TOPOLOGICAL APERIODICITY FOR PRODUCT SYSTEMS OVER
SEMIGROUPS OF ORE TYPE
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ABSTRACT. We prove a version of uniqueness theorem for Cuntz-Pimsner algebras of
discrete product systems over semigroups of Ore type. To this end, we introduce Doplicher-
Roberts picture of Cuntz-Pimsner algebras, and the semigroup dual to a product system
of 'regular’ C*-correspondences. Under a certain aperiodicity condition on the latter,
we obtain the uniqueness theorem and a simplicity criterion for the algebras in question.
These results generalize the corresponding ones for crossed products by discrete groups,
due to Archbold and Spielberg, and for Exel’s crossed products, due to Exel and Vershik.
They also give interesting conditions for topological higher rank graphs and P-graphs, and
apply to the new Cuntz C*-algebra Oy arising from the "az + b"-semigroup over N.

1. INTRODUCTION

A fundamental problem in every theory dealing with C*-algebras generated by operators
satisfying prescribed relations is the uniqueness of such objects. More specifically, suppose
R is a set of C*-algebraic relations on a set of generators G, and suppose there is a mapping
m: G — B(H) such that {m(g)}g4eg are non-zero bounded operators on a Hilbert space H
which satisfy relations R. We call such 7 faithful representation of (G,R), and we denote
by C*(m) the C*-algebra generated by {m(g)}seg. The pair (G, R) has uniqueness property
if for any two faithful representations 7y, w2 of (G, R) the mapping

m1(g) — m2(9), geg,

extends to the (necessarily unique) isomorphism C*(m1) = C*(m2). Results stating that a
certain class of relations possesses the above property are called uniqueness theorems. For
reasonable pairs (G, R), see for instance [5], there exists a universal C*-algebra C*(G,R)
for the above defined representations of (G, R). Clearly, (G, R) has the uniqueness property
if and only if C*(G,R) exists and for any faithful representation 7 of (G, R) the natural
epimorphism from C*(G, R) onto C*() is actually an isomorphism.

Among the oldest and best studied uniqueness theorems are those related to C*-dynamical
systems. Recall that such a system (A, «, G), consists of a C*-algebra A and a group action
a: G — Aut(A). Uniqueness result in this context applies to the associated crossed product.
Starting at least from the sixties, uniqueness theorems for crossed products began to appear
in connection with various problems such as properties of the Connes spectrum, proper
outerness, ideal structure, or spectral analysis of functional-differential operators, see |2,
p. 225, 226|, [4] and [33] for relevant surveys. One of the most popular conditions of this
kind, known today as topological freeness, was probably for the first time explicitly stated
in [36] for Z-actions. O’Donovan proved in [36] that if the set of periodic points for the
dual action & on the spectrum A of A has empty interior then the crossed product A x4 Z
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has intersection property, which is equivalent to the uniqueness property as defined above.
This result was generalized to the case of amenable discrete groups [2] and then to arbitrary
discrete groups [4]. More specifically, by [4, Theorem 1| topological freeness of @ implies
intersection property for A x, G, and this is equivalent to the uniqueness property if and
only if action « is amenable in the sense that the full crossed product A x,G and the reduced
crossed product A X, G are naturally isomorphic. This formulation is very convenient as it
allows to investigate amenability and topological freeness of o independently. Moreover, it
can be used to study the structure of the reduced crossed product A x,, G. We recall that
for a separable A and G = Z, or if A is commutative and G amenable discrete, topological
freeness of & is equivalent to the uniqueness property for A X, G, see [37, Theorem 10.4] and
[4, Theorem 2], respectively. However, it is known that already for Z? actions topological
freeness is only sufficient but not necessary for the uniqueness property, [4, Remark on page
123].

Another line of research leading towards numerous uniqueness theorems was initiated
by the seminal work of Cuntz and Krieger, [13]. In particular, [13, Theorem 2.13] states
that the Cuntz-Krieger relations possess the uniqueness property if the underlying matrix
A satisfies condition (I). Since then, similar results concerning various generalizations of
the algebra Oy are usually called Cuntz-Krieger uniqueness theorems. The diagram in
Figure 1 presents certain such theorems relevant to the present paper; each item contains
the name of universal algebras, the condition which is (at present known to be) equivalent
to uniqueness property for the corresponding defining relations, and the names of authors
who introduced the condition. An arrow from A to B indicates that algebras in question
and the condition in B can be viewed as generalizations of the ones in A. We provide more
details and explanations in Section 6.

Cuntz, Krieger 1980
Cuntz-Krieger algebras O4
/ condition (I) \

Kumjian, Pask, Raeburn 1998 Exel, Vershik 2006
Graph C*-algebras C*(E) Exel crossed product C(X) x4 o N

condition (L) topological freeness of &

Kumjian, Pask 2000 Katsura 2004
higher rank graph C*-algebras C*(A) topological graph C*-algebras C*(E)
aperiodicity condition (A) topological freeness of E

Yeend 2007
topological higher rank graph C*-algebras C*(A)

(topological) aperiodicity condition (A)

FI1GURE 1. Cuntz-Krieger uniqueness theorems

The C*-algebras associated with topological graphs were introduced in [27] as a gener-
alization of both graph C*-algebras and crossed products of commutative C*-algebras by
Z-actions. Similarly, C*-algebras arising from topological higher rank graphs [47] include as
examples crossed products of commutative C*-algebras by Z*-actions. Algebras associated
to topological higher rank graphs provide interesting examples of a general, intensively in-
vestigated but still largely undeveloped theory of algebras associated with product systems
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over semigroups, [8]. One of the main aims of the present article is initialization of a system-
atic and unified approach to the study of uniqueness properties for universal C*-algebras
C*(G,R). To this end, we establish certain general results for Cuntz-Pimsner algebras as-
sociated with product systems over a large class of semigroups, and with coefficients in an
arbitrary (not necessarily commutative) C*-algebra A.

Uniqueness theorems are often studied via the associated gauge action of a dual group
G or a coaction of a relevant group G, e.g. see [26], [8]. In general, existence of such an
additional structure on a universal C*-algebra C*(G,R) can be thought of as arising from
a symmetry in relations R. It establishes a Fell bundle structure {B;}ieq on C*(G,R). If
G = Z and the Fell bundle {By}kez is semisaturated then C*-algebra C*(G,R) is naturally
isomorphic to the crossed product By X, Z, [1], where By is treated as a Hilbert bimodule
over By. The first named author proved in [33] a uniqueness theorem for By X g, Z under the
assumption that a partial homeomorphism of Bo given by Rieffel’s induced representation
functor By —Ind is topologically free. It seems plausible that similar techniques may lead to
a generalization of [33, Theorem 2.2] to Fell bundles over arbitrary discrete groups. However,
in many important cases (e.g. those listed in Figure 1 above) the initial data correspond
to semigroups rather than groups. The analysis in [32] shows that in the context of Cuntz-
Pimsner algebras associated with product systems over semigroups P, passing from the
initial algebra A to the core By is a very nontrivial procedure even in the case A =~ C"
and P = N. That is why we pursue here a more ambitious program focused on semigroups
rather than groups.

Our initial object is a product system of C*-correspondences X over a discrete semigroup
P and with coefficients in an arbitrary C*-algebra A, as defined in [22]. We impose two
critical restrictions on the product systems in question, one on the underlying semigroup
P and one on the structure of fibers X,, p € P. Namely, we assume that P is an Ore
semigroup. (Actually, we consider slightly more general semigroups, satisfying only one-
sided cancellation, see Subsection 2.5 below.) Such semigroups arise naturally in many
contexts, including dilations, [34], interactions, [18], and skew rings, [3]. Among examples
one finds all groups and all commutative cancellative semigroups. About the fibers X,
p € P, we assume that the left action of A is given by an injective homomorphism into the
compacts K(X,). We call such an X regular product system.

In the present paper, we are primarily focused on investigations of the Cuntz-Pimsner
algebra Ox associated to a regular product system X, as in [22]. Under our assumptions
on X and P, Fowler’s definition seems to work particularly well. For instance, when P is a
positive cone in an ordered quasi-lattice group (G, P), then Ox coincides with the Cuntz-
Nica-Pimsner algebra N Ox, [22], [44], [8]. However, we stress that the very definition of the
Cuntz-Nica-Pimsner algebra N'Ox puts severe restrictions on the class of semigroups P one
may consider. In particular, P itself cannot be a group and this excludes many interesting
examples. By contrast, the algebra Ox does not have this drawback and our results reinforce
the perception that (under our assumptions) it is the right object to study.

In Section 3, we analyze the structure of the algebra Ox associated to a regular product
system X. We show (see Theorem 3.8 below) that Ox can be constructed in the spirit of
the Doplicher-Roberts algebras arising in the abstract duality theory for compact groups,
[15]. More precisely, we show that X gives rise to a right tensor C*-precategory Kx over
the semigroup P, cf. [15], [31], and Ox is a completion of a graded =-algebra whose fibers
are direct limits of elements of Kx. In the case P = N (and with no further assumptions on
X)) such an approach was elaborated in [31]. This description immediately implies that the
universal representation of X in Ox is injective, thus answering a question going back to
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Fowler’s original paper [22, Remark 2.10]. It also allows us to view and study Ox as a cross
sectional algebra of a certain Fell bundle {(Ox)y}gec(p) over the enveloping group G(P) of
P. Taking advantage of this picture, we define the reduced Cuntz-Pimsner algebra O of X
as the reduced cross sectional algebra of {(Ox)g}gec(p) [16], [38]. In the case Ox = N Ox,
our O% coincides with the co-universal algebra N'O defined in [8].

In Section 4, we present a novel construction of a semigroup X dual to a regular product
system X. Elements of X are multivalued maps on the spectrum of the coefficient algebra A.
When P = ( is a group, these maps are honest homeomorphisms arising through Rieffel’s
induction, cf. [33]. The semigroup X is particularly well suited for the study of uniqueness
property and related questions.

In Section 5, we formulate a topological aperiodicity condition in terms of the semigroup
X. This is the key ingredient entering our uniqueness theorem, see Theorem 5.6 below. We
prove that if X is topologically aperiodic, then for any faithful Cuntz-Pimsner representation
1 of X there exists a conditional expectation from the C*-algebra generated by 1(X) onto
its core C*-subalgebra. Such conditional expectations are main tools in analysis of repre-
sentations and ideal structure of C*-algebras under consideration. In particular, they are of
critical importance in various gauge-invariant uniqueness theorems, see, for instance, [26],
[8], [39, Chapter 3]. When Ox = O, our uniqueness theorem states that a representation
of Ox is faithful if and only if it is faithful on the algebra of coefficients A. As a corollary
to Theorem 5.6, we obtain the following simplicity criterion. If X is topologically aperiodic
then O is simple if and only if X is minimal, see Theorem 5.10 below.

Applications and examples of our main results are presented in Section 6. Logical relation-
ships between the topological aperiodicity of X and other aperiodicity conditions mentioned
above, when applied to particular examples, are presented schematically on Figure 2. More
specifically, in Subsection 6.1 we consider product systems X whose fibers are Hilbert bi-
modules. We show that under this assumption the semigroup X = {)A(p}pe p consists of
partial homeomorphisms and generates a partial action of G(P) on /T, see Proposition 6.4
below. In this setting, topological freeness implies topological aperiodicity. As a bonus, we
obtain uniqueness theorems and simplicity criteria for cross sectional algebras of saturated
Fell bundles (Corollary 6.5) and for twisted crossed products by semigroups of injective
endomorphisms with hereditary ranges (Proposition 6.9).

topological freeness
for groups of automorphisms

ﬂ

simplicity of - topological aperiodicity topological freeness
Cuntz’s Oy for product systems for covering maps

M

aperiodicity condition
for topological higher rank graphs

FiGURE 2. Relationship between aperiodicity conditions

Another motivation for our work comes from theory of graph algebras and their general-
izations. Any topological graph E gives rise to a product system X over the semigroup of
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natural numbers, [27]. In this context, topological aperiodicity of X turns out to be strictly
stronger than topological freeness of F, but these notions coincide when the range map of
E is injective. For example, this latter condition holds for topological graphs arising from
Exel’s crossed products by covering maps, [20], [6]. Our results give necessary and sufficient
conditions for uniqueness and simplicity of such crossed products, see Example 6.13 below.
In Subsection 6.4, we look at topological higher rank graphs, [47], and their corresponding
product systems over P = N [8]. In fact, we consider certain topological P-graphs where
P is an arbitrary semigroup of Ore type and thus we obtain completely new uniqueness and
simplicity conditions for the associated C*-algebras (discrete P-graphs where (G, P) is a
quasi-lattice ordered group were considered in [40], [7]). As a final example we show that
our results yield a quick and elegant way to see simplicity of the Cuntz algebra O, [12],
which has a nice representation as Ox where X is a natural product system as described in
[24], see subsection 6.5.

Finally, we would like to point out two additional applications of our general structural
result for Ox, Theorem 3.8. Firstly, we use it to reveal group grading and establish non-
degeneracy of the twisted crossed product by a semigroup action of injective endomorphisms,
see Proposition 6.6 below. Secondly, we give a natural definition of the C*-algebra C*(A, d)
and the reduced C*-algebra C(A,d) associated to a product system of topological graphs
over P, [23], see Subsection 6.4. These constructions generalize C*-algebras associated to
topological higher rank graphs and discrete P-graphs [7]. Significantly, the Cuntz algebra
Oy can be modeled as a C*-algebra C*(A,d) associated to a topological P-graph (A,d)
where P = N*, see Remark 6.19 below.

1.1. Acknowledgements. The first named author was partially supported by the NCN
Grant number DEC-2011/01/B/ST1/03838. The second named author was supported by
the FNU Project Grant ‘Operator algebras, dynamical systems and quantum information
theory’ (2013-2015). This research was supported by a Marie Curie Intra European Fellow-
ship within the 7th European Community Framework Programme; project ‘OperaDynaDual’
(2014-2016).

2. PRELIMINARIES

This section contains the necessary preliminaries. In addition to more standard material,
we discuss multivalued maps in Subsection 2.1 and semigroups of Ore type in Subsection
2.5.

2.1. Multivalued maps. We follow standard conventions, cf. for instance [42, Chapter 5|,
apart from notion of continuity which will not play any important role in the sequel. Let
M and N be sets and 2V be the family of all subsets of N. A multivalued mapping from
M to N is by definition a mapping from M to 2. We denote such a multivalued mapping
fby f: M — N. Also, we identify the usual (single-valued) mappings with multivalued
mappings taking values in singletons. We denote

D(f):={xeM: f(x) # &}, f(M):={ye N:ye f(x) for some z € M} = U f(z)
zeM

the domain and the image of f respectively. We put f(A) := (J,c4 f(2) for a subset A of

M, and define preimage of B € N to be the set

fYUB):={zeM: f(zx)nB# &}
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This goes perfectly well with the natural definition of the multivalued inverse f~! of f,
where

yef @) £ e f).
For two multivalued mappings f,g : M — N we write f < g whenever f(z) < g(x) for all
x € M. Composition of two multivalued maps f: M — N and g : N — L is the multivalued
map go f: M — L given by
(go Nx):= ] 9w
yef(x)
One checks that the obvious rule (f og)™' = g~! o f~! holds. However note that

(1) (fof M@= J fw
zef(y)

is either empty or it is a subset containing z, possibly larger than {z}. The former happens
when z does not belong to the range of f and the latter otherwise.

If M and N are topological spaces, we say that a multivalued map f : M — N is
continuous if f~1(U) is open for every open subset U of N. In the literature, this is usually
taken as a definition of lower semi-continuity. But since we will not make use of upper
semi-continuity we do not make a distinction.

2.2. Hilbert modules, C*-correspondences and induced representations. Through-
out this section, A, B and D are C*-algebras. We adhere to the convention that 5(A, B) =
span{f(a,b) € D | a € A,b € B} for maps 8: A x B — D such as inner products, mul-
tiplications or representations. By homomorphism, epimorphism, etc. we always mean an
involution preserving map. All ideals in C*-algebras are assumed to be closed and two-sided.

We adopt the standard notations and definitions of objects related to Hilbert modules, cf.
for instance [41]. A right Hilbert B-module is a Banach space X which is a right B-module
equipped with an B-valued inner product (-,-)p : X x X — B. If X, Y are right Hilbert
B-modules then £(X,Y") stands for the space of adjointable operators from X into Y. Also,
the space of "compact" operators from X to Y is defined as

K(X,Y)=span{0,,:z€ X,ye Y} < L(X,Y),

where
@y,x(z) = y<ZL', Z>Ba z€ X.
In particular, £(X) := (X, X) is an ideal in the C*-algebra £(X) := L(X, X).

A C*-correspondence from A to B is a right Hilbert B-module X equipped with a ho-
momorphism ¢x : A — L£(X). We refer to ¢x as to the left action of A on X and write
a-x = ¢x(a)r, fora € A, x € X. If A = B then we call X a C*-correspondence with
coefficients in A. A Hilbert A-B-bimodule is a C*-correspondence X from A to B equipped
with a left A-valued inner product 4{-,-): X x X — A such that

$<yaz>B =A<Z',y>2, x,y,zeX.

Equivalently, X is both a left Hilbert A-module and a right Hilbert B-module satisfying the
above condition. If, in addition, 4(X, X) = A and (X, X)p = B, then X is an imprimitivity
A-B-bimodule. For instance, every C*-algebra A can be considered a C*-correspondence
(actually, an imprimitivity A-A-bimodule), denoted g4 A4, where {a,b)4 = a*b, ala,b) =
ab*, and both left and right action is simply multiplication in A.

We note that there is a one-to-one correspondence between representations 7 : A — B(H)
of A on a Hilbert space H and C*-correspondences X = H from A to C (where left action
is induced by 7). We say that such C*-correspondences associated to the representation 7.
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Furthermore, any right Hilbert A-module can be considered a Hilbert IC(X)-A-bimodule,
where x(x)(%,y) = Oz y-

If X is a right Hilbert A-module and Y is a Hilbert A-C-bimodule, then the internal
tensor product X ®4 Y =span{z ®4 y: z € X,y € Y} (balanced over A) is a right Hilbert
C-module with the right action induced from Y and the C-valued inner product given by

(1 ®a y1,22 ®a Y200 = (Y1, Oy ({1, 22)4)y2)c, forz;e X andy; €Y, i =1,2.

If, in addition, X is a C*-correspondence from B to A, then X ®4 Y is a C*-correspondence
from B to C with the left action implemented by the homomorphism B 3 a — ¢x(a)®aly €
L(X ®Y), where 1y is the unit in £(Y"). In the sequel, in order not to overload notation,
we will often write simply X ® Y and z ® y for tensor products, when A is understood.

In the above scheme, a particularly important special case occurs when Y is a C*-
correspondence from A to C associated to a representation 7 : A — B(H). Then for
any C*-correspondence X from B to A the C*-correspondence X ®4 Y is associated to a
certain representation of B which we denote by X -Ind(7) and call representation induced
from w by X. More precisely, let X ®, H = span X ® H be a Hilbert space equipped with
the inner product

(21 ®r h1, 22 ®r hopc = (ha, m((x1, 22)4) h2)C
Then X -Ind(w) is a representation of B on X ®, H such that

(2) X -Ind()(b)(z ®, h) = (bz) @z h,  be B.

In particular, if X is an imprimitivity B-A-bimodule, then by the celebrated Rieffel’s result,
cf. e.g. |41, Theorem 3.29, Corollaries 3.32 and 3.33|, the induced representation functor
X -Ind factors through to the homeomorphism [X -Ind] : A — B between the spectra of A
and B. The inverse of this homeomorphism is given by induction with respect to a Hilbert
module dual to X. Here, a dual to a right Hilbert A-module X means a left Hilbert A-
module X for which there exists an antiunitary b : X — X. A natural model for X is
K(X, 4A4) where b(2)y = (z,y)4. In particular, if X is a Hilbert A-B-bimodule then X is
a Hilbert B-A-bimodule.

2.3. Product systems, their representations and Cuntz-Pimsner algebras. Let A
be a C*-algebra and P a discrete semigroup with identity e. A product system over P with
coefficients in A is a semigroup X = | | _p X,, equipped with a semigroup homomorphism
d: X — P such that

(P1) X, = d~*(p) is a C*-correspondence with coefficients in A for each p € P.

(P2) X, is the standard bimodule 4A4.

(P3) The multiplication on X extends to isomorphisms X, ®4 X, = X,, for p,q € P\{e}
and the right and left actions of X, = A on each X,,.

For each p € P, we denote by (:,-), the A-valued inner product on X, and by ¢, the
homomorphism from A into £(X,) which implements the left action of A on X,. Given
p,q € P with p % e, there is a homomorphism (h?: £(X,) — L£(X,,) characterised by

ipe P

(3) BUT)(ry) = (Tx)y, where x € Xp, ye Xy and T' € L(X)).
We recall that the map
(4) Xpazx -t e K(A X)) where t,(a) = za,

yields a C*-correspondence isomorphism X, =~ K(A, X,). Here (A, X,,) is a C*-correspondence
with A-valued inner product (T, S)4 = T*S and point-wise actions. Thus we may define
£ K(Xe) — L(X,) simply by letting (2(t,) = ¢p(a) for pe P, a € A, [44, §2.2].
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A map ¢ from X to a C*-algebra B is a Toeplitz representation of X in B if the following
conditions hold:

(T1) for each p € P\{e}, ¥p := ¢|x, is linear, and 1. is a homomorphism,
(T2) wp(w)wq(y) = wpq(xy> for x e Xp7 ye an p,q€ P,
(T3) Up(2)*Yp(y) = ve((z,y)p) for z,y € X),.

It is well known that, for each p € P there exists a *-homomorphism ¢®) : K(Xp,) — B such

that w(p)(@gcvy) = Yp()p(y)*, for z,y € X,. The representation ¢ is called Cuntz-Pimsner
covariant if

(CP) P (¢,(a)) = 1e(a) for all a e A and p e P.

As introduced by Fowler [22], the Cuntz-Pimsner algebra Ox of a product system X
is a universal C*-algebra for the Cuntz-Pimsner covariant representations. We denote by
jx the universal representation of X in Ox. Hence for any Cuntz-Pimsner representation
¢ : X — B there is a unique epimorphism I, : Ox — C*(¢(X)) such that jx(z) = ¥(x)
for all z € X. We call IL,; ‘the integrated representation’.

It is well known and not hard to see that a necessary condition for jx to be injective
(and hence for Ox to be nondegenerate) is that all of the homomorphisms ¢,, p € P, are
injective. It is known that this condition is also sufficient [44, Corollary 5.2] when P is a
directed positive cone in a quasi-lattice ordered group (G, P) and each ¢, acts by compacts.
In this case, Ox coincides with the so-called Cuntz-Nica-Pimsner algebra N'Ox introduced
in [44]. We recall that a partially ordered group (G, P), consisting of a group G and its
subsemigroup P < G such that P n P~! = {e}, is a quasi-lattice ordered group if, under the
partial order ¢ < h «—= g~ 'h € P, any two elements p, ¢ in G with a common upper bound
in P have a least common upper bound p v ¢ in P, [35] and [11, Lemma 7|. The semigroup
P is directed if each pair of elements in P has an upper bound:

(Vp,qe P) (Is€ P) p,q < s.

2.4. Co-actions, Fell bundles and their C*-algebras. Let G be a discrete group. The
shortest definition of a Fell bundle (also called C*-algebraic bundle) over G is that it is a
collection B = {Bg}gec of closed subspaces of a C*-algebra B such that By = Bg-1 and
ByBj, € By, for all g,h € G. Then the direct sum @geG By is a *-algebra. In general, there
are many different C*-norms on @ .- By. However, it is well known that there always

geG
exists a maximal such norm and it satisfies, cf. [38, Lemma 1.3] or [16], the inequality
(5) lacl <[ )] agl, for all Y ay e P By, ag€ By, g G.
geG geG geG

The completion of @geG By in this maximal C*-norm is called cross sectional algebra of B
and it is denoted C*(B). Moreover, it follows from [16, Theorem 3.3] that there is also a
minimal C*-norm on P By satisfying (5) and a completion of (. By in this minimal
C*-norm is naturally isomorphic to the reduced cross sectional algebra C(B), as introduced
in {16, Definition 2.3] or |38, Definition 3.5]. Both algebras C*(B) and C}(B) are equipped
with natural coactions of G.

We recall (see, for example, [38]) that a coaction of a discrete group G on a C*-algebra B
is an injective and nondegenerate homomorphism §: B — BRC*(G) satisfying the coaction
identity (§d ® ido# () 00 = (idp ® dg) 0 §, where §g: C*(G) — C*(G) ® C*(G) is given by
da(9) = ic(9) ®ig(g) and ig : G — M(C*(G)) is the universal representation of G. The
spectral subspaces Bg :={aeB|da)=a®ig(g)}, g € G, form a Fell bundle B = {Bg}geg

and yield a G-gradation of B such that B =

ge Bg- Moreover, the norm on ®gEG B,
inherited from B satisfies inequality (5).
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2.5. Semigroups of Ore type. A (left-reversible) Ore semigroup is a cancellative semi-
group P which is left reversible, that is sP ntP # (J, for all s,t € P. Usually one considers
right-reversible Ore semigroups but the left version is more appealing for our purposes. It
is well known that a semigroup P is Ore precisely when it can be embedded in a group G in
such a way that G = PP~!, cf. [10, 34, 3|. For further reference, we include an elementary
proof of a slightly more general statement.

We let P be a left reversible and left cancellative semigroup with identity e. We call such
a P semigroup of Ore type (it is Ore if and only if it is right cancellative as well). The
semigroup structure induces a left-invariant preorder on P defined as:
(6) pgqurzq for some r € P.
If (G, P) is ordered group the (pre)order on P coincides with the one inherited from (G, P).
In terms of preorder (6), left reversibility of P simply means that P is directed.

If p, q € P then left cancellativity implies that relation pr = ¢ determines r € P uniquely.
Thus, we introduce the notation

plg:=r whenever pr=yq.

The enveloping group or a group of fractions of P is the universal group with the set of
generators equal to P and relations xy = 2z, whenever such identity holds in P. To construct
the group of fractions explicitly, we first introduce a relation ~ on P x P as:

def
(7) (p1,p2) ~ (q1,92) < p1p = q1q, P2p = q2q for some p,q € P.

Lemma 2.1. Relation (7) is an equivalence relation on P x P.

Proof. Reflexivity and symmetry are obvious. To show transitivity, assume that in addition
to (7) we also have (q1,q2) ~ (r1,7r2), where g18 = 17, gas = ror for some s,r € P. Then
for any t > ¢, s we have

pip(g ) = qiq(q™'t) = qit = qus(s™1t) = rir(s ).
Similarly, one shows that pop(q—1t) = r1r(s~'t). Hence (p1,p2) ~ (r1,72). O
We use square brackets to denote the equivalence classes of relation (7):

[p1,p2] := {(q1,42) € P x P : (p1,p2) ~ (q1,42)},

and denote the quotient set by G(P) := P x P/ ~. We define a product on G(P) by the
formula

(8) [p1,p2] © [q1, 2] := [p1(py 's), ga(q; 's)] for some s > pa, qi.
This definition is correct due to left cancellativity of P.

Proposition 2.2 (Ore’s Theorem). For the left cancellative and directed semigroup P the
quotient set G(P) with the product (8) is a group such that G(P) = 1(P)u(P)~!, where

P>p+[p,e] e G(P)

18 a semigroup homomorphism. This homomorphism is injective if and only if P is right
cancellalive.

Proof. Clearly, [e,e] is a neutral element for product o and [g,p] is the inverse of [p,q].
To show associativity of o, let p;,q;,m; € P, i = 1,2, and choose any s > p2,q1 and ¢ >
qz(qfls),rl. Then

t = qg(ql_ls)z and s = poy for some y,z€ P.
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Thus we have
([p1,p2] © [a1, q2]) © [r1,72] = [P1(p3 '), q2(ay 's)] © [r1,72]
= [z ") (') 7't) oo 1)

= [p1(p3's)2), r2(r7 1)
On the other hand, putting v := ¢ and
wi=qi(gy 'w) = q1(g5 ') = 1(q5 " qa(qy '9))z = qu(qy 's)z = 52 = poy2
we get u = go,71 and w = ql(q2 u), p2. Consequently,
[p1,p2] © ([q1,q2] © [r1.72]) = [p1.p2] 0 [q1(g5 '), ra(ry 'w)]
_ _ _ -1

[p (p2 lw)a 7‘2(7”1 1“) (Q2(Q1 1“)) w]

= [p1(py's)z, r2(ry 1)),
which proves associativity of o. As [p,e] o [q,e] = [pg, €], because g = ¢, e, we see that ¢ is

a semigroup homomorphism. Moreover, [p,e] = [q, e] if and only if pt = ¢t for some t € P,
and therefore ¢ is injective if and only if P is right cancellative. O

Remark 2.3. It follows from the above that the relation p ~g ¢ <= pr = qr, for some
r € P, is a semigroup congruence on P and the quotient semigroup P/ ~pg is an Ore
semigroup whose enveloping group is naturally isomorphic to G(P).

3. REGULAR PRODUCT SYSTEMS OF C*-CORRESPONDENCES AND THEIR C*-ALGEBRAS

In this section, we first introduce and discuss certain product systems of C*-correspondences
satisfying additional regularity conditions, and then construct their associated Cuntz-Pimsner
algebras and their reduced versions in the spirit of the Doplicher-Roberts algebras [15]. Our
construction involves an object that may be viewed as a right tensor C*-precategory over
P, see [31]. Regular product systems introduced in this section and their C*-algebras will
play a central role in the remainder of this article.

3.1. Regular product systems and their right tensor C*-precategories.

Definition 3.1. Let X be a C*-correspondence with coefficients in A. We say X is regular
if its left action is injective and via compact operators, that is

(9) ker ¢ = {0} and »(A) € K(X).

We say that a product system X :=| |
p € P, is a regular C*-correspondence.

,ep Xp Over a semigroup P is reqular if each fiber X,

The notions of regularity and tensor product are compatible in the sense that the tensor
product of two regular C*-correspondences is automatically regular, see Proposition 3.3
below.

Before proceeding further we need a technical Lemma 3.2 whose assertion is probably well
known to experts, but we include a proof for the sake of completeness.

Lemma 3.2. Let Y be a reqular C*-correspondence with coefficients in A and let X, Z be
right Hilbert A-modules.

i) For each x € X, the mapping
Yoy 52QyeXQY
is compact, that is T, € K(Y, X ®Y). Furthermore, we have |T,| = |z|.
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ii) For each S € K(X,Z), we have S®1ly e K(X®Y,Z®Y) and the mapping
(10) KX, Z2)25— S®1ly e K(XRY,ZQY)
is isometric. It is surjective whenever ¢y : A — K(Y) is.

Proof. Ad (i). Note that T, € L(Y, X ®Y) and T, (2o ® yo) = {x, x0)ay0. Let x = zpa for
some g € X and a € A. Then ¢y (a) = lim, 0 D, Oy ur for some 7}, pi' € Y. Thus

Tp = Toydy (@) = lim D Ty = Hm ) Ougnp iy € KV, X @Y).
7 %

As ¢y is isometric, ¢y ((x,z)4) = S*S for some S € L(Y') with |S| = |z|, and hence

ITe)? = sup [y, ¢y (Cx,zpa)ypal = sup Sy, Syyal = [S?] = ||
yeY,|y|=1 yeY, |y =1

Ad (ii). Let z € X, z € Z and consider T, e K(Y, X ®Y) and T, e (Y, Z®Y) as in item
i). Since

0.,y =T.T; e K(X®Y,ZRY),
we have K(X,Z2)®1ly € K(X®Y,Z®Y). To show that mapping (10) is isometric, we
first consider the case Z = X. Then (10) is a homomorphism of C*-algebras and therefore
it suffices to show it is injective. To this end, let S € K(X) be non-zero. Take x € X such
that Sz # 0 and y € Y such that ¢y ((Sz,Sz)4)y # 0. Then

<(S ® 1Y)aj ®vy, Sz ® ¢Y(<S$7 S.I‘>A)y> = <¢Y (<Sl’, Sx>,4)y, ¢Y(<S$7 Saj>A)y>A 7 07
which implies S ® 1y # 0. Consequently, |S ® 1y || = |S|. Now getting back to the general
case (when Z is arbitrary), for S € (X, Z) we have

[S®1y[* = |S*S®1y| = [S*S] = |S]*.

If the homomorphism ¢y : A — K(Y) is surjective, then it is an isomorphism and simple
computations show that for x € X, y1,42 € Y and z € Z we have

O:0y1,20y2 = @zqs;l(eyl,w)@ ® ly.
This implies that mapping (10) is surjective. ([l
Proposition 3.3. Tensor product of regular C*-correspondences is a reqular C*-correspondence.

Proof. If X and Y are C*-correspondences over A then the left action of A on X ® Y is
dxey = ¢x ® ly. Hence if X and Y are regular, then ¢xgy is injective and acts by
compacts, by Lemma 3.2 part (ii). O

Now, let X be a regular product system over P. The family
Kx = {K(Xg, Xp)}p.geP

forms in a natural manner a C*-precategory, [31, Definition 2.2]. We will describe a right
tensoring structure on Ky by introducing a family of mappings b9 = K(X,, X,) —
K(Xgr, Xpr), p,q,7 € P, cf. [31, Example 3.2|, which extends the standard family of diag-
onal homomorphisms " defined in Subsection 2.3 (when restricted to compact operators).
If ¢ # e we put

BT (zy) == (Tx)y,  where x € Xy, y€ X, and T € K(Xy, Xp).

Note that under the canonical isomorphism X,, =~ X, ®4 X, operator 5" (T') corresponds
to T®1x,. Hence by part (ii) of Lemma 3.2, th ¢ (T) € K(Xgr, Xpr) and thg?" is isometric.

Similarly, in the case ¢ = e, using (4), the formula

A (te)(y) =2y,  where y € X, and t, € K(Xe, X)),z € X,
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yields a well defined map. By Lemma 3.2 part (i), this is an isometry from (X, X,) into
K(X,, X,). Note that op /" = b

Definition 3.4. The C*-precategory Kx := {K(Xg, Xp)}pqep equipped with the family of
maps {th.e" }pqrep defined above is called a right tensor C*-precategory associated to the

regular product system X.

Remark 3.5. Kx is a C*-precategory in the sense of [31, Definition 2.2] whose objects
are elements of P. One readily sees that the isometric linear maps 3" : K(X,, X)) —
K(Xgr, Xpr), p,q, 7 € P, satisfy

(1) ) = T, ) (S) = g (TS),
(12) T (D) = (D),

for all T e K(Xq, X)), S € K(Xs, Xy), p,q,7,5s € P. Thus, if we adopt the notation

T®1, := Lgﬁlqr(T% T e K(Xq, Xp), p,g€ P,

then (11) means that ®1, : Kx — Kx is a C*-precategory monomorphism sending p
to pr, see [31, Definition 2.8], and (12) states that ®1, o ®1; = ®1,5, that is {®1,},ep
is a semigroup action on Kx. In particular, the pair (Kx,{®1,},ep), which is another
presentation of (Kx,{thq" }pqrep), is a (strict) right tensor C*-category (cf. e.g., [15])
when each of the algebra IC(X)), p € P, is unital.

The following lemma could be considered a counterpart of [31, Proposition 3.14].

Lemma 3.6. Let v be a representation of a reqular product system X over a semigroup P in
a C*-algebra B. For each p,q € P we have a contractive linear map ¢y 4 : K(Xy, Xp) — B
determined by the formula

(13) Upg(Ouy) = Vp(x)tbg(y)* forze Xp, ye Xy

Mappings {1y q}pqep satisfy

(14) Y g(S)gr(T) = ¥pr(ST) for § € K(Xy, Xp), T € K(X;, Xy), p,q;7 € P,
and are oll isometric if ¢ is injective. If 1 is Cuntz-Pimsner covariant, then

(15) VYp.g(S) = Yprgr(1577(S)) for all p,q,r € P and S € K(Xg4, X)).

Proof. It is not completely trivial but quite well known that (13) defines a linear contraction
which is isometric if ). is injective, see for instance the proof of Lemma 2.2 in [25]. One
readily sees that (14) holds for 'rank one’ operators S = O, 4, T = O, ., and thus it holds
in general. To see (15), suppose that 1 is a Cuntz-Pimsner covariant representation on a
Hilbert space H and C*(¢/(X))H = H. Since ¢ : X — B(H) is a semigroup homomorphism,
the essential spaces

Hy = W’) (K(Xp))H = pp(Xp)H
of algebras () (K(X,)), p € P, form a decreasing family with respect to pre-order (6):
p<q = H,2H,.

In particular, H = H, = ¢.(A)H and actually H = H, for all p € P, since 9.(A) <
P (K(X,)) by Cuntz-Pimsner covariance. Hence the linear span of elements of the form
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Ygr(xoyo)h, xo € Xy, yo € Xy, h € H, is dense in H and (15) follows from the following
computation:

wprqr(b oar ( m,y))%r(fﬂoyo) wpr(LquT( :vy)moyO) :¢pr((@x,y$0)y0)
= Ypr (2Y, 0)y0) = ¥p()q(y)*Yq(z0)tr (yo)

= ¢p,q(ez,y)¢qr (xOyO)'
O

3.2. Doplicher-Roberts picture of a Cuntz-Pimsner algebra and its reduced ver-
sion. Throughout this subsection we assume that X is a regular product system over a
semigroup of Ore type, see Subsection 2.5. For the proof of the main result of this section
we need the following lemma, cf. [22, Proposition 5.10].

Lemma 3.7. Suppose ¥ is a Cuntz-Pimsner covariant representation of a regular product
system X over a semigroup P of Ore type.
i) For allz e X, ye X, and s > p,q we have

wp(‘r)*wq(y) € m{¢(f)1/’(h)* : f € Xp—ls) h € Xq_ls}'
ii) We have the equality

spanf{y(z)y*(y) : @,y € X, [d(z),d(y)] = [p. q]}
= span{y(x)Y*(y) : © € Xppr,y € Xgr, r € P}.

iii) C*(¢(X)) = span{y(z)y(y)* : x,y € X}. Furthermore, there is a dense subspace of
C*(¢(X)) consisting of elements of the form

(16) PD(S) + > ¥pa(Spag)

peF

where g € P and F < P is a finite set such that ¢ »g p for all p € F, ¢f. Remark
2.3.

Proof. Ad (i). Write x = Sz’ with S € K(X,) and 2’ € X, and similarly y = Ty with
T e K(Xy), v € X4 Then using (13), (15) and (11) we get

Up() g (y) = (@) * PPN (S*) D (T )y (y) = p() 1) (15(S*)15(T)) b (o)
Since ¢5,(S*)1,(T) € K(Xs) we may approximate ¢(8)(L;(S*)LZSJ(T)) with finite sums of oper-
ators of the form Ys(f' f)bs(R'h)*, where f' € X, f e X,-1,and b’ € Xy, h € X -1, Hence
p(x)*1)¢(y) can be approximated by finite sums of elements of the form

¢p($,)*¢s(f/f)¢s(h/h)*wq(y/) = wp*15(<‘/1"/7 f/>pf)¢q*15(<y,7 h,>h)*
This proves claim (i).
Ad (ii). Clearly, span{y(z)y*(y) : @,y € X, [d(z),d(y)] = [p,q]} contains Span{e(z)y*(y) :
x € Xpr,y € Xgr, v € P}. To see the converse inclusion, we use the mappings introduced
in Lemma 3.6 and assume that [p/,¢'] = [p,q], that is p'r' = pr and ¢v' = gr for some
r,r" € P. Then by (15) for T e K(Xy, X,y) we have

/ol ) Y

Vo g (T) = Yy g (1 qu,q " (T)) = Yprgr(e qu’q "(T)) e span{y(2)Y* (y) 1 x € Xpr, y € X},

which proves our claim.
Ad (iii). Part (i) implies that C*(¢(X)) is the closure of elements of the form

(17) Z wpz(:v@)qu(yz)*,

=1
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where p;,q; € P, x; € Xy, y; € X, © = 1,...,n. Moreover, taking any go € P that dominates
all g;, i = 1,...,n, and writing y; = y,a; with y} € X,,, a; € A, we get

—1 .
¢Pi ($I)¢QZ (yz)* = wpz' (xz)w(qz qo)(¢q;1q0 (a:))¢qz (yz/')*v L= 17 ey T
Approximating 1/)(‘11'_1‘10) (¢q;1qo (a})) by finite sums of elements of the form Q/qu—lqo (Ui)waflqo (v;)*
we see that ¥, (x;)1g, (ys)* can be approximated by finite sums of elements of the form

Vp; (xi)quflqo (ui)wq;1q0 (Ui)*qu' (yz/)* = wpiqlflqo (xiui)thO (y:vZ)*

Thus we see that the element (17) can be presented in the form

(18) 2 ¥Ypao(Spa)

peF"

where I’/ = {piqi_lq[) :i=1,..,n} € P is a finite set. Let Fy = {p € F' : qo ~r p} and for
each p € Fy choose r, € P such that pr, = qorp. Let r € P be such that r > r,, for all p € Fyp,
and put

q:=qor and F:={pr:pe F'\Fy}.
Then pr = ¢ for all p € Fy, and p =g ¢ for all p € F. By (14) we have 9}, 4,(Sp,q) €
Ypr.gor IK(Xgor, Xpr)) = Yprq(K(Xy, Xpr)) and hence the element (18) can be presented in
the form (16). O

Now, we are ready to prove the main theorem of this section. It gives a direct construction
of the Cuntz-Pimsner algebra Ox of a regular product system X as the full cross-sectional
C*-algebra of a suitable Fell bundle corresponding to the limits of directed systems of the
compact operators arising from X.

Theorem 3.8. Let X be a reqular product system over a semigroup P of Ore type and let
G(P) be the enveloping group of P. For each [p,q] € G(P) we define

By q) 1= Lm K(Xgr, Xpr)

to be the Banach space direct limit of the directed system <{K(er,Xpr)}7«€P, {Lgf«jgﬁ}r,sep)

The family B = {Bi}eq(p) i5 in a natural manner equipped with the structure of a Fell
bundle over G(P) and we have a canonical isomorphism

Ox = C*({By}gec(p))
from the Cuntz-Pimsner algebra Ox onto the full cross-sectional C*-algebra C*({ By} gec(p))-
In particular,
i) the universal representation jx : X — Ox is injective,
ii) Ox has a natural grading {(Ox)g}geq(p) over G(P), such that
(19) (Ox)g = span{jx (z)jx(y)" : x,y € X, [d(z),d(y)] = g}.
iii) for every injective representation v of X, the integrated representation Il of Ox

is isometric on each Banach space (Ox)qy, g € G(P), and thus it restricts to an
isomorphism of the core C*-subalgebra of Ox, namely

(Ox)e = span{jx (x)jx(y)* : x,y € X, d(x) = d(y)}.

Proof. As the direct limit lim K(Xg., X,r) depends only on ’sufficiently large r’, it follows
immediately from (7) that the limit does not depend on the choice of a representative of [p, q]
and thus By, ;) is well defined. Let ¢y, 4 : K(Xg, Xp) — By, 4 denote the natural embedding
of K(Xy, Xp) into By, q- It is isometric because all the connecting maps hrli, r < s, are.
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Using the (inductive) properties of the mappings ¢, , and (right tensoring) properties (11),
(12) of the mappings b/"", one sees that the formula

—1 —1
010208 © P12 (T) = By ) antatsy (s (Sl (D)),
where s = po, q1, S € K(Xp,, Xp,), T € K(X¢,, Xq, ), yields well defined bilinear maps

o B[?hP?] x B[le] - B[m,pz]o[(hm]'

These maps establish an associative multiplication o on {Bi},eq(p), satisfying
la bl < fall - [o].
Hence {Bi}cq(p) becomes a Banach algebraic bundle, cf. e.g. [17, Definition 2.2. parts

(1)-(iv)]. Similarly, formula

@pl,pg(s)* = @p2,p1(5*)7 Se K(Xmem),

defines a '« operation that satisfies axioms [17, Definition 2.2. parts (v)—(xi)|] and hence we
get a Fell bundle structure on {Bg}eq(p) (we omit straightforward but tedious verification
of the details).

Now, we view C* ({Bg}4ec(p)) as a maximal C*-completion of the direct sum @ (p) By-

Using the maps (4), we define mappings

Ui X = | | X, = C*({By}geaip))
peP
by
(20) Xp 32— @pelts), pe P.

Since (4) is an isomorphism of C*-correspondences, it follows that U restricted to each
summand X, is an injective representation of a C*-correpondence. Moreover, for x € X,
y € X, we have tyy, = ib%(t,)t, and thus

V(z)W(y) = (Pp,e(tx) o ‘Pq,e(ty) = ‘qu,e(ig?éq(tm)ty) = (qu,e(txy) = qj(‘ry)
Hence W is a faithful representation of the product system X in C*({Bi}eq(p)). We recall
that 22(t,) = £(a) = ¢p(a) and hence

V(a) = peelta) = ppp(iee(ta)) = ppp(dpla)) = ¥(gpla)),  aeA peP,

that is W is Cuntz-Pimsner covariant. Since W is injective, so is jx and claim (i) holds. Now,
considering the integrated representation Iy : Ox — C*({Bg}geq(p)), for v € Xp, y € X,
we have

(21) H‘l/(]X(x)]X(y)*) = \Ij(aj) o \I](y)* = @p,e(tx) © (Pe,q(tgj) = Sop,q(ta:t;;) = @p,q(em,y)'
It follows that IIy maps
(OX>[p,q] = span{jx(x)jx(y)* ‘T E Xpryy € erv re P}

onto By, . Putting g = [p, q] and using Lemma 3.7 part (iii), we see that (Ox), is given
by (19). We claim that Iy is injective on (Ox),. To see this, let j,, denote the mappings
from Lemma 3.6 associated to the universal representation jx and note that we have

JIps,gs © priar = Jprgr for r <s
by (15). By the universal property of inductive limits, there is a mapping
B[p,q] 3 ¢PT,(]T(T) — jpr,q?" (T) € (OX)[p,q]>
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which is inverse to Ily|j, 4. Accordingly, Iy is an epimorphism injective on each (Ox)g.
Since the spaces By, g € G(P), are linearly independent, so are (Ox)y, g € G(P). Conse-
quently, in view of Lemma 3.7 we have

Ox = @ (Ox)g

geG(P)

and claim (i) follows. In particular, Ily : Dye(p)(Ox)g = Dye(p) By is an isomorphism
and as C*({Bg}gec(p)) is the closure of B e (p) By in a maximal C*-norm we see that Ily
actually yields the desired isomorphism Ox = C*({By}seq(p))-

For the proof of part (iii), notice that we have just showed that (Ox)[,4 is the closure
of the increasing union J,cp jprqr(K(Xgr, Xpr)), where jprgr @ K(Xgr, Xpr) = (Ox)ppoq)
are isometric maps. Similarly, if ¢ is an injective covariant representation of X, then
Iy ((Ox)[p,q) is the closure of the increasing union | . p ¥pr.gr (KK(Xgr, Xpr)), and by Lemma
3.6 mappings Vprqr : K(Xq, Xp) — Iw((Ox)ppq) are isometric. Since Iy © jprgr = Vprgr,
p,q,7 € P, it follows that surjection ITy : (Ox)pp.q = Y((Ox)[pq) is an isometry, since it is
isometric on a dense subset. g

Remark 3.9. Theorem 3.8 has a number of remarkable consequences.

(i) The Cuntz-Pimsner algebra Ox can be constructed in a natural manner as the full cross-
sectional algebra C*(B) of the Fell bundle B = {B;},cq(p)- Thus it is justified to call the
reduced cross-sectional algebra

O% := C(B)
the reduced Cuntz-Pimsner algebra of X. In particular, O% is the C*-algebra C*(j% (X))
generated by an injective Cuntz-Pimnser representation j% : X — O% = CF({Bg}geq(p))
acting according to (20). When P is Ore and (G(P),¢(P)) is a quasi-lattice ordered group
then O% coincides with the co-universal C*-algebra N'O'y introduced and investigated in
18]
(ii) Our construction yields a faithful Cuntz-Pimsner representation of X and thus the
Cuntz-Pimsner algebra Ox does not degenerate (it contains an isomorphic copy of X). This
addresses the problem raised already by Fowler in [22, Remark 2.10|. Until now, this problem
was solved positively in the case P is Ore and (G(P),(P)) is a quasi-lattice ordered group,
in which case Ox coincides with the Cuntz-Nica-Pimsner algebra N'Ox.
(iii) When P is Ore and (G(P),¢(P)) is a quasi-lattice ordered group then part (iii) of
Theorem 3.8 coincides with [8, Theorem 3.8|. In general, this result leads to (or actually
could be considered as a version of) the so-called gauge invariant uniqueness theorem, cf.
Proposition 5.1 below.

4. DUAL OBJECTS

In essence, the dual objects we investigate are relations. However, we would like to think
of them in dynamical terms and therefore we will consider relations as multivalued maps,
see subsection 2.1 for the relevant terminology and conventions.

4.1. Multivalued maps dual to homomorphisms of C*-algebras. Let A be a C*-
algebra. We denote by ~ the unitary equivalence relation between representations of A,
and by [r] the corresponding equivalence class of 7w : A — B(H). Spectrum A = {[n] : 7 €
Irr(A)} consists of the equivalence classes of all irreducible representations of A, equipped
with the Jacobson topology. The relation < of being a subrepresentation factors through ~
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to a relation < on A. Namely, if 7: A — B(Hz) and p: A — B(H,) are representations of
A, then

[7] < [p] < Fisometry U : H — H, s. t. (Vae A) w(a) = U*p(a)U.
Let a : A — B be a homomorphism between two C*-algebras. It is useful to think of the
dual map we aim to define as a factorization of a multivalued map &g : Irr(B) — Irr(A)
given by
(22) ao(mp) ={maelrr(A) : m4 < mpoal.
The set [ap(mp)] := {[7a] € A7y < 7mpoal} does not depend on the choice of a represen-
tative of the class [7p] and thus the following definition make sense.

Definition 4.1. The dual map to a homomorphism « : A — B is a multivalued map
a: B — A given by the formula
[rp)) :={[mal € A: [ra] < [rpoal}
—{[ra] € A: T4 <mpoal.
The range of @ behaves exactly as one would expect. But for non-liminal B the map @,

and in particular its domain, has to be treated with care. Let us explain it with help of the
following proposition and an example.

Proposition 4.2. For every homomorphism o : A — B between two C*-algebras, its image
a(B) = {[ra] € A : kermq D ker o}
is a closed subfet of A. Its domain D(a) is contained in an open subset {[wp] € B :kermp ?
Ba(A)B} of B. Moreover, if B is liminal, then
D(a) = {[rp] € B : kerp 2 Ba(A)B}
and & : B — A is continuous.

Proof. If [m4] € a(B ) then m4 < mp o « for some 7p € Irr(B), and hence ker 4 2 ker a.

Conversely, if [74] € A is such that ker 7 A 2 ker «, then w4 factors through to the irreducible
representation of A/ker a = a(A). Thus the formula 7(a(a)) := wa(a), a € A, yields a well
defined element of Irr(a(A)). Extending 7 to any 7p € Irr(B) one has m4 < 7g oo

Now, let J be an ideal of A. Then J = {[ra] € A : kerr 2 J} is open and we have

[1B] € a—l(f) < 31 cier(a) TA S TBOQ, kermyg D J

= ker(rpoa) 2 J

<= ker7p 2 aJ

<« kermp 2 Ba(J)B.
That is, &~ 1(J) < {rp € B : ker g 2 Ba(J)B} and in particular D(&) = aYA) < {rpe
B :kermp 3 Ba(A)B)}.

If we addltlonally assume that B is liminal, then for 75 € Irr(B) the representation 7o«

decomposes into a direct sum of irreducibles, see for instance |14, §5.4.13]. Namely, there

is a subset K of ap(mp) such that mpoa = @MeK 74 @ 0 (where 0 stands for the zero
representation and is vacuous if 7p o « is nondegenerate). Hence the implication

ker(rpoa) 2 J=3dnae K CIrr(A) s. t. ma <7mpoa, kermg D J
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holds true. This combined with the preceding argument yields &_l(f )={rp € B :kermp ?
Ba(J)B} and the second part of the assertion follows. O

Example 4.3. Let H = L2[0,1] with x the Lebesgue measure. Put B := B(H), A :=
L*[0,1] and let  : A — B be the monomorphism sending a € A to the operator of
multiplication by a. Then 7p = id is irreducible and g o « is faithful but a([rg]) = &.
Accordingly,

D(@) # {[r5] € B : kermp 2 Ba(A)B} =

4.2. Multivalued maps dual to regular C*-correspondences. Let X be a regular C*-
correspondence with coefficients in A. We may treat X as a (X )-(X, X) s-imprimitivity bi-
module and therefore the induced representation functor X -Ind : Irr(<X X)a) — Irr(K(X))

factors through to the homeomorphism [X -Ind] : <X X))y — IC( ), which in turn may be
viewed as a multivalued map [X -Ind] : A K(X) with domain D([X -Ind]) = (X, X) 4.

Definition 4.4. Let X be a regular C*-correspondence over A. We define dual map X
A — Ato X as the following composition of multivalued maps

X =¢o [X -Ind],

where ¢ : IC( ) — — A is dual to the left action ¢ : A — — K(X) of Aon X.
Alternatively, X is a factorization of the map Xo := b0 0 X -Ind : Irr(A) — Irr(A), cf.
(22).

Proposition 4.5. The multwalued map dual toa reqular C*-correspondence X is always
surjective, that is X(A) A. The domain ofX satisfies the following inclusion

(23) D(X) < (X, 6(A)X)a.
Note here that (X, $(A)X>4 is an ideal in A. If, in addition, A is liminal, then X is a
continuous multivalued map and we have the equality in (23); in particular, if X is full
and essential, then X : A — A is a continuous multivalued surjection with the full domain,
D(X) = A.
Proof. As [X -Ind] : A — I/C’(?) is surjective and ker ¢ = {0} we get X (A) = A by Proposi-
tion 4.2. Since [X -Ind] : (X, X)4 — K(X) is a homeomorphism, it follows from Proposition
4.2 that
(24) D(X) < [X -Ind] ™ (K(X)$(A)K (X))
with equality if A is liminal (note that if A is liminal then KC(X) is also liminal being Morita-
Rieffel equivalent to the liminal C*-algebra (X, X)4 < A). Hence it suffices to show that
the sets in the right hand sides of (23) and (24) coincide. However, for any representation
7w of A and any C*-subalgebra B < IC(X) we have

B c ker(X -Ind(7)) «—= 7n((BX,BX)4) =0 < (X,BX)4 < kerm.
Thus the assertion follows from the equality

(X, K(X)P(AL(X) XD 4 = (K(X)X, p(A)K(X) X)a = (X, 9(A) X)a.
O

In view of Proposition 3.3, if X and Y are regular C*-correspondences with coefficients
in A, then the tensoring on the right by the identity 1y in Y yields a homomorphism
®ly : K(X) - K(X®Y). With help of its dual map we are able to analyze the relationship
between the spectra of compact operators on the level of spectrum of A.
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Proposition 4.6. Let X and Y be regular C*-correspondences with coefficients in A. Then
we have

(25) [X-Ind]oY =@y o [(X ®Y)-Ind].

In other words, the diagram of multivalued maps

A\ (X®Y) —IndlC (ﬁY)
A
A\ X -Ind ’C/()?)

18 commutative, and in particular
D([X -Ind] o V) = D(®1y o [(X ®Y)-Ind]) = ¥L((X, X))

Proof. Let mq : A — B(H) be an irreducible representation. If 7 € %(WA), then H is
a closed subspace of Y ®,, H irreducible under the left multiplication by elements of A,
or more precisely, irreducible for (Y -Ind(mwa))(¢y(A)). Since the tensor product of C*-
correspondences is both associative and distributive with respect to direct sums, we may
naturally identify X ®, H, with a closed subspace of X ® Y ®,, H. Since for a € K(X) we
have
(X®Y)-Ind(ma))(a®1y)(z QY ®ry h) = az @Y Qr, b,

we see that the action of (X ®Y)-Ind(ma))(a®1y) on X ®; H, coincides with the action
of (X -Ind(m))(a). In particular, the subspace X ®, Hy is either {0}, when 7 ¢ <ﬁ>A, or
is irreducible for (X ® Y)-Ind(74))(K(X) ® 1ly). Consequently,

(X -Ind) o Yo(m4) € ®lygo (X ®@Y)-Ind(ma).
To show the reverse inclusion, let p € (él\y)o o (X ®Y)-Ind(m4). Then p is an irreducible
subrepresentation of the representation mx(x) : K(X) — B(X®Y ®x, H), where mx(x)(a) =
(X ®Y)-Ind(m))(a ® 1y). We may consider the dual C*-correspondence X (not to be

confused with the dual X to the C*-correspondence X) as an (X, X )4-K(X)-imprimitivity
bimodule. Then using the natural isomorphism

(X ®kx) ®X)®Y @y H=Y @, H,

cf. |41, Proposition 2.28|, we see that X—Ind(ﬂ';c(x)) is equivalent to Y -Ind(74) o ¢y :

A — B(Y ®z, X). Since induction respects direct sums [41, Proposition 2.69], X -Ind(p)
is equivalent to an irreducible subrepresentation m of Y -Ind(74) o ¢y. Then 7 belongs to

both <ﬁ>,4 and %(WA), and we have
p= X-Ind(X -Ind(p)) = X -Ind(r).
Consequently, @1y o (X @ Y)-Ind(r4) < X -Ind o}A/O(WA). O

Corollary 4.7. The composition of duals to C*-correspondences coincides with the dual of
their tensor product:

XoV =XQVY.
Proof. We showed in the proof of Proposition 4.6 that X -Ind o}A/o = @/)1\3/0 0 (X ®Y)-Ind,
and all subspaces of X ® Y ®,, H irreducible for (X ® Y)-Ind(m4)(K(X) ® 1y) are of the
form X @, Hy, where m € Yo(m4) N (X,X),. Since pxgy(4) < K(X) ® ly, the action of
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(X®Y)-Ind(7ma)(pxgy(a)), a € A, coincides on X ®; Hy with X -Ind(7)(¢x(a)). Thus we
have
Xo oYy = (dxoo0X-Ind)o ¥y = dxgyeo (X ®Y)-Ind = X @ Y.
O

4.3. Semigroups dual to regular product systems. Let X be a product system over
P. By Corollary 4.7, the family {X,},ep of dual maps to C*-correspondences X,,, p € P,
forms a semigroup of multivalued maps on A, that is

~ ~

Xe =1d, and )A(p o)A(q = Xypq, p,q€ P.
If A is liminal then these multivalued maps are continuous by Proposition 4.5.
Definition 4.8. We call the semigroup X = {Xp}pep dual to the product system X.

In the remainder of this subsection we prove certain technical facts concerning the inter-
action among Cuntz-Pimsner representations, dual maps and the process of induction.

Lemma 4.9. Let X be a product system over a left cancellative semigroup P. If p,q,s € P
are such that s = p,q, then

R, X = (X Ind oo d o [X,-Ind].

Proof. Applying Proposition 4.6 to Y = X1, X = Xy and Y = X1, X = X, respec-
tively, we get
[X,-Ind]X, 1, = i3[X,-Ind] and  [X,-Ind]X, 1, = i3[X,-Ind].
As [X-Ind] is a homeomorphism, this is equivalent to
X, 1, = [X,-Ind] '3 [X,-Ind]  and X1, = [X,-Ind]'i3[ X, -Ind],
and the assertion follows. O

The following Lemma 4.10 is virtually a special case of [33, Lemma 1.3].

Lemma 4.10. Suppose Y is an imprimitivity Hilbert A-B-bimodule and (wa, 7y, 7R) is
its representation on a Hilbert space H. Thus 74 : A — B(H), np : B — B(H) are
representations and with the map my :' Y — B(H) they satisfy

ma(a)my (y)7B(b) = y (ayb), =y (x)my(y)* = malalz,y)), 7y (z)*7y(y) = 75(z,¥)B),

a € A be B, z,y € Y. Ifrn is an irreducible subrepresentation of g then the re-
striction p(a) = ma(a)|r, (vym, yields an irreducible subrepresentation of ma such that

(] = [Y -Ind(r)].

Proof. Let m < mp be a representation of B on a Hilbert space H; ¢ H. The Hilbert space
my (Y)Hy < H is invariant for elements of 74 (A) and therefore p(a) := 7(a)|xy (v)H,, @ € A
defines a representation of A. Since

| D mv (wahal® = 3 oy (widhaswy (yi)hgy = ) i wa (i yipa) gy = | D vi ®x b,
i1 =1

i,j=1 i,j=1
the mapping my (y)h — y®z h, y € Y, h € Hy, extends by linearity and continuity to a
unitary operator V : my (Y)H, — Y ®x Hy, which intertwines p and Y -Ind(w) because

Vola)my (y)h = Vry(ay)h = (ay @ h) =Y -Ind(7)(a)Vry (y)h.

Accordingly, if 7 is irreducible then p, being unitary equivalent to the irreducible represen-
tation Y -Ind(7), is also irreducible. O
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A counterpart of [33, Lemma 1.3] suitable for our purposes is the following statement.

Lemma 4.11. Suppose i is a Cuntz-Pimsner covariant representation of a reqular product
system X over P on a Hilbert space H. Let p,q € P and let m be an irreducible summand of
D acting on a subspace K of H. Then the restriction

(26) p(T) 1= VPN (@) |y, (xy g xpers T € K(Xp),

yields a representation m, : K(X,) — B(¢p(Xp)e(Xy)*K) which is either zero or irre-
ducible, and such that

[mp] = [(Xp-Ind)((Xq-Ind) ™ ())].

Proof. The dual C*-correspondence )?q to X is an imprimitivity (Xg, Xq)a-K(X,)-bimodule
and (1, zzq, ¥(9), where Jq(b(x)) = 1py(x)*, is its representation. Thus, by Lemma 4.10, the
restriction me(a) := ve(a)ly, (x,)*x, a € A, yields an irreducible subrepresentation 7, : A —
B(1q(Xq)*K) of e such that [m.] = [)Z'q -Ind(7)] = [(Xg-Ind) "1 (m)]. If 7 ((Xp, Xppa) = 0,
then (26) is a zero representation. Otherwise we may apply Lemma 4.10 to 7. and the
representation (™)1, 1) of the imprimitivity IC(X,)-(Xp, Xp)a-bimodule X,. Then
we see that (26) yields an irreducible representation such that [7,] = [X,-Ind(7.)] =
[Xp-Ind((X, -Ind)~(m))]. O

5. A UNIQUENESS THEOREM AND SIMPLICITY CRITERIA FOR CUNTZ-PIMSNER
ALGEBRAS

Throughout this section, we consider a directed, left cancellative semigroup P and a
regular product system X over P with coefficients in an arbitrary C*-algebra A. We recall
from Theorem 3.8 that the Cuntz-Pimsner algebra Ox is graded over the enveloping group
G(P) with fibers

(Ox)g = span{jx (¢)jx (v)" : v,y € X, [d(z),d(y)] = g}, g€ G(P).

Moreover, cf. Remark 3.9, Ox may be viewed as a full cross-sectional algebra C*({(Ox )y} gec(p))
of the Fell bundle {(Ox),}4ec(p), and the reduced Cuntz-Pimsner algebra

Ok = Cy({(Ox)g}gec(p))

is defined as the reduced cross-sectional algebra of {(Ox),} geG(p)- There exists a canonical
epimorphism

(27) A:Ox — Ok.

This epimorphism may not be injective. However, A is always injective whenever group G(P)
is amenable or more generally when the Fell bundle {(OX)Q}geG( py has the approximation
property defined in [16].

We want to clarify what we mean by a uniqueness theorem in this context. By now,
several conditions implying amenability of the Fell bundle {(Ox)¢}geq(p) are known. That
is, conditions which guarantee the identity Ox = O, see e.g. |26], [8], [16]. These conditions
seem to be independent of aperiodicity we want to investigate, and thus we decided not to
assume any of them. Accordingly, we seek an intrinsic condition on the product system X (or
on the dual semigroup X ) which would guarantee that every Cuntz-Pimsner representation
of X injective on the coefficient algebra A generates a C*-algebra lying in between Ox and
O’ . Before proceeding further, we summarize a few know facts useful in the aforementioned
context.
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Proposition 5.1. Suppose that 1 is an injective Cuntz—Pimsner representation of a reqular
product system X. If the epimorphism X\ from (27) is an isomorphism, then the following
conditions are equivalent.
i) The canonical epimorphism 1L, : Ox — C*(¢Y(X)), where ix(x) = Y(x), x € X, is
an isomorphism.
ii) There is a coaction  of G = G(P) on C*(¢(X)) such that S((z)) = Y(z) ®
ig(d(z)), v e X.
iii) There is a conditional expectation Ey from C*(¢¥(X)) onto

Fy = spam{ p(@)(y)* : 2,y € X, d() ~ dy) }
vanishing on elements ¥ (x)y(y)* with d(xz) »~ d(y), cf. Remark 2.3.

Not assuming injectivity of X\, we have implications (i) = (ii) = (iii), and (i) is equivalent
to existence of a unique epimorphism my : C*(¢Y(X)) — O% such that the following diagram

T

(28) Ox —2 C* (X)) ™= 0%

~_ .,

1s commutative.

Proof. Tt suffices to prove the second part of the assertion. Implication (i) = (ii) is obvious
because we know that Ox is equipped with the coaction in the prescribed form. Suppose (ii)
holds. Using the contractive projections onto the spectral subspaces for the coaction S, cf.
[38, Lemma 1.3], and the fact that elements of the form ¢ (x)¥(y)* span a dense subspace
of C*(¢(E)), Lemma 3.7, we get

[C*(w(X))]g = {e e C*(W(X)) : Ble) = e®ic(9)} = sPan{(a)y(y)* : [d(z),d(y)] = g}

In particular, the projection onto [C* (1(X))]5 = Fy is the conditional expectation described
in (iii). If we assume (iii), then {IL;((Ox)g)}geq is a Fell bundle which yields a topological
grading of C*(¢(X)), see [16, Definition 3.4]. Hence by [16, Theorem 3.3] there exists
a desired epimorphism my : C*(¢(X)) — O%. Conversely, if such an epimorphism my :
C*(¢(X)) — O% exists, then composing it with the canonical conditional expectation on
O'% one gets the conditional expectation described in (ii). O

The authors of [8] call a representation ¢: X — B possessing the property described in
part (ii) of Proposition 5.1 gauge-compatible. For our purposes the property given in part
(iii) of Proposition 5.1 is more relevant, and thus we coin the following definition, cf. [16,
Definition 3.4].

Definition 5.2. We say that a representation ¢): X — B of a product system X is topolog-
ically graded if it has the property described in part (iii) of Proposition 5.1.

Thus, to conclude our discussion, by uniqueness theorem for Ox we understand a result
which guarantees that for every injective Cuntz-Pimsner covariant representation v of X
there is a map my making the diagram (28) commutative. By Proposition 5.1, this is
equivalent to ¢ being topologically graded. We now introduce a dynamical condition which
entails such a result.

Definition 5.3. We say that a regular product system X, or the dual semigroup {)?p}pep,

is topologically aperiodic if for each nonempty open set U < ﬁ, each finite set ' < P
and element ¢ € P such that ¢ ~r p for p € F, there exists a [r] € U such that for a
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certain enumeration of elements of F' = {p1,...,p,} and certain elements s1, ..., s, € P with
q<s1<..<s,and p; <s; we have

(29) [7] ¢ qulsi@;}ls_([ﬂ])) for all i=1,..,n.

Remark 5.4. Since (P, <) is a directed preorder, for any F = {p1,...,pp,} € P and ¢ € P
there exists an increasing sequence ¢ < s; < ... < s, such that p; < s; forall i = 1,...,n.
Therefore the essential part of the condition in Definition 5.3 is existence of a [7] satisfying
(29), which a priori depends on the choice of the sequence ¢ < s1 < ... < s, and enumeration
of elements of F.

Proposition 5.5. If condition (29) holds for a certain sequence q < s1 < ... < Sy, then it
also holds for any sequence q < s§ < ... < s}, such that

!
7

pi<s;<s; foralli=1,.. n.

Moreover, we have the following.
i) If (G(P), P) is a quasi-lattice ordered group then in Definition 5.3 one can always
take
sit=p1vq and S =p;VvSsi_1 forali=2..n.

i) Topological aperiodicity of X implies that for any open nonempty set U < A and any
finite set F < P such that p »g e for pe F, there is a [n] € U satisfying

(30) [x]¢ X,([x]) forallpeF.

If (P, <) is linearly ordered then the converse implication also holds.

iii) In the simplest case of a product system {X®"},en arising from a single regular C*-
correspondence X, the topological aperiodicity is equivalent to that for each n > 0
set

F,={[r]e A:meX"([r])}
has empty interior. (In this case we will say that the C*-correspondence X is topo-
logically aperiodic.)

Proof. Let us notice that if ¢, p; < s, < s;, then using the semigroup property of X (Corollary
4.7), surjectivity of mappings X, p € P, (Proposition 4.5) and taking into account (1) we
get

o (X

1.
p; S;

i

—1 v—1
-1 ,OX -1
s s p; st

k3

o X

Si

7

~ -1 ~ ~ _1
qulsi o prl = X 7152 OXS{;ls o ngfls_)

= Xq_ls'i e} ng_l
227110)?_11 .
R

Hence [] ¢ X, 1, ()?p—_}ls_([w])) implies [r] ¢ X,-1, (X, ([7])). This proves the initial
part of the assertion. '

Ad (i). It follows immediately from what we have just shown.

Ad (ii). If F = {p1,....,pn} S P and p »p e for all p € F, then putting ¢ = e we see

that topological aperiodicity of X implies that for any nonempty open set U < A there are
elements s1,...,8, € P, p; < 84, 9 = 1,...,n and a point [r] € U such that

[7] ¢ X1, (5(;}1 ([7]) = X, ()?;jlsi([ﬂ])) forall i=1,..,n.
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s s o ~
= Xp, 0 Xp-14, 0 Xp_1 2 X, and thus

i Si

By the inclusion noticed above we have X s; © )2'}2__11
condition (30) follows. Z
Conversely, suppose (P, <) is linearly ordered and the condition described in (ii) is sat-

isfied. Let U < A be open and nonempty, F' € P finite and ¢ € P such that g =g p, for
p € F. Enumerating elements of F' = {p1,...,p,} S P in a non-increasing order we have

Si

P1SP2S .. SPhy SqS Php+1 S oo S Pn

for certain kg € {0,1,...,n}. Defining

q, 1<ko
S; 1=
pi 1=kot1
we see that ¢ < s; < ... < s, and
~ ~ Xf_ll , 1< kg
X,r18i0X__l1 =1 P .
L api 1= ko+1

Put F':={p;'q:i=1,..ko} u{g 'p; :i=ko+1,..n} and note that p =g e for all pe F".
Thus we may apply condition described in (ii) to F” and then we obtain a [7] € U satisfying
(29).

Ad (iii). By part (ii) above, topological aperiodicity implies the condition described
in (iii). To see the converse, again by part (ii), it suffices to show (30) for a finite set
F < N\{0}. The latter follows from condition described in (iii) applied to n = m! where
m = max{k : k€ F}. O

Now, we are ready to state and prove the main result of the present paper.

Theorem 5.6 (Uniqueness theorem). Suppose that a regqular product system X is topolog-
ically aperiodic. Then every injective Cuntz-Pimsner representation of X is topologically
graded. If the canonical epimorphism X\ : Ox — O is injective then there is a natural
isomorphism

Ox = C*(P(X))

for every injective Cuntz-Pimsner representation ¢ of X.

Proof. Suppose that v is an injective Cuntz-Pimsner representation of X in a C*-algebra
B. Then ¢)® : (X,) — B is injective for all p € P. Let us consider an element of the form

(31) P9(S,) + Z Vp,g(Sp,a),
pel

where ¢ € P, F' P is a finite set such that ¢ < p for all p € F', and S, € K(X,), Spq €
K(Xg4, Xp). By Lemma 3.7 part (iii), such elements form a dense subspace of C*(¢(X)).
Thus existence of the appropriate conditional expectation will follow from the inequality

1Sql = 19D (SN < [0 (Sg) + D ¥pa(Spa)ll-

peF
To prove this inequality, we fix ¢ > 0 and recall that for any a € A the mapping A s
[7] — |lw(a)| is lower semicontinuous and attains its maximum equal to |a|, cf. e.g. [14,
Proposition 3.3.2., Lemma 3.3.6]. Thus, since X,-Ind : A — K(X) is a homeomorphism, we
deduce that there is an open nonempty set U < A such that

| Xq-Ind(m)(Sy)| > |Sq| —€  for every [n] € U.
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Let F' = {p1,...,pn}- By topological aperiodicity of X, there are elements si, ..., s, € P such
that ¢ < s1 < ... < s, and p; < s;, @ = 1,...,n, and there exists a [r] € U satisfying (29).
Let us fix these objects.

We recall that if p < s, then i5(K(X,)) € K(X5) and thus PP(K(Xy)) € ) (K(Xy)),
cf. Lemma 3.6. In particular, we have the increasing sequence of algebras

PO(K (X)) S E(K(Xy,)) € o S P (K(X,)) € C*(@(X)).
We construct a relevant sequence of representations of these algebras as follows. We put
v : 0D (K(X,)) — B(H,) defined as  v,(¢'9(S)) = X, -Ind(m)(S).

Then v, is an irreducible representation because so is . We let vy, : 1) (K(Xy,)) — B(Hs,)
to be any irreducible extension of v, and for ¢ = 2,3,...,n we take v, : 1/1(31')(IC(X51.)) —
B(Hs,) to be any irreducible extension of vy, ,. Finally, we let v : C*(¢(X)) — B(H) to be

i

any extension of vy . In particular, we have
H,c H, c..C H, C H.
Let P, € B(H) be the projection onto the subspace H,. Clearly
[P ($19(Sq)) Pyl = [vg (D (Sg)| = [ Xq-Ind(m) ()| = 1Sl — &
and as € is arbitrary we can reduce the proof to showing that
(32) Pv(vp.q(Spqg)) Py =0 forpe F.
To this end, we fix a p; € F'. Let Ps, be the projection onto Hy, and consider the space
Hy, = V(wpi(Xpi)¢Q(Xq)*)HQ'
We claim that Py, Hp,, = {0}. Since H, < H,,, this implies (32) and finishes the proof.
Suppose to the contrary that Py, Hp, # {0}. By Lemma 4.11 and the definitions of v and
Hp,, the mapping
K(Xp,) 28— v(@"(S)ln,,
is an irreducible representation equivalent to X, -Ind(m). In particular, H,, is irreducible
for v(1P)(K(X},))). Since
v (K(Xp,)) € v (K(X,,)) and Py e v(@B)(K(X,,))),

we see that Py, Hp, is an irreducible subspace for v(1(P)(K(X,,))). Thus, since H,, and
P, H, are both irreducible subspaces for v/(1)(P) (K(X),))), either H,, = Py, H,, or Hy, | Py, H,.
However, (as Ps,Hp, # {0}) the latter is clearly impossible. Thus H,, < H,, and denoting
by 7, the representation
K(Xe) 28 =5 v(g(8))lm,,.
~—1
we get [75,] € 1t ([Xp, -Ind(m)]). Denoting by m, the representation
K(Xy) 38 = v (8))ln,,

we have [my] € L/g\i([ﬂ'si]) and 7, = X, -Ind(7). Hence we get

—
-S;

[7] = [(X,-Ind) " ()] € [Xq-Ind (75 ([m,]) € [Xq-Ind (05 (357 ([ X, -Ind(m)])))-

Thereby in view of Lemma 4.9 we arrive at

(7] & X1 (X)),

k3

which contradicts the choice of . OJ
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As an application of Theorem 5.6, we obtain simplicity criteria for the reduced Cuntz-
Pimsner algebra O%. To this end, we first introduce the indispensable terminology.

Definition 5.7. Let X be a regular product system over a semigroup P with coefficients
in a C*-algebra A. We say that an ideal J in A is X-invariant if and only if for each p e P
the set

Xp_l(J) ={aeA: (X}, aXp), < J}

is equal to J. We say X is minimal if there are no nontrivial X-invariant ideals in A, that
is if for any ideal J in A we have

(VpeP) X, "(J)=J = J={0} orJ=A

Remark 5.8. When P = N and A is unital, our Definition 5.7 agrees with [43, Definition
3.7] treating the case of a single C*-correspondence, see the discussion on page 418 therein.

Remark 5.9. Let X be a regular C*-correspondence. It is well known, cf. for instance |29,
Proposition 1.3], that for any ideal J in A we have
={zj:zeX,jedJ}={re X :{(x,yye Jforall ye X}.
Therefore we see that
XY J)={aeA:aX € XJ} = ¢ H(Ks(X)),

where

Kj(X):=span{©,, :x e X,ye XJ} =span{O,, : x,y € XJ}
is an ideal in K(X). In particular, we infer that X ~1(J) is an ideal and J is {X®"},cN-

invariant if and only if X~1(.J) = J, in which case we will say that J is X-invariant.

Theorem 5.10 (Simplicity of O%). If a reqular product system X is topologically aperiodic
and minimal, then O% is simple.

Proof. Suppose I is an ideal in O% and put J = (%) *(I)n A = {a€ A: j%(a) € I}. Then
J is an ideal in A. We claim that J is X-invariant. Indeed, for p € P we have

Ix ((Xp, JXp)p) = 5% (Xp)* 5% (JXp) = jx (Xp) ik (J)jx (Xp) < 1.
That is, (Xp, JX,)4 < J and hence J < X '(J). On the other hand, if a € X, !(J) then
by Remark 5.9 we have

opla Z Oz, y;5; Where x;,y; € X;, and j; € J.

Since j : X — O% is Cuntz—lesner covariant, we get

i (a) = i% P (gp(a Z]X PN (Oa,iji) = X d% ()i (widi)*
= Z]X 5Ez (yz) el

Thus X L(J) € J and this proves our claim. In view of minimality of X, either J = A
or J = {0}. In the former case, O% = C*(j% (X)) = I because j%(X,) = j%(AX,) =
Jn(A)j%(X,) < I for each p € P. In the latter case, the composition of j% : X — O% with
the quotient map 6 : O — O’ /I yields a Cuntz-Pimsner representation kx := 6o j% of X
in O% /I which is injective on A. Thus by Theorem 5.6 we have an epimorphism

Ty : O%/1 — O
such that 7y, (¢(j% (z)) = j% (z), z € X. Hence j%(X) I = {0} and therefore I = {0}. O
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Schweizer found in [43] a necessary and sufficient condition for simplicity of Cuntz-
Pimsner algebras associated with single C*-correspondences, improving similar results of
[25]. Namely, by [43, Theorem 3.9], if X is a left essential and full C*-correspondence with
coefficients in a unital C*-algebra A, then Ox is simple if and only if X is minimal and
nonperiodic, meaning that X®" ~ 4 A4 implies n = 0, where ~ denotes the unitary equiva-
lence of C*-correspondences. This result suggests that topological aperiodicity of a product
system X should imply nonperiodicity of X, and this is indeed the case.

Proposition 5.11. Suppose that X is a topologically aperiodic reqular product system over
a semigroup P of Ore type. Then X, ~ X, implies p ~g e, and if in addition (G(P), P) is
a quasi-lattice ordered group, then X —1(pyq) = Xp-1(pvq) tmplies p = q.

Proof. In view of Proposition 5.5 parts (i) and (ii), it suffices to note that X, ~ X, implies
that [r] € X,(X;'([x])) for all [7] € A. To this end, let V : X}, — X, be a bimodule
unitary implementing the equivalence X, ~ X,. Let 7] € A be arbitrary and take any [p] €

)A(q_l([ﬂ]) (such p exists because )A(q is surjective). In other words, [7] < [X,-Ind(p) o ¢,].

Then V gives rise to a unitary map
‘N/:Xp ®,H, = X,®, Hp, such that V(z®h) = (V) ® h.

Indeed, this follows from the following simple computation:

I D 2 @hal? = > (@i ®p hayy ®p hyy = . Chiy p(Ciy 5)4) )
izl

ij=1 ij=1
= > i oV, Vaya)hyy = > (V) ®p hiy (V) @, )
i,j=1 4,j=1
= DI (Va) ®, hall?,
=1

where x; € X, hj € H,, 1 = 1,...,n. Since V is a left A-module morphism, we see that

V establishes a unitary equivalence between X, -Ind(p) o ¢, and X, -Ind(p) o ¢4. Hence we
have both [7] < [X,-Ind(p) 0 ¢q]| and [7] < [X,-Ind(p) o ¢p]. O

6. APPLICATIONS AND EXAMPLES

In this section, we give several examples and applications of the theory developed above.
In particular, we discuss algebras associated with saturated Fell bundles, twisted C*-dynamical
systems, product systems of topological graphs and the Cuntz algebra Ox.

6.1. Product systems of Hilbert bimodules, Fell bundles and dual partial actions.
In this subsection, we consider a regular product system X over a semigroup P of Ore type,
with the additional property that each C*-correspondence X, p € P, is a Hilbert bimodule
equipped with left A-valued inner product ,{-, ) : X, x X, —> A. We call such an X regular
product system of Hilbert bimodules. With help of for instance [31, Proposition 1.11], one can
show that a regular product system is a product system of Hilbert bimodules if and only if
each left action homomorphism ¢, : A — K(X},) is surjective. In this case, ¢, : A — K(X))
is an isomorphism and
p<x7y> = (b;;l(@%y)v x7yEXP‘

The following Proposition 6.1 gives another characterization of regular product systems of
Hilbert bimodules in terms of the Fell bundle structure in Ox identified in Theorem 3.8
above, cf. |31, Theorem 5.9].
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Proposition 6.1. A reqular product system X over a semigroup P of Ore type is a product
system of Hilbert bimodules if and only if the algebra of coefficients A embeds into Ox as
the core subalgebra (Ox)(e ), that is

ix(A) = (Ox)[e,e)-

In this case, each space X, embeds into Ox as the fiber (Ox)(pe)- In particular, jx(Xp) =
(OX)[p,e); for all pe P, and

(33) (OX)[p,q] = Span{jx(.l')jx(y)* ‘T E Xpa ye Xq}? p,q € P.

Proof. Tf all the maps (bp — K(X,) are isomorphisms, it follows from Lemma 3.2 part
(ii) that all the maps (b ’qr : K(Xy, Xp) — K(Xgr, Xpr) are (Banach space) isomorphisms.
Hence

lim K(Xgr, Xpr) = ©p,q(K(Xq, Xp))

where ¢, , denotes the natural embedding of K(X,, X)) into the inductive limit lim C(Xg,, Xpr).
As the isomorphism from Theorem 3.8 sends jx (x)jx (y)* t0 ¥pq(Ozy), x € Xp,y € Xy, we
get (33). In particular, we have jx(A) = (Ox)e,e-

Conversely, if we assume that ¢, : A — K(X,) is not onto for certain p € P. Then

Pee(K(A)) = pp(dp(A)) S 0pp(K(Xp)) S lim, K(X;, Xr),
and hence jX(A) g_ (Ox)[e,e]. O
Remark 6.2. If {By}4cq is a saturated Fell bundle, [21], i.e
ByBg-1 = Be, for all g € G,

we may treat X = [ | jec Bg as a regular product system of Hilbert bimodules with the
structure inherited in an obvious way from {Bg}seg. Then the Fell bundles {(Ox)¢}4ec
and {By}geq coincide. Accordingly, every cross sectional algebra of a saturated Fell bundle
admits a natural realization as Cuntz-Pimsner algebra of a regular product system of Hilbert
bimodules. Conversely, by Proposition 6.1, if X is a regular product system of Hilbert
bimodules over a semigroup P of Ore type, and each fiber X, is nondegenerate as right
Hilbert module (so it is an imprimitivity bimodule), then the Fell bundle {(Ox)g}4eq(p) is
saturated.

Suppose X is a regular product system of Hilbert bimodules over a semigroup P of Ore
type. Since all the maps ¢p A — K(Xp), p e P, are isomorphisms, we infer from Definition

4.4 that the semlgroup X = {Xp}pep dual to X consists of partial homeomorphisms X
with domain (X, > and range A. We show in Proposition 6.4 below that the semigroup

{Xp}pe P generates a partial action of the enveloping group G(P). We recall the relevant
definitions concerning partial actions, cf. e.g. [19].

Definition 6.3. A partial action of a group G on a topological space € consists of a pair
({Dg}gec 194} gec), where Dy’s are open subets of  and 6, : D;-1 — D, are homeomor-
phisms such that

(PA1l) D, = Q and 0, = id,

(PAQ) Ht(Dt—l M DS) = Dt N Dtsa

(PA3) 05(0,(x)) = Ost(z), for x € Dy—1 N Dy—14-1.

The partial action ({Dgy}geq, {0y}gec) is topologically free if for every open nonempty U <
and finite F' < G\{e} there exists x € U such that € D;—1 implies 0;(x) # z for all ¢t € F.
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Proposition 6.4. Suppose X is a reqular product system of Hilbert bimodules and the un-
derlying semigroup P s of Ore type. The formulas

Digp) = )A(q(<Xpa Xp)p)s

Xpa([r]) == X, X, '([7]),  [7] € Dygyys prge P,
yield a well defined family of open sets {Dy}yec(py and homeomorphisms f(g : Dg—1 — D,
such that ({Dy}gec(p), {Xg}gea(p)) s a partial action of G(P) on A. Moreover,
i) {Xg}geap) is a sengroup dual to {(Ox)g}gec(p), where we treat {((’)X) }geg (P) GS

a product System and X are viewed as multivalued maps on A with X (A\D 1) =
{D}.

ii) We have the following implication:
(34) ({Dyg}gecip) {Xg}geG p)) s topologically free = X is topologically aperiodic,

and if P is both left and right Ore (so for instance it is a group or a cancellative
abelian semigroup) then the above implication is actually an equivalence.

Proof. To begin with, let us note that for an ideal I in A and p € P we have

(35) R,() = (1, X,), [) = (X, IX,),,

cf. [33, Remark 2.3|, [41, Subsection 3.3]. Now, let [7] € A and r € P be arbitrary. Natural

b
et let [
representatives of the classes X, X !([7]) and X, X_([x]) act by multiplication from the
left on the spaces

X, ®X,®r He,  Xpr @ Xgr @y Hy,

respectively. The obvious C*-correspondence isomorphisms
Xp @ Xy =2 X, @ (X, ®X,)®X, =2 X, A0 X, = X, ® X,

yield a unitary equivalence between the aforementioned representations. Hence )’(\'p)’(\' (7)) =
)/(\'pr)? o ([7]), and thus )/(\'p)’(\'; ! does not depend on the choice of representatives of [p, q].
It follows from (35) that the natural domain of )A(p)A(q_ lis )A(q(<Xm>p) which coincides
with the spectrum of ;(X,(X,, Xp,)p, X4). This shows that the formulas above indeed define
homeomorphisms )29 : Dy — Dy, ge G(P).

Condition (PA1) is obvious. To show (PA2), let ¢t = [t1,t2], s = [s1,s2] and r > ta, s1.
Putting ¢ = t1(t;'r), p = sa(s7'r), we have t = [t1(t517), ta(ty'r)] = [¢,7] and s =
[s1(s7 '), s2(s77)] = [r,p]. Hence

Xi(Dy) = Xigr)(Dprp)) = XX, (X (D ])) Xy(Diep) N Dier)-

On the other hand, since st = [t1,t2] o [s1, s2] = [t1(t5 '), s2(s7 )] = [q, p], we have

les
1ty
Dts M Dt = D[q7p] M D[qﬂn] = XQ(D[ ]) X (D[ ]) = )?q(D[ N D[e,r])-

This proves condition (PA2).
To show (PA3), let t = [t1,t2], s = [s1,52], ¥ = t1,s2 and [7] € Dy—1 N Dy—14-1. Then
a natural representative of Xo([7]) = X[s; so]oft1,12)([T]) = X, ;1 X_l,lr([w]) acts by left

8185 T ot

e,p]

multiplication on the space

i ®X i1 Or Hr = Xy @ X1, ®X 1, ® X, ®r Ho,

5
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A~ ~

Similarly, a representative of Xs(X([7])) = (X, o )/(\'5_21 o Xy, o X;,))([7]) acts by left
multiplication on the space

X, ® X, @ Xy, @ Xy, @ Hr.

The latter can be considered an invariant subspace of the former with help of the following
natural isomorphisms of C*-correspondences:

X81 ® )N(Sz ® th ® )’th = Xsl ® ‘)N(SQ ® (XT‘ ® )’ZT) ® th ® )N(tg
= X81<X52 ) X82>82 ® nglr ® )?tflr ® <Xt1 3 th >t1 th .

By the choice of [7] and property (PA2), we see that )A(s)A(t([w]) is nonzero and thus equals
X.([7]), as irreducible representations have no non-trivial subrepresentations.

Ad (i). This follows from our description of X [p,q] and the form of O, g given in (33).

Ad (ii). Implication (34) is straightforward. For the converse, let us additionally assume
that P is right cancellative and right reversible (then P is both left and right Ore). Take
any gi,..., gn € G(P)\{[e, e]}. Using left reversibility of P we may represent these elements
in the form ¢g1 = [¢,7r1],..., gn = [t, 0], where t,ry,...;7, € P and t # r; for i = 1,...,n.
By right reversibility of P, one can inductively find elements gz, ..., gn, P, D5, --., P, € P such
that

qt = pir,
qQqit = pHp'ra,

n---Q2q1t = p;l...pépllrn.
Then defining

q:=qn..-q1, s:=qt and p;:=qu...qir1p;..p) for i=1,..n,

we get s = pyr; and p; # q for i = 1,...,n. Hence ¢ 's = t and pi_ls = r; for every
i=1,...,n. Thus

Xgi = )A([tﬂ“z‘] = Xt)?;z'l = Xq_lsigfll :

s

Since Xq_lsf(;;ls = X[qfls,p;ls] does not depend on the choice of s = ¢, p;, we see that the
aperiodicity condition applied to g and py, ..., p, yields the topological freeness condition for

g].""?gn' D

We do not know if the converse to implication (34) holds in general, see also Remark 6.10
below. Nevertheless, applying Proposition 6.4 and Theorems 5.6 and 5.10, we obtain the
following.

Corollary 6.5. Suppose {Bg}gec is a saturated Fell bundle. Treating its fibers as imprimi-
tivity Hilbert bimodules over Be, cf. Remark 6.2, the dual semigroup {By}geq is a group of
genuine homeomorphisms of B..
i) The action {Eg}ge(; is topologically free if and only if the product system X =
L]geg By is topologically aperiodic. If this is the case, then every C*-norm on
(—DgeG By is topologically graded.
ii) If the action {ég}geg 1s topologically free and has no invariant non-trivial open sub-
sets then the reduced cross-sectional C*-algebra C({Bg}g4eq) is simple.
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6.2. Crossed products of twisted C*-dynamical systems. Suppose « is an action of
a semigroup P by endomorphisms of A such that each as, s € P, extends to a strictly
continuous endomorphism @, of the multiplier algebra M(A). Let w be a circle-valued
multiplier on P. That is w: P x P — T is such that

w(p, Q)w(pg,r) = w(p,qr)w(q,7),  p,q,7€P.

Then (A, o, P,w) is called a twisted semigroup C*-dynamical system. A twisted crossed prod-
uct A X P, see [22, Definition 3.1|, is the universal C*-algebra generated by {ia(a)ip(s) :
a€ A, s € P}, where (i4,ip) is a universal covariant representation of (A, P, a,w). That is,
iga:A— Axqy Pis a homomorphism and {ip(p) : p € P} are isometries in M (A Xq 0 P)
such that

ir(p)ir(q) = w(p,@)ir(pg) and ip(p)ia(a)ip(p)* =ia(ap(a)),
for p,q € P and a € A. A necessary condition for i 4 to be injective is that all endomorphisms
ap, p € P, are injective. We apply Theorem 3.8 to show that when P is of Ore type this
condition is also sufficient. Additionally, we reveal a natural Fell bundle structure in Ax ., P.
Following [22], we associate to (A,a, P,w) a product system X = | |po» Xp over the
opposite semigroup P°?. We equip the linear space X, := o,(A)A with the following C*-
correspondence operations

a-x = op(a), r-a=uzxa, (x,y)y=7c"y,
a€ A, z,y € X,. The multiplication in X is defined by
z-y=w(gpag(z)y, for zeX,=ay,(A)A and ye X, = a4(A)A.

By [22, Lemma 3.2|, X is a product system and the left action of A on each of its fibers is by
compacts. Accordingly, X is a regular product system if and only if all the endomorphisms
ap, p € P, are injective. Moreover, by |22, Proposition 3.4| there is an isomorphism

Axa,wP; OX

given by the mapping that sends an element ip(p)*ia(a) € A x4, P to the image of the
element a € X}, = a,(A)A in Ox. Using this isomorphism and Theorem 3.8 one immediately
gets the following.

Proposition 6.6. Suppose that (A, a, P,w) is a twisted semigroup C*-dynamical system,
where P is of Ore type and all the endomorphisms «,, p € P, are injective. Then the
following hold.

i) The algebra A embeds via i into the crossed product A X, P.
ii) The crossed product A Xq ., P is naturally graded over the group of fractions G(P)
by the subspaces of the form

By :=span{ip(p)*ia(a)ip(q) : a € ap(A)Acy(A), [p,q] = g}, g€ G(P).
Moreover, Axq o, P can be identified with the cross-sectional C*-algebra C* ({ By} sec(p))-

In the remainder of this subsection we keep the assumptions of Proposition 6.6. It is
natural to define a reduced twisted crossed product A xj, ,, P to be the reduced cross-sectional
algebra of the Fell bundle {By}seqp)- Let A @ A xqu P — A xp , P be the canonical
epimorphism, and

Iy := ker \.

We wish to generalize the main results of [4] to the case of twisted semigroup actions. Let
X be a product system associated to (A, «, P,w) as above. One can see, cf., for instance,
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31, Example 1.12|, that a fiber X,,, p € P, is a Hilbert bimodule if and only if the range of
p g
oy, is a hereditary subalgebra of A. If this is the case, then «,(A) is a corner in A:

ap(A) = ap(A)Aay(A) = a,(1)Aay(1),
and the left inner product in X, is defined by
KT, y) = a;l (xy™), z,y € X, = ap(A)A.

The spectrum of a,(A) can be identified with an open subset of A. Then the homeomorphism
ap : ap(A) — A dual to the isomorphism ap : A — op(A) can be naturally treated as a

partial homeomorphism of ﬁ, cf. [32, Definition 2.16]. The following Lemma 6.7 is based
on |32, Proposition 2.18] dealing with interactions on unital algebras.

Lemma 6.7. If the monomorphism oy, has a hereditary range, then the homeomorphisms
ap :ap(A) — A and )A(p A Xp, Xp)p — A coincide.

Proof. With our identifications, we have
ap(A) = {[r] € A: m(ap(A)) # 0} = (Xp, Xp)p.

Let m : A — B(H) be an irreducible representation such that w(a;,(A)) # 0. Then a,([n]) is
the equivalence class of the representation ooy, : A — B(m(ap(A))H). Since m(ap,(A))H =
m(ap(A)A)H and

| D3 ai ®x hil® = | D Chis mw(afag)hyypl = | Y w(ai)hil,
i i i
a; € Xp = ap(A)A, hije H,i=1,...,n, we see that a®, h — m(a)h yields a unitary operator
U:Xp,®: H— 7m(op(A))H. Furthermore, for a € A, be a,(A) and h € H we have
[Xp-Ind(7)(a)U* |7 (b)h = Xp-Ind(7)(a) b®x h = (ap(a)b) ®r h = [U* (7 0 ap)(a)]m(b)h.
Hence U intertwines X, -Ind and 7 o . This proves that )A(p = Qp. O

Before stating our criterion of simplicity for semigroup crossed products, we need to define
minimality for semigroup actions.

Definition 6.8. Let o be an action of a semigroup P on a C*-algebra A. We say that «
is minimal if for every ideal J in A such that o, '(J) = J for all p € P we have J = A or
J = {0}.

Let us note that if X is the product system associated to a twisted semigroup C*-
dynamical system (A, «, P,w) then minimality of « in the sense of Definition 6.8 is equivalent
to minimality of X in the sense of Definition 5.7.

Proposition 6.9. Suppose (A, o, P,w) is a twisted semigroup C*-dynamical system with P
of Ore type. We assume that each endomorphism o, p € P, is injective and has hereditary

range. As above, we regard &y, p € P, as partial homeomorphisms of A. The formulas

Dl = Gg(0p(A)),  Gppg([r]) = 8@ ([7)),  [7] € Digyp, pra € P,

yield a well defined partial action ({Dg}gec(p), 104} gec(p)) which coincides with the partial
action induced by the Fell bundle { By} gec(p) described in Proposition 6.6 part (ii). Moreover,

({Dyg}gec(pys {Qg}gec(p)) 1s topologically free == {ay}pep is topologically aperiodic,

and
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i) if the semigroup {Qp}pep is topologically aperiodic, then for any ideal I in A xo,, P
such that I n A = {0} we have I < I;

ii) if the semigroup {Qp}pep is topologically aperiodic and o is minimal, then the reduced
twisted crossed product A Xy, ,, P is simple.

Proof. With the identification of A x4, P with Ox, for each g € G(P) we have the corre-
spondence between (Ox), and By. Thus Lemma 6.7 and Proposition 6.4 imply the initial
part of the assertion. The remaining claims (i) and (ii) follow from Lemma 6.7 and Theorems
5.6 and 5.10. ([l

Remark 6.10. If P = G is a group, the multiplier w = 1 is trivial, and all o), p € P,
are automorphisms, then A x,, P = A x, G is the classical crossed product. Then parts
(i) and (ii) of Proposition 6.9 coincide with [4, Theorem 1| and [4, Corollary on p. 122],
respectively. More generally, let us suppose that w is arbitrary, P is left Ore semigroup, and
a: P — Aut(A) is a semigroup action by automorphisms. By [34, Theorem 2.1.1] both the
action o and the multiplier w extend uniquely to the group G = PP~! in such a way that
(A, o, G,w) is a twisted group C*-dynamical system and we have a natural isomorphism

AxpwP=Axa,G.

Then the partial action of G described in Proposition 6.9 is by homeomorphisms and coin-
cides with the standard action & of G on A. Now, when P is both left and right Ore we can
infer from Proposition 6.4 part (ii) that

semigroup {ap}pep is topologically aperiodic <= group {Q4}geq is topologically free.

It also follows from [4, Theorem 2| and the implication in Proposition 6.9 that the above
equivalence holds when P is an arbitrary left Ore semigroup and A is commutative. In fact,
in this case both these conditions are equivalent to the intersection property described in
Proposition 6.9 part (i).

6.3. Topological graph algebras. Let E = (E°,E',s,r) be a topological graph as in-
troduced in [27]. This means we assume that vertex set EC and edge set E' are locally
compact Hausdorff spaces, source map s : E! — E is a local homeomorphism, and range
map r : B! — Ej is a continuous map.

A C*-correspondence Xg of the topological graph E is defined in the following manner,
[27]. The space Xg consists of functions 2 € Co(E") for which

E'sv— > Ja(e)f
{eeE1:s(e)=v}
belongs to A := Co(E®). Then Xpg is a C*-correspondence over A with the following

structure.

(z-a)(e) := z(e)a(s(e)) for ee E,

{r,yya(v) = z(e)y(e) for ve E° and
{eeEl:s(e)=v}

(a-z)(e) := a(r(e))z(e) for ee EL.

C*-correspondence Xp generates a product system over N. It follows from [27, Proposition
1.24] that this product system (or simply, this C*-correspondence X ) is regular if and only
if

(36) r(E') = E° and every v € E° has a neighborhood V such that »— (V) is compact.
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In particular, (36) holds whenever r : E! — E is a proper surjection. If both E° and E!
are discrete then F is just a usual directed graph and then (36) says that every vertex in E°
receives at least one and at most finitely many edges (in other words, graph F is row-finite
and without sources). According to |27, Definition 2.10]|, the C*-algebra of E is

C*(E) := Ox,.

Let e = (en,...,e1), r(e;) = s(ei+1), @ = 1,...,n — 1, be a path in E. Then e is a cycle if
r(e,) = s(e1), and vertex s(eq) is called the base point of e. A cycle e is said to be without
entries if r~1(r(ey)) = eg for all k = 1,...,n. Graph E is topologically free, [27, Definition
5.4], if base points of all cycles without entries in E have empty interiors. It is known, see
[28, Theorem 6.14], that topological freeness of E is equivalent to the uniqueness property
for C*(E).

In general, topological aperiodicity of Xg is stronger than topological freeness of E.
However, when E = (E° EY, s,id) is a graph that comes from a mapping s : E0 — E°,
these two notions coincide.

Proposition 6.11. Suppose Xg is a C*-correspondence of a topological graph F satisfying
(36). The dual C*-correspondence acts on E° (identified with the spectrum of A = Co(E°))
via the formula
(37) Xp(v) =r(s7'(v)).
In particular,
i) Xg is topologically aperiodic if and only if the set of base points for periodic paths
i E has empty interior;
i) If r is injective, topological aperiodicity of X g is equivalent to topological freeness of
E;
i) If E is discrete, then Xpg is topologically aperiodic if and only if E has no cycles,
and this in turn is equivalent (see |30, Theorem 2.4|) to C*(E) being an AF-algebra.
Proof. We identify A with E° by putting v(a) := a(v) for ve E° ae A = Cy(E®). We fix
v e EY and an orthonormal basis {xe}eesq(v) in the Hilbert space Cls™ @I Let us consider
the representation 7, : A — B(Cls™' () given by
m(a) = Z a(r(e))ze, ae A= Cy(EY).
ees—1(v)
One readily checks that the mapping
XE®R,Co22@y A —> 2 Az(e)x,. € Cls @)l
ees—1(v)
gives rise to a unitary which establishes equivalence Xg-Ind(v) = 7,. Furthermore, we have
{we E°:w <} ={weE:w=r(e) for some e € s 1 (v)} = r(s~(v)).
This yields (37). Claim (i) follows from (37), part (iii) of Proposition 5.5 and the Baire
category theorem. Claims (ii) and (iii) are now straightforward. O
Corollary 6.12. Keeping the assumptions of Proposition 6.11, let V < E° be closed. Then
ideal J = Co(E°\V) is Xg-invariant if and only if Xg(V) = V.

Proof. Tt is known, see for instance [28, Section 2|, that ideal J = Cy(E°\V) is X g-invariant
if and only if V satisfies the following two conditions

1) (Vee EY) s(e)eV =r(e)eV, and 2)veV — (Jecr1(v))s(e)eV.
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In view of (37), conditions (1) and (2) are respectively equivalent to the inclusions X e(V) <
Vand V < Xg(V). O

Example 6.13 (Exel’s crossed product for a proper local homeomorphism). Let A = Cy(M)
for a locally compact Hausdorff space M and let o : A — A be the operator of composition
with a proper surjective local homeomorphism ¢ : M — M. Then « is an extendible
monomorphism possessing a natural left inverse transfer operator L : A — A, defined by

L<a><t>=|a_}(t)| S als),

sea—1(t)

see |6, Subsection 2.1]. Let X, be the C*-correspondence with coefficients in A, constructed
as follows. X is the completion of A with respect to the norm given by the inner-product
below, and with the following structure:

.I'CLZIEO[(CL), <$,y>:L($*y), a-xr=ax,

where a € A, x,y € X. Clearly, the left action of A on X is injective. One can also
show that it is by compacts, see the argument preceding [6, Corollary 4.2]. Hence X is a
regular C*-correspondence. It is known that is naturally isomorphic to a C*-correspondence
associated to the topological graph E = (M, M, 0,id), [6, Section 6]. Thus, by Proposition
6.11, the dual C*-correspondence to X, acts on M, identified with the spectrum of A =
Co(M), via the formula

(38) Xp(t) = o7 (t).

It is observed in [6] that
CO(M) ><|a,L N := OXL

is a natural candidate for Exel’s crossed product when A = Cy(M) is non-unital. When M
is compact, C'(M) x4, N coincides with the crossed product introduced in [17] and can be
effectively described in terms of generators and relations, [20, Theorem 9.2].

Now, combining Proposition 6.11, [6, Lemma 6.2] and [28, Theorem 6.14], we see that the
following conditions are equivalent.

i) X is topologically aperiodic;

ii) the set of periodic points of o has empty interior;

iii) o is topologically free in the sense of Exel and Vershik [20, Definition 10.1], [6];

iv) every non-trivial ideal in Cy(M) x4, N intersects Co(M) non-trivially.
Consequently, in view of Corollary 6.12, the crossed product Co(M) x4, 1, N is simple if and
only if in addition to the above equivalent conditions there is no nontrivial closed subset Y
of M such that o1 (Y) =Y, cf. [6, Theorem 6.4], [20, Theorem 11.2], see also [9] and [45].

6.4. C*-algebras of topological P-graphs. In this subsection, we introduce topological
P-graphs which generalize both topological k-graphs [47] and (discrete) P-graphs [40], [7].
Within the framework of a general approach to product systems proposed in [23], the rea-
soning in |23, Example 1.5 (4)] shows that a topological P-graph defined below is simply a
product system over P with values in a groupoid of topological graphs, see [23, Definition
1.1]. In the sequel P is a semigroup of Ore type. We treat elements of P as morphisms in
a category with single object e.

Definition 6.14. By a topological P-graph we mean a pair (A, d) consisting of:

(1) a small category A endowed with a second countable locally compact Hausdorff
topology under which the composition map is continuous and open, the range map
r is continuous and the source map s is a local homeomorphism;
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(2) a continuous functor d: A — P, called degree map, satisfying the factorization
property: if d(A) = pq then there exist unique p,v with d(pu) = p, d(v) = ¢q and
A= pv.

Elements (morphisms) of A are called paths. AP := d~!(p) stands for the set of paths of
degree p € P. Paths of degree e are called vertices.

We associate to a topological P-graph (A, d) a product system in the same manner as it
is done for topological k-rank graphs in [8]. That is, for each p € P we let X}, = X, be the
standard C*-correspondence associated to the topological graph

Ep = (Aev Ap7 S‘Ap, T"Ap),

so that A := Cp(A°) and X, is the completion of the pre-Hilbert A-module C.(A?) with the
structure

Foppv) =", fl)gn) and (a-f-b)(N) = a(r(N)f(N)b(s(N).

neAP (v)

The proof of [8, Proposition 5.9] works in our more general setting and shows that the
formula

(f9)(A) :== f(A(e; p)g(A(p, pg))

defines a product X, x X, 3 (f,9) — fg € X,q that makes X = |_|p€P X, into a product
system. In view of (36), we see that the product system X is regular if and only if for every
p € P we have

r(AP) = A%, and
every v € E® has a neighborhood V such that (V) n A? is compact in A?,

If the above condition holds, we say that the topological P-graph (A, d) is regular. It follows
from [8, Theorem 5.20] that if (A, d) is a regular topological k-rank graph (that is, if P = N¥),
then the Cuntz-Krieger algebra of (A, d) defined in [47] coincides with Ox. Hence it is natural
to coin the following definitions, see also Remark 6.16 below.

Definition 6.15. Suppose (A, d) is a regular topological P-graph, where P is a semigroup
of Ore type. We define a C*-algebra C*(A,d) and a reduced C*-algebra C}(A,d) of (A,d)
to be respectively the Cuntz-Pimsner algebra Ox and the reduced Cuntz-Pimsner algebra
O, where X is the regular product system defined above.

Remark 6.16. If A is a discrete space then C*(A, d) is a universal C*-algebra generated by
partial isometries {sy : A € A} subject to a natural version of Cuntz-Krieger relations, see
[40, Theorem 4.2]. If we additionally assume (G, P) is a quasi-lattice ordered group then
C} (A, d) coincides with the co-universal C*-algebra C}' . (A) associated to (A, d) in [7]. To
see the latter combine [40, Proposition 6.4], |7, Theorem 5.3], [8, Theorem 4.1] and |44,
Corollary 5.2].

As an application of our main results — Theorems 3.8, 5.6, 5.10, we obtain the following.

Proposition 6.17. Suppose (A, d) is a reqular topological P-graph. The C*-algebras C* (A, d)
and C}(A,d) are non-degenerate in the sense that they are generated by the images of injec-
tive Cuntz-Pimsner representations of X = |_|p€P Xp. Moreover,

i) X is topologically aperiodic if and only if for every nonempty open set U < A€, each
finite set F' < P and an element ¢ € P with q «r p for all p € F, there is an
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enumeration {p1,...,pn} of elements of F' and there are elements s, ..., 8, € P such
that q < s1 < ... < S, pi < 84, for i =1,...,n, and the union
n
(39) U{U eN:pe Api_lsi,u e N5 s(p) = s(v) and r(p) = r(v) = v}
i=1

does not contain U.
i) X is minimal if and only if there is no nontrivial closed set V< A° such that

(40) r(A’ ns ' (V) =V  forallpe P.

In particular, if the equivalent conditions in (i) hold, then any non-zero ideal in C}(A,d)
has non-zero intersection with Co(A€). If the conditions described in (1) and (i1) hold, then
CE(A,d) is simple.

Proof. The initial claim of this proposition follows from Theorem 3.8 above. To see that
the equivalence in part (i) holds, it suffices to apply formula (37) to the C*-correspondences
X, = Xg,, p € P. Similarly, using (37) and Corollary 6.12, we see that X-invariant ideals in
Co(A°) are in one-to-one correspondence with closed sets V' satisfying (40). This proves part
(ii). The final claim of the proposition now follows from Theorems 5.6 and 5.10 above. [

Remark 6.18. Until now, there has been several different aperiodicity conditions introduced
that imply uniqueness theorems for topological (or discrete) higher-rank graphs, that is when
P = NF cf. [39], [47], [46]. To our knowledge there are no such theorems known for more
general semigroups P. We also point out that our topological aperiodicity has an advantage
of being local — it involves only finite paths in A, which is of importance, cf. [39, discussion
on page 94].

6.5. The Cuntz algebra Q. In [12], Cuntz introduced Qp, the universal C*-algebra
generated by a unitary v and isometries s,, n € N*, subject to the relations

(Ql) SmSn = Smn,

(Q2) smu = u"sy, and

(Q3) Z:ol uFssiuF =1,
for all m,n € N*. Cuntz proved that Qy is simple and purely infinite. Now we deduce the
simplicity of Oy from our general result — Theorem 5.10 above, see also Remark 6.19 below.

It was shown in [46] that Oy may be viewed as the Cuntz-Pimsner algebra of a certain
product system. We recall an explicit description of that product system given in [24].

The product system X is over the semigroup N* and its coefficient algebra is A = C(S1).
We denote by Z the standard unitary generator of A. Each fiber X,,, m € N*  is a C*-
correspondence over A associated to the classical covering map S' 3 z — 2™ € S!, as
constructed in Example 6.13. Each X,,, as left A-module is free with rank 1, and we denote
the basis element by 1,,. Hence, each element of X, may be uniquely written as £1,, with
£ e A. We have

(flm) ta = gam(a)lm,

<§1m7771m>m = Lm(f*U%
a- glm = (ag)lma

X = |_|Xm

meNX

becomes a product system with multiplication X, x X, — X, given by

(E1m)(1r) = (§am(n)) Lins

for &,a € A. Then
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for m,r € N*. By [24, Proposition 3.13] (cf. [44, Corollary 5.2]) we have
OX = QN.
Now, let E;;, 1,7 = 0,1,...,m — 1, be a system of matrix units in M,,(C). There is an
isomorphism
C(Sl) ® M, (C) = K(X,n)
such that
J®Eij < Oziq(H)lmZilm:

Thus K(X,,) may be identified with the circle S'. With these identifications, we have
m—2
¢m(Z) = Z® Eym-1 + Z 1® Ej+1,5,
j=0

and hence the multivalued map qg; : 81 — S is such that
bm(2) = {we S* | w™ = z}.

Furthermore, [X,,-Ind] is identified with the identity map on S!, and consequently the
multivalued map X, = ¢ 0 [X;,-Ind] : ST — St is

Xo(z) = {we S' | w™ = 2}.

For m # n the set {z€ S' |z e )/(\m()/(\n_l(z))} is finite, while every nonempty open subset
of S!is infinite. It follows that the product system X is topologically aperiodic.

Now, we see that A does not contain any non-trivial invariant ideals. Indeed, suppose
J is an X-invariant ideal in A. Then L,,(J) < J for all m € N*. There exists an open
subset U of S! and a function f € J such that f > 0 and f(t) # 0 for all t € U. If m is
sufficiently large then for each z € S! there is a w € U such that w™ = 2. Then L, (f) is
strictly positive on S and hence invertible. Since L,,(f) € J, we conclude that J = A.

Remark 6.19. We recall, cf. [6, Section 2| and Example 6.13, that for each m € N* the
mapping
C(SY) 3 a— vmal,, € X,

establishes isomorphism between the fiber X, and the C*-correspondence associated to the
topological graph (S',S' ay,,id). Using these isomorphisms, one may recover the product
system associated to the topological N*-graph (A, d) constructed in terms of generators in
[46, Proposition 5.1|. In particular, simplicity of Qn could be also deduced from Proposition
6.17 applied to (A, d). Moreover, as the range map in each fiber of (A, d) is injective, part
(ii) of Proposition 6.11 and Example 6.13 indicate that our simplicity criterion in this case
might be not only sufficient but also necessary.
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