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Abstract—Starting from an arbitrary endomorphism α of a unital C∗-algebra A we construct
in a canonical way a bigger algebra B and extend α onto B in such a way that α : B → B possess
a unique non-degenerate transfer operator L : B → B called complete transfer operator. The pair
(B, α) is universal with respect to a suitable notion of a covariant representation and in general
depends on a choice of an ideal in A.

1. INTRODUCTION

The crossed-product of a C∗-algebra A by an automorphism α : A → A is defined as a universal
C∗-algebra generated by a copy of A and a unitary element U satisfying the relations

α(a) = UaU∗, α−1(a) = U∗aU, a ∈ A.

Algebras arising in this way (or their versions adapted to actions of groups of automorphisms) are
very well understood and became one of the standard constructions in C∗-theory. On the other
hand, the natural desire to adapt this kind of constructions to endomorphisms (or semigroups of
endomorphisms) encounters, from the very beginning, serious obstacles. Roughly speaking, it is caused
by the irreversibility of the system (A, α) - the lack of α−1 in the case α is an endomorphism.

The difficulty of the matter manifests itself in a variety of approaches, see, for example, [1], [2],
[3], [4], [5], [6], [7], [8], which do however have a certain nontrivial intersection. They mostly agree,
and simultaneously boast their greatest successes, in the case when the dynamics is implemented by a
monomorphism with hereditary range. In view of [9], [7], see also [10], this coincidence seems to be well
understood. Namely, it was noticed in [9], [7] that for a class of endomorphisms α (as shown in [10]
consisting of endomorphisms with complemented kernels and hereditary ranges) there exist unique
non-degenerate transfer operators L [6], called by authors of [9] complete transfer operators. In this case
the theory goes smooth, in the spirit very similar to that of crossed products by automorphisms, as L
takes over the role classically played by α−1. The authors of [7] showed that all of the aforementioned
constructions can be reduced to crossed product for systems (A, α) with complete transfer operators,
and at the end of [7] they argue that a general crossed product construction should consist of two
steps:

1) “initial object and extension procedure”;
2) “crossed product for systems with complete transfer operator”.

Our goal is to provide the missing first step in the above scheme where the initial object is an
arbitrary endomorphism of a unital C∗-algebra. The previous preprint version of the present article
together with [7] enabled the authors of [11] to develop a general approach to crossed products by
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arbitrary endomorphisms. We also hope to use the elaborated C∗-algebraic extension method in the
further more detailed analysis of objects of this type, cf., e.g., [11, problem on p. 1830]. Such an
approach already proved to be very useful in the case the initial system is commutative, see [8], [12],
[13].

The idea behind our construction is very similar to that of dilation of endomorphisms up to auto-
morphisms, see for instance [14] and references therein. However, the aforementioned method applies
only to injective endomorphisms and yield crossed products that are equivalent only up to the Morita
equivalence, whereas our extension procedure is general (in the case the underlying semigroup is
N = {0, 1, 2, 3, ...}) and yields isomorphic crossed products, see Theorem 2 ii) below.

This article is a journal version of the e-print arXiv:math.OA/0703800

2. THE PROBLEM AND THE SPATIAL OPERATOR-ALGEBRAIC CONSIDERATIONS

Throughout this paper we let A be a C∗-algebra with an identity 1. By a C∗-dynamical system we
mean a pair (A, α) where α : A → A is an endomorphism of A (all the morphisms appearing in the
text are assumed to be ∗-preserving). To explain the problem let us suppose that the system (A, α)
is faithfully represented on a Hilbert space H; that is we assume A is a C∗-subalgebra of the algebra
L(H) of all bounded linear operators on H, 1 is the identity operator, and there is U ∈ L(H) such
that

α(a) = UaU∗, a ∈ A.

By [15, Proposition 2.2] and [11, Lemma 1.2] the multiplicativity of α is equivalent to the conditions

U is a (power) partial isometry and U∗U ∈ A′,

where A′ denotes the commutant of A. Hence by [15, Proposition 2.2. and Proposition 3.10]

B := span{U∗naUn : a ∈ A, n ∈ N},

is a minimal C∗-algebra containing A and such that the following relations hold

UBU∗ ⊂ B, U∗BU ⊂ B, U∗U ∈ Z(B) = B′ ∩ B.

Therefore, see also [9, 3.1] or [7, 2.5], putting

α(b) := UbU∗, L(b) := U∗bU, b ∈ B,

we obtain an endomorphism α : B → B that extends α : A → A,1 and a linear operator L : B → B
which is a complete transfer operator for the extended system (B, α) (we recall a definition of a
complete transfer operator in section 3). In the present paper, we give a positive answer to the
following question.

Question: Does there exist an efficient description of the triple (B, α,L) in terms of the
initial C∗-dynamical system (A, α), independent of the representation in B(H)?

Remark. By [15, Proposition 4.1] if A is commutative, then B is also commutative. Hence in this case
the C∗-dynamical systems (A, α) and (B, α) correspond to topological dynamical systems (X, γ) and

(X̃, γ̃) respectively (consisting of compact Hausdorff spaces and partial mappings). The description

of (X̃, γ̃) only in terms of (X, γ) was obtained in [12] under the additional assumption that U∗U ∈ A.

In general, (X̃, γ̃) is described by (X, γ) in [13] but this description requires additional data encoded
in the ideal

J := U∗UA ∩A = {a ∈ A : U∗Ua = a}, (2.1)

1As a rule we use the same symbol for endomorphisms and their extensions.
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cf. also [11]. The relationship between (X, γ) and (X̃, γ̃) is of particular interest. In [13], [12], [8], a

number of examples is studied and it is shown that the space X̃ may be viewed as a generalization of
topological inverse limit space. As a rule X̃ is topologically very complicated. In a typical situation it
contains indecomposable continua, has a structure of hyperbolic attractors, or of a space arising from
substitution tilings. Thus, among the other things, the construction of the present paper could be
considered as a tool to obtain non-commutative counterparts of the aforementioned objects.

We will analyze the structure of B by means of the following “approximating” algebras

Bn :=

{
n∑
i=0

U∗iaiU i : ai ∈ A, i = 0, ..., n

}
, n ∈ N,

see [15, Proposition 3.8 (ii)]. The family {Bn}n∈N fixes the structure of a direct limit on B:

A = B0 ⊂ B1 ⊂ ... ⊂ Bn ⊂ ..., and B =
⋃
n∈N
Bn.

The first crucial step is to notice that the algebras Bn can be canonically identified with direct sums
of subalgebras of the C∗-algebra C∗(A, U∗U) generated by A and U∗U .

Statement 1. Let n ∈ N. Every element a ∈ Bn can be presented in the form

a = a0 + U∗a1U + ...+ U∗nanU
n

where
ai ∈ (1− U∗U)αi(1)Aαi(1), i = 0, ..., n− 1, an ∈ αn(1)Aαn(1), (2.2)

and this form is unique. Actually, a 7→ a0 ⊕ a1 ⊕ ...⊕ an establishes the isomorphism

Bn ∼= (1− U∗U)A⊕ (1− U∗U)α1(1)Aα1(1)⊕ ...⊕ αn(1)Aαn(1). (2.3)

Proof. Let a ∈ Bn. Then a =
∑n
i=0 Li(bi) where bi ∈ A and L(·) = U∗(·)U . Without loss of

generality we may assume that bi ∈ αi(1)Aαi(1), because Li(bi) = Li(αi(1)biα
i(1)). We recall, cf.

[15, Proposition 3.6 (iv)], that the family {Lk(1)}k∈N ⊂ Z(B) is a decreasing sequence of orthogonal
projections. We will construct elements ai satisfying (2.2) modifying inductively the elements bi. For
a0 we take b0(1−L(1)) and ’the remaining part’ of b0 we include in b1, that is we put c1 = b1 +α(b0).
Then a = a0 + L(c1) + ...+ Ln(bn), because b0L(1) = L(α(b0)).
Continuing in this manner we get k < n coefficients a0, ..., ak−1 satisfying (2.2) and such that a =
a0 + ... + Lk−1(ak−1) + Lk(ck) + Lk+1(bk+1) + ... + Ln(bn) and ck ∈ αk(1)Aαk(1). We put ak =
ck(1 − L(1)) ∈ A and ck+1 = bk+1 + α(ck). Then ak ∈ (1 − U∗U)αk(1)Aαk(1) and the following
computations

Lk(ck) = Lk(ck)Lk(1) = Lk(ck)
(
Lk(1)− Lk+1(1)

)
+ Lk+1(1)Lk(ck)

= Lk
(
ck(1− L(1))

)
+ Lk+1(α(ck)) = Lk(ak) + Lk+1(α(ck))

show that a = a0 + ...+ Lk(ak) + Lk+1(ck+1) + ...+ Ln(bn).
Thus we may assume that (2.2) holds. These conditions imply that

Li(ai) ∈
(
Li(1)− Li+1(1)

)
A, i = 0, ..., n− 1.

Since {Lk(1)}k∈N ⊂ Z(B) are decreasing orthogonal projections, the projections 1 − L(1), L(1) −
L2(1), ..., Ln(1)−Ln−1(1), Ln(1) are pairwise orthogonal and central in Bn. Hence the algebra Bn is
a direct sum of ideals corresponding to these projections and i-th component of such a decomposition
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is isomorphic to (1−U∗U)αi(1)Aαi(1), if i = 0, ..., n−1, and αn(1)Aαn(1), if i = n. To see the latter
it suffices to check that

U iU∗iAU iU∗i = αi(1)Aαi(1) 3 a→ Li(a) = U∗iaU i ∈ Bn, i = 1, ..., n,

is injective homomorphism which follows immediately from the fact that U i is a partial isometry.
Accordingly, we get the isomorphism (2.3) and the proof is finished.

We note, cf. [13, Proposition 2.2] or [11, Proposition 6.2], that

C∗(A, U∗U) = U∗UA⊕ (1− U∗U)A ∼= A/ kerα⊕A/J

where J is the ideal (2.1). This indicates that the extended system (B, α,L) can be reconstructed
from the triple (A, α, J) and we will show that this is indeed the case. This will be achieved in
section 4, but first we fix indispensable notation and facts concerning transfer operators and covariant
representations of C∗-dynamical systems.

3. TRANSFER OPERATORS AND COVARIANT REPRESENTATIONS

Let us fix a C∗-dynamical system (A, α). A transfer operator for (A, α), see [6], is a positive linear
map L : A → A such that

L(α(a)b) = aL(b), a, b ∈ A. (3.1)

If additionally, α(L(1)) = α(1) the transfer operator L is said to be non-degenerate [6]. The authors
of [9] called a transfer operator L for (A, α) a complete transfer operator if it satisfies

α(L(a)) = α(1)aα(1), a ∈ A. (3.2)

By [10] it follows that a complete transfer operator exists if and only if kerα is a complemented ideal
in A and α(A) is hereditary subalgebra of A (equivalently kerα is unital and α(A) = α(1)Aα(1)).
Then, see [10], such a transfer operator is a unique non-degenerate transfer operator for (A, α) and
it is given by the formula L(a) = α−1(α(1)aα(1)) where α−1 is the inverse to the isomorphism
α : (kerα)⊥ → α(A) and (kerα)⊥ = {a ∈ A : a kerα = {0}} is the annihilator of kerα.

Definition 1 (cf. [11]). A representation of (A, α) is a triple (π, U,H) consisting of a unital faithful
representation π : A → L(H) on a Hilbert space H and an operator U ∈ L(H) satisfying

Uπ(a)U∗ = π(α(a)), a ∈ A. (3.3)

Then J = {a ∈ A : U∗Uπ(a) = π(a)} is an ideal in A contained in (kerα)⊥, cf. [11, Corollary 1.5]
or [13, Proposition 1.16]. We call J the ideal of covariance for (π, U,H), and say that (π, U,H) is
a J-covariant representation of (A, α). If J = (kerα)⊥, we simply say that (π, U,H) is a covariant
representation of (A, α).

Remark. By [11, Proposition 1.10] for each system (A, α) and ideal J in (kerα)⊥ there exists a
J-covariant representation of (A, α).

The next two statements explain to some extent the role of covariant representations (without
prefix J) and complete transfer operators.

Statement 2. Let (π, U,H) be a representation of a C∗-dynamical system (A, α) such that kerα has
a unit (is a complemented ideal in A). The following conditions are equivalent :

i) (π, U,H) is a covariant representation
ii) U∗U ∈ π(A)

iii) U∗U ∈ π(Z(A)) (Z(A) stands for the center of A)
iv) U∗U is the unit in π((kerα)⊥)
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In particular, if α is injective, then (π, U,H) is a covariant representation if and only if U is an
isometry.

Proof. It is straightforward, as we know that π(kerα) = (1−U∗U)π(A)∩π(A) and U∗U ∈ π(A)′,
see [11, Proposition 1.9].

Statement 3. Let (π, U,H) be a representation of a C∗-dynamical system (A, α) which admits a
complete transfer operator L : A → A. Then (π, U,H) is a covariant representation if and only if

π(L(a)) = U∗π(a)U, a ∈ A. (3.4)

Proof. We recall, cf. [10, Proposition 1.5], that L(1) is the unit in (kerα)⊥. Hence if (π, U,H) is
satisfies (3.4), then U∗U = π(L(1)) is the unit in π(kerα⊥) and (π, U,H) is the covariant represen-
tation of (A, α) by Statement 2. Conversely, if (π, U,H) is a covariant representation of (A, α), then
U∗U = π(L(1)) ∈ π(Z(A)), again by Statement 2, and using (3.2) for a ∈ A we get

U∗π(a)U = U∗(UU∗π(a)UU∗)U = U∗π(α(1)aα(1))U = U∗π(α(L(a)))U

= U∗Uπ(L(a))U∗U = π(L(1))π(L(a)) = π(L(a)),

which finishes the proof.
We can always reduce investigation of J-covariant representations to covariant representations

(without prefix J) with the help of the following construction, cf. [11, 6.1], [13, 2.1.1].

Definition 2. Let (A, α) be a C∗-dynamical system and let J be an ideal in (kerα)⊥. We treat A as
a C∗-subalgebra of

AJ =
(
A/ kerα

)
⊕
(
A/J

)
using the embedding A 3 a 7−→

(
a + kerα

)
⊕
(
a + J

)
∈ AJ . We define an extension of α up to AJ ,

which we will still denote by α, by the formula

AJ 3 (a+ kerα)⊕ (b+ J) −→ (α(a) + kerα)⊕ (α(a) + J) ∈ AJ .

We call (AJ , α) a C∗-dynamical system obtained from (A, α) by J-unitization of kernel.

Remark. The kernel of the endomorphism α : AJ → AJ has the unit given by (0 + kerα)⊕ (1 + J),
and the algebras AJ and A coincide if and only if kerα is unital and J = (kerα)⊥. This to some extent
explains the terminology, cf. [11, Remark 6.1], [13, Remark 2.3]. In the commutative case passing from
(A, α) to (AJ , α) corresponds to compactification of the complement of the image of a partial mapping
described in [13, Proposition 2.4].

Statement 4. Let (AJ , α) be a C∗-dynamical system obtained by a J-unitization of the kernel of
α : A → A. There is a one-to-one correspondence between J-covariant representations (π, U,H) of
(A, α) and covariant representations (πJ , U,H) of (AJ , α) established by the equality

πJ
(
(a+ kerα)⊕ (b+ J)

)
= U∗Uπ(a) + (1− U∗U)π(b). (3.5)

In particular, for every J-covariant representation (π, U,H) of (A, α) the algebra AJ is isomorphic
to C∗

(
U∗U, π(A)

)
.

Proof. See [11, Proposition 6.2] or [13, Proposition 2.2].

4. MAIN CONSTRUCTION

For convenience, until Definition 4, we assume that the kernel of α : A → A is unital and let q
denote the unit in kerα (in general situation we will pass through the system (AJ , α) described in
Definition 2). We put

An := αn(1)Aαn(1), n ∈ N,
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and define algebras Bn as direct sums of the form

Bn := qA0 ⊕ qA1 ⊕ ...⊕ qAn−1 ⊕An, n ∈ N. (4.1)

In particular, B0 = A0 = A. For each n ∈ N we let αn : Bn → Bn+1 to be a homomorphism
schematically presented by the diagram

Bn
αn

��

= qA0

id

��

⊕ ... ⊕ qAn−1

id

��

⊕ An
q

��

α

""
Bn+1 = qA0 ⊕ ... ⊕ qAn−1 ⊕ qAn ⊕ An+1

and formally given by the formula

αn(a0 ⊕ ...⊕ an−1 ⊕ an) = a0 ⊕ ...⊕ an−1 ⊕ qan ⊕ α(an),

where ak ∈ qAk, k = 0, ..., n − 1, and an ∈ An. Let us note that, since an = qan + (1 − q)an and
α : (1− q)A → α(A) is an isomorphism, homomorphism αn is injective. We define B := lim−−→{Bn, αn}
to be the direct limit of the direct sequence

B0
α0−→ B1

α1−→ B2
α2−→ ... (4.2)

and denote by φn : Bn → B, n ∈ N, the natural embeddings (φn are injective since the bonding
morphisms αn are). Thus we have

φ0(A) = φ0(B0) ⊂ φ1(B1) ⊂ ... ⊂ φn(Bn) ⊂ ... and B =
⋃
n∈N

φn(Bn).

We will identify the algebra A with the subalgebra φ0(A) ⊂ B and under this identification we extend
α onto the algebra B. To this end, we consider two sequences (an inverse one and a direct one)

B0
s1←− B1

s2←− B2
s3←− ... , (4.3)

B0
s∗,0−→ B1

s∗,1−→ B2
s∗,2−→ ... , (4.4)

where sn is a ”left-shift” and s∗,n is a ”right-shift”:

sn(a0 ⊕ a1 ⊕ ...⊕ an) = a1 ⊕ a2 ⊕ ...⊕ an

s∗,n(a0 ⊕ ...⊕ an−1 ⊕ an) = 0⊕
(
α(1)a0 α(1)

)
⊕ ...⊕

(
αn+1(1)anα

n+1(1)
)
,

ak ∈ qAk, k = 0, ..., n − 1, an ∈ An. Since αn(1), n ∈ N, form a decreasing sequence of orthogonal
projections, mappings sn and s∗,n are well defined. Moreover the operators sn are homomorphisms,
whereas operators s∗,n in general fail to be multiplicative.

Statement 5. Sequence (4.3) induces an endomorphism α : B → B extending the endomorphism
α : A → A, whereas sequence (4.4) induces an operator L : B → B which is a complete transfer
operator for the extended C∗-dynamical system (B, α).

The word “induces” means here that α and L are given on the dense ∗-subalgebra
⋃
n∈N φn(An) of

B by the formulae

α(a) = φn−1(sn(φ−1n (a))), L(a) = φn+1(s∗,n(φ−1n (a))), (4.5)

where a ∈ φn(Bn), n > 0.
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Proof. Direct computations show that the following diagrams

B0
α0 // B1

α1 // B2
α2 // ...

αn−1 // Bn
αn // ...

B0
α0 // B1

s1

``

α1 // B2
α2 //

s2

``

...

s3

aa

αn−1 // Bn

sn

aa

αn // ...

sn+1

aa

B0
α0 // B1

α1 // B2
α2 // ...

αn−1 // Bn
αn // ...

B0

s∗,0
>>

α0 // B1

s∗,1
>>

α1 // B2
α2 //

s∗,2

==

...

s∗,n−1

==

αn−1 // Bn

s∗,n

==

αn // ...

commute. Hence (4.3) and (4.4) induce certain linear mappings on B (i.e. formulae (4.5) make sense).
The former mapping, which for the sake of proof we denote by α̃, is a homomorphism (since sn is
a homomorphism for all n ∈ N) and the latter one, which we denote by L, is positive (because s∗n
posses that property for all n ∈ N).
We assert that the mapping α̃ induced by (4.3) agrees with α on A which we identify with φ0(A).
Indeed, an element φ0(a), a ∈ A, of the inductive limit B is represented by the sequence (a, qa ⊕
α(a), qa⊕ qα(a)⊕ α2(a), ...) and hence φ−11 (φ0(a)) = qa⊕ α(a). Thus in view of (4.5) we have

α̃(φ0(a)) = φ0(s1(φ−11 (φ0(a)))) = φ0(s1(qa⊕ α(a))) = φ0(α(a)).

Thereby our assertion is true and we are justified to denote by α the mapping α̃ induced by (4.3).
To prove that L is a complete transfer operator for (B, α) it suffices to show (3.1) and (3.2). For

that purpose we take arbitrary elements ã, b̃ ∈
⋃
n∈N φn(Bn) ⊂ B and note that there exist n ∈ N,

such that ã = φn+1(a) and b̃ = φn(b) for a ∈ Bn+1 and b ∈ Bn. Direct computation shows that
s∗,n(sn+1(a)b) = a · s∗,n(b) and thus using formulae (4.5) we have

L(α(ã)̃b) = L(φn(sn+1(a)) b̃) = φn+1(s∗,n(sn+1(a)b))

= φn+1(a · s∗,n(b)) = φn+1(a) · φn+1(s∗,n(b)) = ãL(̃b)

which proves (3.1). Similarly, one checks that sn+1(s∗,n(a)) = sn+1(1)asn+1(1) and then we have

α(L(ã)) = α(φn+1(s∗,n(a)) = φn(sn+1(s∗,n(a))) = φn(sn+1(1)asn+1(1))

= φn(sn+1(1))φn(a)φn(sn+1(1)) = α(1)ãα(1),

which proves (3.2) and finishes the proof.
The systems (A, α) and (B, α) considered above coincide if and only if the range of α : A → A is a

hereditary subalgebra of A. Indeed, the range of the endomorphism α : B → B is always a hereditary
subalgebra of B, as it admits a complete transfer operator. If α(A) = α(1)α(1) is a hereditary subal-
gebra of A, then An = αn(1)Aαn(1) = αn(A), for all n ∈ N. Consequently, the monomomorphisms
αn : Bn → Bn+1 are isomorphisms, and hence (A, α) = (B, α), under our identifications. This justifies
the following

Definition 3. If (A, α) is such that kerα is a complemented ideal, we call the system (B, α) described
in Statement 5 a C∗-dynamical system obtained from (A, α) by hereditation of range.

Theorem 1. Suppose that (B, α) is a C∗-dynamical system obtained from (A, α) by hereditation of the
range. There is a one-to-one correspondence between covariant representations (π, U,H) and (π̃, U,H)
of (A, α) and (B, α) respectively, which is established by the relation

π̃(φn(a0 ⊕ a1...⊕ an)) = π(a0) + U∗π(a1)U + ...+ U∗nπ(an)Un. (4.6)
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Proof. Let (π̃, U,H) be a covariant representation of (B, α). It is straightforward that (π, U,H)
where π = π̃|A is a representation of (A, α). To see that (π, U,H) is a covariant representation, by
Statement 2, it suffices to show that q is the unit not only in the kernel of α : A → A but also in the
kernel of its extension α : B → B. To see the latter let n > 0 and notice that

φ0(q) = φn(q ⊕ 0⊕ 0...⊕ 0).

Thus for a = φn(a0 ⊕ a1 ⊕ ...⊕ an) ∈ φn(Bn) we have

α(a) = φn−1(a1 ⊕ ...⊕ an) = 0 ⇐⇒ a1 = ... = an = 0 ⇐⇒ a = qa.

We fix now a covariant representation (π, U,H) of (A, α) and show that formula (4.6) defines a faithful
representation π̃ of B. To this end, we note that in view of Statement 1 for every n ∈ N, the mapping
π̃n : φn(Bn)→ C∗

(⋃n
k=0 U

∗nπ(A)Un
)

where

π̃n(φn(a0 ⊕ a1...⊕ an)) = π(a0) + U∗π(a1)U + ...+ U∗nπ(an)Un

is an isomorphism. Consequently, to show that π̃ : B → C∗
(⋃

n∈N U
∗nπ(A)Un

)
given by (4.6) is a

well defined isomorphism, it suffices to check that the diagram

Bn
αn //

π̃n◦φn

��

Bn+1

π̃n+1◦φn+1

��
π̃n(φn(Bn))

id // π̃n+1(φn+1(Bn+1))

commutes. Let a = a0 ⊕ a1 ⊕ ...⊕ an ∈ Bn. Since π(1− q) = U∗U we have

U∗nπ(an)Un = U∗nπ(qan + (1− q)an)Un = U∗nπ(qan)Un + U∗n(U∗U)π(an)Un

= U∗nπ(qan)Un + U∗n(U∗U)π(an)(U∗U)Un

= U∗nπ(qan)Un + U∗n+1π(α(an))Un+1

and thus

π̃n(φn(a)) =

n−1∑
k=0

U∗kπ(ak)Uk + U∗nπ(an)Un = π̃n+1(φn+1(αn(a))).

Accordingly, π̃ is a faithful representation of B. Since U∗U ∈ π(A) ⊂ π̃(B), in view of Statement 2, the
only thing we need to prove is that (π̃, U,H) is a representation of (B, α). Let a = φn(a0⊕a1⊕...⊕an) ∈
φn(Bn), n > 0. Using the relations ak ∈ Ak = αk(1)Aαk(1), a0 ∈ qA = kerα and the fact that
{Uk∗Uk}∞k=0 is a decreasing sequence of projections lying in the center of C∗

(⋃
n∈N U

∗nπ(A)Un
)
, cf.

[15, Proposition 3.7], we have

Uπ̃(a)U∗ =

n∑
k=0

UU∗kπ(ak)UkU∗ = π(α(a0)) +

n∑
k=1

UU∗U∗k−1π(ak)Uk−1UU∗

=

n∑
k=1

UU∗(U∗k−1Uk−1)U∗k−1π(ak)Uk−1(U∗k−1Uk−1)UU∗

=

n∑
k=1

(U∗k−1Uk−1)(UU∗)U∗k−1π(ak)Uk−1(UU∗)(U∗k−1Uk−1)

=

n∑
k=1

U∗k−1(UkU∗k)π(ak)(UkU∗k)Uk−1
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=

n∑
k=1

U∗k−1π(αk(1)akα
k(1))Uk−1 =

n−1∑
k=0

U∗kπ(ak+1)Uk

= π̃(φn−1(a1 ⊕ a2 ⊕ ...⊕ an)) = π̃(α(a)).

This finishes the proof.

Putting together constructions from Definitions 2 and 3 we obtain a construction that embraces
the general situation.

Definition 4. Suppose (A, α) is an arbitrary C∗-dynamical system and J is an ideal in A such that
J ∩ kerα = {0}. Let (AJ , α) be the C∗-dynamical system obtained from (A, α) by J-unitization of
kernel and let (B, α) be the system obtained from (AJ , α) by hereditation of range:

A ⊂ AJ ⊂ B.

We call the system (B, α) the natural J-extension of (A, α) to a C∗-dynamical system possessing a
complete transfer operator. If J = (kerα)⊥ we call (B, α) simply the natural extension of (A, α).

Remark. In order to construct (B, α) directly from (A, α, J), without passing through (AJ , α), one
may apply our direct limit construction, almost literally, changing the meaning of q from an element
of A to the quotient map q : A → A/J .

Remark. If kerα is unital, then natural extension of (A, α) coincides with the system obtained by
hereditation of range. Morever, α : B → B is an automorphism if and only if (B, α) is a natural
extension of a unital monomorphism α : A → A (to see it note that α(B) = α(1)Bα(1) and 1− L(1)
is the common unit in both of the kernels of α : AJ → AJ and α : B → B).

Within the notation of Definition 4 and denoting by L the complete transfer operator for α : B → B,
we have

AJ = C∗(A,L(1)) = L(1)A⊕ (1− L(1))A,

B = C∗

( ∞⋃
n=0

Ln(A)

)
= span{Ln(a) : a ∈ A, n ∈ N}.

In view of Statement 4 and Theorem 1, we get the following theorem.

Theorem 2. Let (A, α) be an arbitrary C∗-dynamical system and let (B, α) be its natural J-extension
with the complete transfer operator L. There is a one-to-one correspondence between J-covariant rep-
resentations (π, U,H) of (A, α) and covariant representations (π̃, U,H) of (B, α), which is established
by the relation

π̃(

n∑
k=0

Lk(ak)) =

n∑
k=0

U∗kπ(ak)Uk, ak ∈ A.

In particular,

i) for every J-covariant representation (π, U,H) of (A, α) we have

B ∼= C∗
( ⋃
n∈N

U∗nπ(A)Un
)

= span{U∗nπ(a)Un : a ∈ A, n ∈ N};

ii) the crossed product C∗(A, α; J) of A by α associated to J defined in [11, Definition 1.12] is
naturally isomorphic to the crossed product B oα Z defined in [7, Definition 2.6] (cf. Statement
3).
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