader.

We extend Definition 4.5 to not (necessarily) injective maps.

Definition 4.7. We say that a periodic orbit O = {x, ϕ(x), . . . , ϕn(x)} of a peri-
odic point x has an entrance y ∈ ∆ if y /∈ O and ϕ(y) ∈ O. The partial mapping ϕ
is topologically free if the set of all periodic points whose orbits have no entrances
has empty interior.

We will also need a relative version of topological freeness which coincides with
the unrelative one when Y = X\ϕ(∆) is the smallest set under consideration (recall
that we must have Y ∪ ϕ(∆) = X).

Definition 4.8. The partial mapping ϕ is said to be topologically free outside Y
if the set of periodic points whose orbits do not intersect Y and have no entrances
have empty interior.

Lemma 4.2. Let (X,ϕ) and (X̃, ϕ̃) be as in Proposition 4.7. The partial homeo-
morphism ϕ̃ is topologically free if and only if ϕ is topologically free outside Y .

Proof. Let n > 0. By Baire theorem it suffices to show that the set F̃n := {x̃ :
ϕ̃n(x̃) = x̃} has empty interior in X̃ if and only if the set

Fn := {x : ϕn(x) = x and ϕ−1(ϕk(x)) = {ϕk−1(x)} ⊆ X\Y, for all k = 1, . . . , n}
has empty interior in X . But if U is a nonempty open subset of Fn then our
description of (X̃, ϕ̃) implies that Ũ := {x ∈ X̃ : x0 ∈ U} is nonempty open subset
of F̃n. Conversely, if F̃n has a nonempty interior then F̃n contains a nonempty set
of the form Ũ := {x ∈ X̃ : xn ∈ U} for an open set U in X . The inclusion Ũ ⊆ F̃n
forces U to be contained in Fn.

Combining the above lemma and Theorem 4.3, modulo the last part of Propo-
sition 4.3 and Example 4.1, we get the following.

Proposition 4.8. The following conditions are equivalent :

(i) the partial map ϕ is topologically free outside Y (the hull of the ideal J),
(ii) any faithful representation (π, U) of (A,α) such that J = {a ∈ A : U∗Uπ(a) =

π(a)} gives rise to a faithful representation C∗(A,α, J)

Remark 4.8. If Y = X then any ϕ is (trivially) topologically free outside Y .
Hence regardless of (A,α) any faithful representation (π, U) of (A,α) such that
{a ∈ A : U∗Uπ(a) = π(a)} = {0}, integrates to the isomorphism from C∗(A,α, {0})
onto C∗(π, U). This is a resemblance of much more general facts whose prototype
is Coburn’s uniqueness theorem.

We define objects dual to J-pairs and J-invariant ideals as follows.
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Definition 4.9. A set V ⊆ X is positively invariant under ϕ if ϕ(V ∩ ∆) ⊆ V ,
and V is Y -negatively invariant if V ⊆ Y ∪ ϕ(V ∩∆). If V is both positively and
Y -negatively invariant, we call it Y -invariant. A pair (V, V ′) of closed subsets of X
such that

V is positively ϕ-invariant, V ′ ⊆ Y and V ′ ∪ ϕ(V ∩∆) = V

will be called a Y -pair for (X,ϕ). We equip the set Y -pairs with natural partial
order: (V1, V

′
1) ⊆ (V2, V

′
2) def⇐⇒ V1 ⊆ V2 and V ′

1 ⊆ V ′
2 .

Proposition 4.9. All ideals in C∗(A,α, J) are gauge-invariant if and only if ϕ
has no periodic points. In general, the relations

C0(X\V ) = {a ∈ A : ι(a) ∈ I}, C0(X\V ′) = {a ∈ A : (1 − u∗u)ι(a) ∈ I},

establish an anti-isomorphism between the lattices of gauge-invariant ideals I in
C∗(A,α, J) and Y pairs (V, V ′) for (X,ϕ); it restricts to the anti-isomorphism
between the lattices of all ideals I in C∗(A,α, J) generated by their intersection
with ι(A) and Y -invariant closed sets V for (X,ϕ).

Proof. Since X̃ is Hausdorff, freeness of ϕ̃ (Definition 4.6) is equivalent to nonexis-
tence of periodic points for ϕ̃. In view of our description of ϕ̃ the latter is equivalent
to nonexistence of periodic points for ϕ. Thus the initial part of the assertion fol-
lows from Corollary 4.2. The second part follows from Theorem 4.1 modulo a simple
remark that a pair (C0(X\V ), C0(X\V ′)) forms a J-pair for (A,α) if and only if
(V, V ′) forms as a Y -pair for (X,ϕ).

We say that a (full) mapping ϕ : X → X is minimal provided there are no
nontrivial closed subsets V of X such that ϕ(V ) = V . If X is compact then ϕ is
minimal if and only if there are no nontrivial closed positively invariant subsets V of
X , i.e. such that ϕ(V ) ⊆ V . However, when X is not compact the latter condition
is much stronger than minimality. In fact, by [18, Theorem B], nonexistence of
nontrivial closed positively invariant subsets in (X,ϕ) forces X to be compact. On
the other hand, there are interesting minimal mappings on non-compact spaces, cf.
for instance [15].

Theorem 4.4. Let (A,α) be a commutative C∗-dynamical system and (X,ϕ) its
dual partial dynamical system. The crossed product C∗(A,α) is simple if and only
one of the two possible cases hold :

(i) X is discrete, ϕ is injective and X compose of one non-periodic orbit O. In
this case C∗(A,α) ∼= K(	2(O)) is the algebra of compact operators on the |O|-
dimensional Hilbert space.
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(ii) X is not discrete and ϕ : X → X is a minimal surjection. In this case
C∗(A,α) ∼= C∗(X̃, ϕ̃) is the C∗-algebra of the minimal homeomorphism ϕ̃

induced by ϕ on the inverse limit space X̃.

Proof. Let C∗(A,α) be simple. Assume that ϕ : ∆→ ϕ(∆) is a homeomorphism
and ϕ(∆) ⊆ X is clopen (think of it as of the system (X̃, ϕ̃) described in Propo-
sition 4.7). Evidently, any orbit O and hence its closure is a ϕ-invariant set, cf.
Definition 4.6. Therefore, by Corollary 4.2, X is the closure of O and O is not a
periodic orbit.

Suppose that X is discrete. Then X = O. Since O is not periodic, (X,ϕ) is up
to conjugacy either a truncated shift on {1, . . . , n}, one sided shift on N, or a two-
sided shift on Z. In each of these cases representations described in Example 4.1
yield the isomorphism C∗(A,α) ∼= K(	2(O)), cf. Theorem 4.3.

Now let X be arbitrary. We claim that if ∆ �= X then X is discrete. Indeed,
if X\∆ = O\∆ �= ∅ then O\∆ = {x0} must be a singleton. As O ⊆ ∆ ∪ {x0} we
actually have X = O = ∆ ∪ {x0}. Therefore {x0} is clopen in X . Consequently,
O =

⋃
n∈N

ϕ−n(x0) is an open discrete set. Clearly it is ϕ-invariant, and thus by
minimality X = O =

⋃
n∈N

ϕ−n(x0) is discrete.
Applying the above argument to the system (X,ϕ−1) we see that X is discrete

also when ϕ(∆) �= X . Thus if X is not discrete then ∆ = ϕ(∆) = X and this
finishes the proof in the reversible case.

Now suppose (X,ϕ) is a general partial dynamical system (with ϕ not neces-
sarily injective). Then as we have shown the reversible system (X̃, ϕ̃) described in
Proposition 4.7 satisfies the assertion. A moment of thought leads to the conclu-
sion that if (X̃, ϕ̃) is as described in the case (i) then (X,ϕ) = (X̃, ϕ̃). Similarly,
ϕ̃ : X̃ → X̃ is a full minimal homeomorphism if and only if ϕ : X → X is a full
minimal surjection.
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Appendix A. C∗(A, α, J) Viewed as a Relative Cuntz–Pimsner
Algebra

In this section we briefly outline how to obtain our description of the lattice of
gauge-invariant ideals using general machinery of relative Cuntz–Pimsner algebras.
For more details, concerning the latter we refer the reader to [38, 31, 19].

A C∗-correspondence over a C∗-algebra A is a right Hilbert A-module X with
a left action φX : A→ L(X) of A on X via adjointable operators. We let J(X) :=
φ−1(K(X)) to be the ideal in A consisting of elements that act from the left on X as
generalized compact operators. For any ideal J in J(X) the relative Cuntz–Pimnser
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algebra O(J,X) is constructed as a quotient of the C∗-algebra generated by Fock
representation of X , see [38, Definition 2.18] or [31, Definition 4.9]. The C∗-algebra
O(J,X) is universal with respect to appropriately defined representations of X , see
[17, Remark 1.4] or [31, Proposition 4.10]. It is equipped with a gauge circle action
which acts as identity on the image of A in O(J,X). Katsura, in [21], described
ideals in O(J,X) that are invariant under this action in the following way.

For any ideal I in A we define two another ideals

X(I) := span{〈x, a · y〉A ∈ A : a ∈ I, x, y ∈ X},
X−1(I) := {a ∈ A : 〈x, a · y〉A ∈ I for all x, y ∈ X}.

If X(I) ⊆ I, then the ideal I is said to be positively invariant [21, Definition 4.8].
For any positively invariant ideal I we have a naturally defined quotient C∗-
correspondence XI = X/XI over A/I. Denoting by qI : A → A/I the quotient
map one puts

JX(I) := {a ∈ A : φXI (qI(a)) ∈ K(XI), aX−1(I) ⊆ I}.
Definition A.1 ([21, Definition 5.6]). Let X be a C∗-correspondence over a
C∗-algebra A. A T -pair of X is a pair (I, I ′) of ideals I, I ′ of A such that I is
positively invariant and I ⊆ I ′ ⊆ JX(I).

The content of [21, Proposition 11.9] is the following.

Theorem A.1. Let X be a C∗-correspondence over a C∗-algebra A, and J be
an ideal of A contained in J(X). Then there exists a one-to-one correspondence
between the set of all gauge-invariant ideals of O(J,X) and the set of all T -pairs
(I, I ′) of X satisfying J ⊆ I ′, which preserves inclusions and intersections.

Let us now fix a C∗-dynamical system (A,α) and an ideal J ⊆ (ker α)⊥. We
associate to (A,α) a C∗-correspondence Xα which as a vector space is equal to
α(1)A and the other operations are given by

a · x := α(a)x, x · a := xa, 〈x, y〉A := x∗y, a ∈ A, x, y ∈ Xα.

One can show that J(Xα) = A. Hence we can consider the relative Cuntz–Pimnser
algebra O(J,Xα). Moreover, there is a natural isomorphism

C∗(A,α, J) ∼= O(J,Xα) (A.1)

which maps ι(A) and u∗ι(A), respectively, onto the image of A and Xα in O(J,Xα).
The latter fact was noticed in [17, Example 1.6; 31, Corollary 4.14], under the
assumption that A is unital, but the arguments carry out to our more general
situation. In particular, (A.1) induces a lattice isomorphism between the gauge-
invariant ideals in C∗(A,α, J) and O(J,Xα).

Clearly, for any ideal I in A we have Xα(I) = Aα(I)A and X−1
α (I) = α−1(I).

In particular, I is positively invariant for X if and only if I is positively invariant in
(A,α). If I is positively invariant then the quotient C∗-correspondence X/XI can
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be identified with the C∗-correspondence XαI associated to the quotient system
(A/I, αI). Hence J(XI) = A/I and we get JXα(I) = {a ∈ A : aα−1(I) ⊆ I}.
Accordingly, if I and I ′ are ideals in A we have

(I, I ′) is a T -pair with J ⊆ I ′ ⇔ (I, I ′) is a J-pair for (A,α).

In this way we can infer from Theorem A.1 the first part of Theorem 4.1.

Corollary A.1. Let (A,α) be a C∗-dynamical system and J an ideal in (ker α)⊥.
We have an order isomorphism from the lattice of gauge-invariant ideals I in
C∗(A,α, J) onto the lattice of J-pairs (I, I ′) for (A,α).

In a similar way, using isomorphism (A.1), one can apply to C∗(A,α, J) other
general results for relative Cuntz–Pimsner algebras. For instance, it follows from
[20, Theorem 7.1; 20, Theorem 7.2], respectively that

A is exact ⇔ C∗(A,α, J) is exact.

A is nuclear ⇒ C∗(A,α, J) is nuclear.

If A is separable, then C∗(A,α, J) is separable and by the argument leading to
[20, Proposition 8.8] we have

both A and J satisfy the UCT ⇒ C∗(A,α, J) satisfy the UCT.
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