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Abstract. We introduce crossed products of a C∗-algebra A by a com-

pletely positive map % : A → A relative to an ideal in A. When % is

multiplicative they generalize various crossed products by endomor-

phisms. When A is commutative they include C∗-algebras associated

to Markov operators by Ionescu, Muhly, Vega, and to topological rela-

tions by Brenken, but in general they are not modeled by topological

quivers popularized by Muhly and Tomforde.

We show that Exel’s crossed product Aoα,L N, generalized to the

case where A is not necessarily unital, is the crossed product of A by

the transfer operator L relative to the ideal generated by α(A). We

give natural conditions under which α(A) is uniquely determined by

L, and hence Aoα,L N depends only on L. Moreover, the C∗-algebra

O(A,α,L) associated to (A,α,L) by Exel and Royer always coincides

with our unrelative crossed product by L.

As another non-trivial application of our construction we extend

a result of Brownlowe, Raeburn and Vittadello, by showing that the

C∗-algebra of an arbitrary infinite graph E can be realized as a crossed

product of the diagonal algebra DE by a ‘Perron-Frobenious’ operator

L. The important difference to the previous result is that in general

there is no endomorphism α of DE making (DE , α,L) an Exel system.
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1. Introduction

In the present state of the art the theory of crossed products of C∗-algebras

by endomorphisms breaks down into two areas that involve two different con-

structions. The first approach originated in late 1970’s in the work of Cuntz [11]

and was developed by many authors [44], [51], [1], [41], [2], [30], [29]. Another

approach was initiated by Exel [12] in the beginning of the present century and

immediately received a lot of attention; in particular, Exel’s construction was

extended in [10], [35], [14], [7]. By now, both of the approaches have proved to

be useful in an innumerable variety of problems and their importance is well-

acknowledged. They (or their semigroup versions) serve as tools to construct and

analyse the most intensively studied C∗-algebras in recent years. These include:

Cuntz algebras [11], Cuntz-Krieger algebras [12], Exel-Laca algebras [14], graph

algebras [10], [18], [28], higher-rank graph algebras [7], C∗-algebras arising from

semigroups [1], number fields [33], [3], or algebraic dynamical systems [8]. Among

the applications one could mention their significant role in classification of C∗-

algebras [48], study of phase transitions [32], or short exact sequences and tensor

products [34].

In view of what has been said, it is somewhat surprising that the intersection

of these two approaches is relatively small: the two constructions coincide for in-

jective corner endomorphisms [12] and more generally for systems called complete

in [2], [26], and reversible in [29]. Nowadays, it is known, see, for instance, [9],

[30], that the aforementioned crossed-products can be unified in the framework of

relative Cuntz-Pimsner algebras O(J,X) of Muhly and Solel [39]. However, differ-

ent constructions are associated with different C∗-correspondences and different

ideals J .

In fact, the relationship between the two aforesaid lines of research is still

shrouded in mystery and calls for clarification. One of the overall aims of the

present paper is to cover this demand. We do it by showing that the two areas

are different special cases of one natural construction of a crossed product by

a completely positive map. In particular, since completely positive maps are

ubiquitous in the C∗-theory and in quantum physics, the crossed products we

introduce have an ample potential for further study and applications. We hope

that the present article will not only clear the decks but also give an impulse for

such a development (see, for instance, our remarks concerning crossed products

of commutative algebras (subsection 3.5); also the study of ergodic properties of

non-commutative Perron-Frobenius operators that we introduce is of interest (see

subsection 5.2)).
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We note that Schweizer defined in [49, Subsection 3.3] a crossed product by a

completely positive map as a particular case of Pimsner’s (augmented) C∗-algebra

[46]. However, apart from giving a simplicity criterion [50, Theorem 4.6] he didn’t

study the structure of these algebras. Schweizer’s crossed product is covered by

our construction (cf. Remark 3.14).

Let us explain our strategy in more detail. We introduce (in Definition 3.5)

the relative crossed product C∗(A, %; J) of a C∗-algebra A by a completely pos-

itive mapping % : A → A relative to an ideal J in A. The unrelative crossed

product is C∗(A, %) := C∗(A, %;N⊥% ) where N% is the largest ideal contained in

ker %. When α := % is multiplicative, hence an endomorphism of A, the crossed

products C∗(A,α; J) cover the line of research we attributed to Cuntz. More

specifically (see Subsection 3.4 below), the C∗-algebras C∗(A,α; J) coincide with

crossed products by endomorphisms studied in [30], for unital A, and in [29],

for extendible α. In particular, if α is extendible then C∗(A,α;A) is Stacey’s

crossed product [51], and C∗(A,α; {0}) is the partial isometric crossed product

introduced, in a semigroup context, by Lindiarni and Raeburn [37] (see Propo-

sition 3.26). Accordingly, C∗(A,α) = C∗(A,α; kerα⊥) is a good candidate for

the (unrelative) crossed product by an arbitrary endomorphism, cf. [30], [29]. In

contrast to this multiplicative case, we claim that Exel’s crossed product Aoα,LN
is a crossed product by the transfer operator L (which as a rule is not multiplica-

tive). In order to make this statement precise we need to thoroughly re-examine

- take ‘a new look at’ Exel’s construction.

We recall that Exel introduced in [12] the crossed product A oα,L N of a

unital C∗-algebra A by an endomorphism α : A → A which also depends on

the choice of a transfer operator, i.e. a positive linear map L : A → A such

that L(α(a)b) = aL(b), for all a, b ∈ A. This construction was generalized to

the non-unital case in [10], [35] were authors assumed that both α and L extend

to strictly continuous maps on the multiplier algebra M(A). We show however

that extendability of L is automatic and since extendability of α does not play

any role in the definition, in the present paper, we consider crossed products

A oα,L N for Exel systems (A,α,L) where A, α and L are arbitrary. Obviously,

in a typical situation there are infinitely many different transfer operators for a

fixed α. On the other hand, under natural assumptions, such as faithfulness of

L, which usually appear in applications [12], [15], [9], [10], the endomorphism α

is uniquely determined by a fixed transfer operator L. Moreover, any transfer

operator L is necessarily a completely positive map and therefore it is suitable to

form a crossed product on its own. This provokes the question:
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To what extent Aoα,L N depends on α?

Before giving an answer, we need to stress that the pioneering Exel’s defi-

nition of A oα,L N, [12, Definition 3.7], was to some degree experimental. In

general it requires a modification. Namely, Brownlowe and Raeburn in [9] rec-

ognized A oα,L N as a relative Cuntz-Pimsner algebra O(Kα,ML) where ML is

a C∗-correspondence associated to (A,α,L) and Kα = Aα(A)A ∩ J(ML) is the

intersection of the ideal generated by α(A) and the ideal of elements that the left

action φ of A on ML sends to ‘compacts’. Then it follows from general results on

relative Cuntz-Pimsner algebras, see [38, Proposition 2.21], [23, Proposition 3.3]

or [9, Lemma 2.2], that A embeds into A oα,L N if and only if Kα is contained

in the ideal (kerφ)⊥ ∩ J(ML). But the latter condition is not always satisfied.

In particular, the theory of Cuntz-Pimsner algebras, and most notably the work

of Katsura [22], [23], indicates that Exel’s construction should be improved by

replacing in [12, Definition 3.7] the ideal Aα(A)A with (kerφ)⊥ ∩ J(ML). This

is done by Exel and Royer in [14], cf. also [7, Proposition 4.5], where they as-

sociate to (A,α,L) a C∗-algebra O(A,α,L) which is isomorphic to Katsura’s

Cuntz-Pimsner algebra OML (as a matter of fact, authors of [14] deal with more

general Exel systems where α and L are only ‘partially defined’).

Turning back to our question, the results of the present paper give the following

answer, which consists of three parts:

(1) the modified Exel’s crossed product O(A,α,L) always coincides with our

unrelative crossed product C∗(A,L) of A by L (Theorem 4.7),

(2) original Exel’s crossed product A oα,L N, for regular systems, does not

depend on α, if we assume certain conditions assuring that A embeds into

Aoα,L N (Proposition 4.18, Theorem 4.22),

(3) the three algebras Aoα,LN, O(A,α,L), C∗(A,L) coincide for most of sys-

tems appearing in applications (Proposition 4.9, Theorem 4.22, Theorem

5.6 i)).

In connection with point (3) it is interesting to note that, in general, there seems

to be no clear relation between the ideals

Aα(A)A, (kerφ)⊥, J(ML).

However, for many natural systems (A,α,L), for instance for all such systems

arising from graphs (cf. Lemma 5.9 below), we always have Aα(A)A = (kerφ)⊥∩
J(ML) and consequently A oα,L N = O(A,α,L) = C∗(A,L). This shows that

(by incorporating the ideal Aα(A)A into his original construction) Exel exhibited

an incredibly good intuition; especially that, in contrast to Aα(A)A, determining
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(kerφ)⊥ ∩ J(ML) is very hard in practice. In particular, it is an important task

to identify Exel systems (A,α,L) for which A oα,L N = O(A,α,L) = C∗(A,L).

We find a large class of such objects in the present article.

We test the results of our findings on graph C∗-algebras. We recall that the

main motivation for introduction of Aoα,LN in [12] was to realize Cuntz-Krieger

algebras as crossed products associated with one-sided Markov shifts. This result

was adapted in [10] to graph C∗-algebras C∗(E) where E is a locally finite graph

with no sinks or sources (by [7, Proposition 4.6], it can be generalized to graphs

admitting sinks). For such a graph E the space of infinite paths E∞ is a locally

compact Hausdorff space and the one-sided shift σ : E∞ → E∞ is a surjective

proper local homeomorphism. In particular, the formulas

(1) α(a)(µ) = a(σ(µ)), L(a)(µ) =
1

|σ−1(µ)|
∑

η∈σ−1(µ)

a(η),

a ∈ C0(E∞), µ ∈ E∞, yield well-defined mappings on C0(E∞). Actually,

(C0(E∞), α,L) is an Exel system and C0(E∞) is naturally isomorphic to the

diagonal C∗-subalgebra DE of C∗(E). By [10, Theorem 5.1], the isomorphism

C0(E∞) ∼= DE extends to the isomorphism C0(E∞) oα,L N ∼= C∗(E). In order

to generalize that result to arbitrary graphs one is forced to pass to a boundary

path space ∂E of E, cf. [53]. Then C0(∂E) ∼= DE , but the analogues of maps

given by (1) are in general not well defined onto the whole of C0(∂E). One pos-

sible solution, see [7], is to consider ‘partial’ Exel systems defined in [14]. In the

present paper, we circumvent this problem by studying a more general class of

‘Perron-Frobenious operators’ of the form:

(2) Lλ(a)(µ) =
∑

e∈E1, eµ∈∂E

λe a(eµ), a ∈ C0(∂E),

where λ = {λe}e∈E1 is a family of strictly positive numbers indexed by the edges of

E. We find necessary and sufficient conditions on λ assuring that Lλ : C0(∂E)→
C0(∂E) is well-defined. For any such λ we get an isomorphism

C∗(E) ∼= C∗(C0(∂E),Lλ).

Moreover, the map induced on DE ∼= C0(E∞) by Lλ extends in a natural way

to a completely positive map on C∗(E). The latter deserves a name of non-

commutative Perron-Frobenious operator. This indicates, at least in the present

context, a somewhat superior role of a Perron-Frobenious operator Lλ over the

standard non-commutative Markov shift, cf., for instance, [20], which in general

is not even well-defined.
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Finally, we mention our findings concerning an arbitrary (necessarily com-

pletely) positive map % on a commutative C∗-algebra A = C0(D), where D is a

locally compact Hausdorff space. Any such map defines a relation on D:

(x, y) ∈ R def⇐⇒
(
∀a∈A+

%(a)(x) = 0 =⇒ a(y) = 0
)
.

If the set R ⊆ D × D is closed, then % give rise to a topological relation µ in

the sense of [5] and a topological quiver Q in the sense of [40]. Then we prove

that for the corresponding C∗-algebras associated to µ and Q, in [5] and [40]

respectively, we have C∗(A, %;A) ∼= C(µ) and C∗(A, %) ∼= C∗(Q). In particular, if

% is a Markov operator in the sense of [19], the C∗-algebra C∗(%) considered in [19]

coincides with C∗(A, %). However, as we explain in detail and show by concrete

examples, when R is not closed in D×D, then C∗(A, %) cannot be modeled in any

obvious way by the C∗-algebras studied in [40]. In particular, an analysis, similar

to that in [19], for general positive maps on commutative C∗-algebras requires a

generalization of the theory of topological quivers [40].

The content of the paper is organized as follows.

In Section 2, which serves as preliminaries, we gather certain facts on positive

maps, explain in detail what we mean by a universal representation and recall

definitions of relative Cuntz-Pimsner algebras. Also, we present a definition of

Exel’s crossed product A ×α,L N for arbitrary Exel systems (A,α,L), and recall

a definition of Exel-Royer’s crossed product O(A,α,L) for such systems.

In Section 3 we introduce relative crossed products C∗(A, %; J) for a completely

positive map % : A→ A. We present three pictures of C∗(A, %; J): as a quotient

of a certain Toeplitz algebra (Definition 3.5); as a relative Cuntz-Pimsner algebra

associated with a GNS correspondence X% of (A, %) (Theorem 3.13); and as a

universal C∗-algebra generated by suitably defined covariant representations of

(A, %) (Proposition 3.17). We finish this section by revealing relationships between

construction and various crossed products by endomorphisms (subsection 3.4),

and with C∗-algebras associated to topological relations, topological quivers, and

Markov operators (subsection 3.5).

In Section 4 we show that the Toeplitz algebra T (A,α,L) of (A,α,L) coincides

with the Toeplitz algebra T (A,L) of (A,L) (Proposition 4.3), which leads us to

identities O(A,α,L) = C∗(A,L) and A ×α,L N = C∗(A,L;Aα(A)A) (Theorem

4.7). Using this result we conclude that A×α,L N = C∗(A,L) for instance when

L faithful and α extendible (Proposition 4.9). In Subsection 4.2 we study Exel

systems (A,α,L) with the additional property that E := α ◦ L is a conditional

expectation onto α(A). We give a number of characterizations and an intrinsic

description of such Exel systems. This leads us to convenient conditions implying



EXEL’S CROSSED PRODUCT AND COMPLETELY POSITIVE MAPS 7

that A×α,LN does not depend on α (cf. Proposition 4.18). In particular, if α(A)

is a hereditary subalgebra of A we prove that A ×α,L N = C∗(A,L) ∼= C∗(A,α)

(Theorem 4.22).

In the closing Section 5, we analyze the C∗-algebra C∗(E) = C∗({pv : v ∈
E0} ∪ {se : e ∈ E1}) associated to an arbitrary infinite graph E = (E0, E1, r, s).

We briefly present Brownlowe’s [7] realization of C∗(E) as Exel-Royer’s crossed

product for a partially defined Exel system (C0(∂E), α,L). We find conditions on

the numbers λ = {λe}e∈E1 assuring that (2) defines a self-map on C0(∂E) (Propo-

sition 5.4). For any such choice of λ we prove, using an algebraic picture of the

system (C0(∂E),Lλ), that C∗(E) ∼= C∗(DE ,L), where L(a) :=
∑
e∈E1 λes

∗
ease,

a ∈ DE (see Theorem 5.6). If E is locally finite and without sources then the

(non-commutative) Markov shift α(a) :=
∑
e∈E1 seas

∗
e is the unique endomor-

phism of DE such that (DE , α,L) is an Exel system and C∗(DE ,L) = DE ×α,LN
(Theorem 5.6 iii)). In general there is no endomorphism making (DE , α,L) an

Exel system (Theorem 5.6 ii)). One of possible interpretations of these results is

that in order to associate a non-commutative shift to an arbitrary infinite graph

one is forced to fix a certain measure system and encode the shift in its ‘transfer

operator’, as the ‘composition endomorphism’ does not exist.

1.1. Conventions and notation. All ideals in C∗-algebras (unless stated oth-

erwise) are assumed to be closed and two-sided. If I is an ideal in a C∗-algebra

A we denote by I⊥ = {a ∈ A : aI = 0} the annihilator of I. We denote by 1

the unit in the multiplier algebra M(A) of A. Any approximate unit in A is as-

sumed to compose of contractive positive elements. All homomorphisms between

C∗-algebras are assumed to be ∗-preserving. For actions γ : A × B → C such as

multiplications, inner products, etc., we use the notation:

γ(A,B) = {γ(a, b) : a ∈ A, b ∈ B}, γ(A,B) = span{γ(a, b) : a ∈ A, b ∈ B}.

By the Cohen-Hewitt Factorization Theorem we have γ(A,B) = γ(A,B) when-

ever γ can be interpreted as a continuous representation of a C∗-algebra A on a

Banach space B. We emphasize that we will use this fact without further warning.

In particular, a C∗-subalgebra A of a C∗-algebra B is non-degenerate if AB = B.

2. Preliminaries

In this section, we present certain facts concerning positive maps. Most of them

are known, but usually they are stated in the literature in the unital case. We

also present definitions of a universal C∗-algebra and a universal representation,

which are well suited for our analysis. We briefly recall definitions of C∗-algebras
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associated to C∗-correspondences. In the last part of this section, we introduce a

definition of Exel crossed product for arbitrary Exel systems, and also recall the

definition of crossed products associated to such systems in [14].

2.1. Positive maps. Throughout this subsection we fix a positive map % : A→
B between two C∗-algebras A and B. This means that % : A → B is linear and

%(aa∗) ≥ 0 for every a ∈ A. Such % is automatically ∗-preserving: %(a∗) = %(a)∗,

a ∈ A; and bounded, see [31, Lemma 5.1]. We have the following formula for

the norm of %, which is well known for completely positive maps, cf. [31, Lemma

5.3(i)], and less known for positive maps.1

Lemma 2.1. For any approximate unit {µλ}λ∈Λ in A the norm of % is given by

the limit ‖%‖ = limλ∈Λ ‖%(µλ)‖.

Proof. Recall that the double dual A∗∗ of A can be identified with the enveloping

von Neumann algebra of A, cf. [52, III, Theorem 2.4]. Similarly for B. Then the

double dual %∗∗ : A∗∗ → B∗∗ of % : A→ B is a σ-weakly continuous extension of

%. As positive elements in A are σ-weakly dense in the set of positive elements

in A∗∗, %∗∗ is positive. Hence Russo-Dye theorem implies, see [42, Corollary

2.9], that ‖%∗∗‖ = ‖%∗∗(1)‖. Moreover, since {µλ}λ∈Λ converges σ-weakly to 1,

{%∗∗(µλ)}λ∈Λ converges σ-weakly to %∗∗(1). Since the norm is weakly lower-

semicontinuous we get

‖%∗∗‖ = ‖%∗∗(1)‖ ≤ lim inf
λ∈Λ

‖%∗∗(µλ)‖ = lim inf
λ∈Λ

‖%(µλ)‖.

As clearly we have lim supλ∈Λ ‖%(µλ)‖ ≤ ‖%‖ ≤ ‖%∗∗‖, we get the desired equality.

�

The formula for the kernel of the classic GNS representation yields also an im-

portant ideal for an arbitrary positive map.

Proposition 2.2. The set

(3) N% := {a ∈ A : %((ab)∗ab)) = 0 for all b ∈ A}

is the largest ideal in A contained in the kernel of the mapping % : A→ B.

Proof. Obviously, N% is a closed right ideal in A. Let a, b ∈ A. Since b∗a∗ab ≤
‖a∗a‖b∗b we get %((ab)∗ab) ≤ ‖a∗a‖%(b∗b). The latter inequality implies that N%
is a left ideal. In particular, if a is a positive element in N%, then a1/4 ∈ N%
and therefore %(a) = %((a1/4a1/4)∗a1/4a1/4) = 0. This implies that N% ⊆ ker %.

Clearly, if I is an ideal in A contained in ker %, then I ⊆ N%. �

1the author thanks Paul Skoufranis for providing the following short proof.
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Definition 2.3. We call the ideal in (3) the GNS-kernel of % : A→ B.

The ideal (3) is closely related to the notion of almost faithfulness introduced, in

the context of Exel systems, in [9]. Namely, following [9, Definition 4.1], we say

that % is almost faithful on an ideal I in A if

a ∈ I and %((ab)∗ab)) = 0 for all b ∈ A =⇒ a = 0.

The above implication is equivalent to the equality I ∩N% = {0}. In other words,

% is almost faithful on I ⇐⇒ I ⊆ N⊥% .

In particular, the annihilator N⊥% of the GNS-kernel of % is the largest ideal in

A on which % is almost faithful. We recall that % is faithful on a C∗-subalgebra

C ⊆ A if for any a ∈ C, %(a∗a) = 0 implies a = 0. The following lemma sheds

considerable light on the relationship between the two aforementioned notions.

Lemma 2.4. Let C ⊆ A be a C∗-subalgebra and consider the following conditions:

i) % is faithful on the ideal ACA,

ii) % is faithful on the hereditary C∗-subalgebra CAC,

iii) % is almost faithful on the ideal ACA.

Then i) ⇒ ii) ⇒ iii) and if A is commutative then the above conditions are

equivalent.

Proof. The inclusion CAC ⊆ ACA yields the implication i)⇒ ii).

ii) ⇒ iii). Let a ∈ N% and c ∈ C. Since N% is an ideal, we have %((acb)∗acb) = 0

for all b ∈ A. Taking b = c∗ and using faithfulness of % on CAC we infer that

(acc∗)∗acc∗ = 0. This implies that ac = 0. Accordingly, C ⊆ N⊥% and since N⊥%
is an ideal in A we get ACA ⊆ N⊥% .

Assume now that A is commutative and ACA ⊆ N⊥% . Consider an element ac of

ACA = AC, a ∈ A, c ∈ C, such that %((ac)∗ac) = 0. For all b ∈ A we have

%((acb)∗acb) = %((bac)∗bac) ≤ ‖b∗b‖%((ac)∗ac) = 0.

Thus (by almost faithfulness) ac = 0. Hence % is faithful on ACA = CA. �

There is a natural C∗-subalgebra of A on which % is multiplicative.

Definition 2.5. Let % : A→ B be a positive map. We call the set

(4) MD(%) := {a ∈ A : %(b)%(a) = %(ba) and %(a)%(b) = %(ab) for every b ∈ A}

the multiplicative domain of %.
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It is immediate that MD(%) is a C∗-subalgebra of A. Hence % : MD(%) →
B is a homomorphism of C∗-algebras. In the literature, see e.g. [42, p. 38],

multiplicative domains are considered for contractive completely positive maps,

which is due to the fact we express in Proposition 2.6 below. We recall that % is

completely positive if for every integer n > 0 the amplified map %(n) : Mn(A) →
Mn(B) obtained by applying % to each matrix element: %(n) ((aij)) = (%(aij)), is

positive, see [42, p. 5], [31, p. 39], or [52, IV, Definition 3.3]. It is not hard to

show, cf. [43, Remark 5.1], see [52, IV, Corollary 3.4], that a linear map % : A→ B

is completely positive if and only if
n∑

i,j=1

b∗i %(a∗i aj)bj ≥ 0, for all a1, ..., an ∈ A and b1, ..., bn ∈ B.

The following fact is a generalization of [42, Theorem 3.18] to not necessarily

unital completely positive maps on not necessarily unital C∗-algebras.

Proposition 2.6. Let % : A→ B be a contractive completely positive map between

C∗-algebras. Then

(5) MD(%) = {a ∈ A : %(a)∗%(a) = %(a∗a) and %(a)%(a)∗ = %(aa∗)}.

In particular, MD(%) is the largest C∗-subalgebra of A on which % restricts to a

homomorphism.

Proof. To show the equality (5) note that the argument of the proof of [42,

Theorem 3.18] applies, only modulo the fact that the Schwarz inequality

%(2)(a∗)%(2)(a) ≤ %(2)(a∗a), a ∈M2(A),

used there holds for arbitrary contractive completely positive maps, see [31,

Lemma 5.3 (ii)]. Plainly, (5) implies that for any C∗-subalgebra C of A such

that % : C → B is a homomorphism we have C ⊆MD(%). �

We recall that any positive map % : A → B is automatically completely positive

whenever A or B is commutative [52, Corollary 3.5, Proposition 3.9]. Of course

any homomorphism is a completely positive contraction. Also it is well known, cf.,

for instance, [52, III, Theorem 3.4, IV, Corollary 3.4 ], that if B is a C∗-subalgebra

of A then for a linear idempotent E : A→ B we have

E is contractive ⇐⇒ E is positive and B ⊆MD(E)

⇐⇒ E is completely positive and B ⊆MD(E)

An idempotent E satisfying the above equivalent conditions is called a conditional

expectation.
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Definition 2.7. Let % : A → B be a positive map. We say that % is strict if

{%(µλ)}λ∈Λ is strictly convergent in M(A) for some approximate unit {µλ}λ∈Λ

in A. We say that % is extendible if it extends to a strictly continuous mapping

% : M(A)→M(B).

Remark 2.8. The positive elements in A are strictly dense in the set of positive

elements in M(A). Thus if % is an extendible (completely) positive map, then

% : M(A) → M(B) is also (completely) positive. Clearly, every extendible map

is strict, and it is well known that for homomorphisms these notions are actually

equivalent.

2.2. Universal C∗-algebras. Defining a universal C∗-algebra for a given set of

generators G subject to a set of relations R can be tricky as free C∗-algebras

do not exist. A recent and perhaps the most compelling approach is elaborated

by Loring in [36], see [36] for references to previous approaches. We propose a

slightly more general framework that fits our setting. As in [36] we concentrate

on a class of representations of G that are determined by prescribed relations,

rather than on the relations themselves.

Definition 2.9. Let G be a set and let R be a certain class of maps from G to

C∗-algebras. We refer to elements of R as to representations of G. We define a

preorder relation on R by writing π - σ for any π, σ ∈ R such that the map

(6) σ(a) 7−→ π(a), a ∈ G,

extends to a (necessarily unique) homomorphism from C∗(σ(G)) onto C∗(π(G)).

We denote by ≈ the equivalence relation on R induced by this preorder: π ≈ σ

⇐⇒ π - σ and σ - π.

Remark 2.10. Let R be a class of representations of a set G. It is straightforward

to see that, if π, σ ∈ R are such that π ≈ σ, then the map (6) extends to an

isomorphism C∗(σ(G)) ∼= C∗(π(G)). Moreover, if π, σ ∈ R are upper bounds for

(R,-) then π ≈ σ.

Definition 2.11. Suppose that a class R of representations of a set G admits

an upper bound ι ∈ R, that is, π - ι for all π ∈ R. By the obvious abuse of

language, cf. Remark 2.10, we say that ι the universal representation of G and

the C∗-algebra

C∗(G,R) := C∗(ι(G))

is the universal C∗-algebra for R.
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Remark 2.12. By the definition of the universal C∗-algebra C∗(G,R), for any

π ∈ R the map ι(a) 7→ π(a), a ∈ G, extends to a (necessarily unique) epimor-

phism from C∗(ι(G)) onto C∗(π(G)). We will write equality between any two

C∗-algebras generated by ranges of two universal representations for the same

class of representations of the same set of generators.

Now, we give a condition on (G,R) that imply existence of an upper bound in

R. A version of this condition appears in all of the previous approaches starting

from Blackadar’s [4, Definition 1.1]. It appears also in Loring’s characterisation

[36, Theorem 3.1.1] of C∗-relations admitting universal C∗-algebras.

For any set of C∗-algebras Bi, i ∈ I, we denote their direct product by
∏
i∈I Bi,

so the elements of
∏
i∈I Bi are

∏
i∈I ai where ai ∈ Bi, i ∈ I, and supi∈I ‖ai‖ <∞.

Definition 2.13. We say that a class R of representations of a set G is closed

under products if for every set of mappings πi : G → Bi, i ∈ I, that belong to R
the following two conditions are satisfied:

i)
∏
i∈I πi(a) ∈

∏
i∈I Bi for all a ∈ G.

ii) there exists an injective homomorphism τ :
∏
i∈I Bi → B into a C∗-

algebra B such that the map π : G → B given by π(a) := τ
(∏

i∈I πi(a)
)
,

a ∈ G, belongs to R.

Proposition 2.14. If a class R of representations of a set G is closed under prod-

ucts then R has an upper bound and therefore the universal C∗-algebra C∗(G,R)

exists.

Proof. First we need to show that the collection R/ ≈ of equivalence classes

for ≈ form a set. To this end, we note that there is a Hilbert space H with the

property that any C∗-algebra B generated by |G| generators can be embedded into

B(H). Indeed, any GNS representation of B is determined by a function from the

set of generators to complex numbers, and the dimension of the resulting Hilbert

space cannot exceed the cardinality of the free ∗-algebra F(G) generated by G.

Hence, by GNS construction, there is a faithful representation of B on a Hilbert

space with dimension not exceeding |{f : G → C}| · |F(G)|. This implies our

claim.

Let H be the aforesaid Hilbert space and denote by F the set of all mappings

from G into B(H). For each π ∈ R we choose an embedding φπ : C∗(π(G)) →
B(H), so that φπ ◦ π ∈ F . We define an equivalence relation on F in a similar

fashion as we did for R. For π, σ ∈ F we write

π ≈F σ ⇐⇒ the map (6) extends to an isomorphism C∗(σ(G)) ∼= C∗(π(G)).
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It is straightforward to see that, for any π, σ ∈ R we have π ≈ σ if and only if

φπ ◦ π ≈F φσ ◦ σ. Thus the assignment R 3 π 7−→ φπ ◦ π ∈ F factors through to

a bijective assignment from R/ ≈ onto a subset I of the set F/ ≈F .

Accordingly, there is a set {πi}i∈I ⊆ R such that for any σ ∈ R we have

σ ≈ πi for some i ∈ I. Let π ∈ R be the product of these representations {πi}i∈I
as described in Definition 2.13, so that, π(a) := τ

(∏
i∈I πi(a)

)
, a ∈ G, for an

injective homomorphism τ :
∏
i∈I Bi → B. To see that π is an upper bound for

R, let σ ∈ R. Choose i0 ∈ I such that σ ≈ πi0 . Let Ψ : C∗(πi0(G)) → C∗(σ(G))

be the isomorphism determined by Ψ(πi0(a)) = σ(a), a ∈ G. Denote by pi0 :∏
i∈I Bi → Bi0 the projection onto Bi0 and let τ−1 denote the inverse to the

isomorphism τ :
∏
i∈I Bi → τ(

∏
i∈I Bi). Putting Φ := Ψ ◦ pi0 ◦ τ−1 we get

Φ(τ(a)) = (Ψ ◦ pi0)

(∏
i∈I

πi(a)

)
= Ψ(πi0(a)) = σ(a), for all a ∈ G.

Hence Φ : C∗(π(G)→ C∗(σ(G)) is the homomorphism showing that σ - π. �

In the present paper, we will consider only two types of generators and their

representations. One type comes from a C∗-correspondence X over a C∗-algebra

A. Then the set of generators is G = A ∪ X and we identify representations

σ of G with pairs (π, πX) where π = σ|A and πX = σ|X . Another type comes

from a C∗-dynamical system or an Exel system on a C∗-algebra A. Then the

set of generators is G = A ∪ {s} where s is an abstract element and we identify

representations σ ∈ R with pairs (π, S) where π = σ|A and S = σ(s). In the

latter case we will study the C∗-subalgebra C∗(ι(A) ∪ ι(A)ι(s)) of the universal

C∗-algebra C∗(G,R) = C∗(ι(G)) (which can be also viewed as a universal C∗-

algebra but with a different set of generators).

2.3. Relative Cuntz-Pimsner algebras. We assume that the reader is familiar

with the theory of Hilbert modules (for an introduction see, for instance, [31]).

A (right) C∗-correspondence over a C∗-algebra A is a right Hilbert A-module

X together with a left action of A on X given by a homomorphism φ of A

into the C∗-algebra L(X) of all adjointable operators on X: we write a · x =

φ(a)x. Sometimes C∗-correspondences are called Hilbert bimodules, see [9], [10].

However, it seems to become a standard to use the term Hilbert bimodule in

the sense of [6, Definition 3.1]. Namely, by a Hilbert bimodule over A we mean

a space X which is at the same time a right and a left C∗-correspondence and

the corresponding right 〈·, ·〉A and left A〈·, ·〉 A-valued inner products satisfy x ·
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〈y, z〉A = A〈x, y〉 · z, for all x, y, z ∈ X, cf. [22, Definition 3.1] or [27, Definition

1.10] and the remarks below these definitions.

Definition 2.15. A representation (π, πX) of a C∗-correspondence X consists of

a representation π : A→ B(H) in a Hilbert space H and a linear map πX : X →
B(H) such that

πX(a · x · b) = π(a)πX(x)π(b), πX(x)∗πX(y) = π(〈x, y〉A), a, b ∈ A, x ∈ X.

The C∗-algebra generated by π(A) ∪ πX(X) is denoted by C∗(π, πX).

Remark 2.16. If (π, πX) is a representation of a C∗-correspondence X then for

each x ∈ X we have ‖πX(x)‖2 = ‖π(〈x, x〉A)‖ ≤ ‖〈x, x〉A‖ = ‖x‖. Thus the

map πX is automatically contractive (it is isometric if π is faithful), and using

Proposition 2.14 one readily sees that a universal representation of X exists.

Definition 2.17 (Pimsner). We denote by (iA, iX) the universal representation

of a C∗-correspondence X and we call T (X) := C∗(iA, iX) the Toeplitz algebra

of X.

Remark 2.18. Originally, Pimsner [46] constructed the Toeplitz algebra T (X)

by means of the Fock representation of X, which as he noticed is the universal

representation of X.

We recall that the set K(X) of generalized compact operators on X is the closed

linear span of the operators Θx,y where Θx,y(z) = x〈y, z〉A for x, y, z ∈ X. In

particular, K(X) is an ideal in L(X). Any representation (π, πX) of X induces a

homomorphism (π, πX)(1) : K(X)→ B(H) which satisfies

(π, πX)(1)(Θx,y) = πX(x)πX(y)∗, (π, πX)(1)(T )πX(x) = πX(Tx)

for x, y ∈ X and T ∈ K(X), cf. [46, Page 202] or [21, Proposition 4.6.3].

Let J(X) := φ−1(K(X)). For any representation (π, πX) of X the restrictions

(π, πX)(1) ◦ φ|J(X) and π|J(X) yield two representations of J(X). Putting con-

straints on the set on which these two representations coincide leads us to the

following definition.

Definition 2.19 (Muhly and Solel). Let J be an ideal in J(X) = φ−1(K(X)).

We say that a representation (π, πX) of X is J-covariant if

(π, πX)(1)(φ(a)) = π(a), for all a ∈ J.

We denote by (jA, jX) the universal J-covariant representation of X and we call

the C∗-algebra O(J,X) := C∗(jA, jX) the relative Cuntz-Pimsner algebra deter-

mined by J .
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Remark 2.20. It is clear that the relative Cuntz-Pimsner algebra O(J,X) is nat-

urally isomorphic to the quotient of the Toeplitz algebra T (X) by the ideal gen-

erated by {iA(a)− (iA, iX)(1)(φ(a)) : a ∈ J}. Actually, Muhly and Solel [38, Def-

inition 2.18] introduced the C∗-algebras O(J,X) as quotients of T (X). The C∗-

algebra O(J(X), X), related to the ideal J(X), coincides with the (augmented)

C∗-algebra associated to X by Pimsner [46].

Katsura [22], [23] observed that among the relative Cuntz-Pimsner algebras

O(J,X), perhaps, the most natural one is determined by the ideal J equal to

(7) JX := (kerφ)⊥ ∩ J(X).

In particular, [38, Proposition 2.21] and [23, Proposition 3.3], see also [9, Lemma

2.3], imply the following proposition.

Proposition 2.21. Let X be a C∗-correspondence and let J be an ideal in J(X).

The universal representation jA : A → O(J,X) is injective if and only if J ⊆
(kerφ)⊥.

Definition 2.22 (Katsura [22], Definition 2.6). The (unrelative) Cuntz-Pimsner

algebra associated to a C∗-correspondence X is OX := O(JX , X) where JX is

Katsura’s ideal (7).

If the C∗-correspondence X is essential, that is if AX = X, we may restrict

our attention to representations (π, πX) where π is non-degenerate. This is due

to the following statement which was proved in [10] for a certain concrete C∗-

correspondence X. However, the proof uses only the fact that X is essential.

Lemma 2.23 ([10], Lemma 3.4). For any representation (π, πX) of an essential

C∗-correspondence X on the Hilbert space H, the subspace K = π(A)H is reducing

for (π, πX) and we have π|K⊥ = 0 and πX |K⊥ = 0.

Since all the C∗-correspondences considered in the text will be essential,

all the representations (π, πX) of C∗-correspondences will be as-

sumed to be non-degenerate,

in the sense that π is non-degenerate. It will force our universal homomorphisms

to be also non-degenerate. We recall that a homomorphism h : A → B be-

tween two C∗-algebras is non-degenerate if h(A) is non-degenerate in B, that is

if h(A)B = B.



16 BARTOSZ KOSMA KWAŚNIEWSKI

2.4. Exel’s and Exel-Royer’s crossed products. Initially, Exel defined his

crossed product for unital C∗-algebras [12], and then it was generalized in [10],

[35] to Exel systems that consist of extendible maps. Nevertheless, the definition

of the crossed product makes sense for an arbitrary Exel system and can be

expressed as follows.

Definition 2.24. Let α : A→ A be an endomorphism of a C∗-algebra A and let

L : A→ A be a positive linear map such that

(8) L(aα(b)) = L(a)b, for all a, b ∈ A.

Then L is called a transfer operator for α and the triple (A,α,L) is an Exel

system.

Definition 2.25. A representation of an Exel system (A,α,L) is a pair (π, S)

consisting of a non-degenerate representation π : A → B(H) and an operator

S ∈ B(H) such that

(9) Sπ(a) = π(α(a))S and S∗π(a)S = π(L(a)) for all a ∈ A.

A redundancy of a representation (π, S) of (A,α,L) is a pair (π(a), k) where a ∈ A
and k ∈ π(A)SS∗π(A) are such that

π(a)π(b)S = kπ(b)S, for all b ∈ A.

The Toeplitz algebra T (A,α,L) of (A,α,L) is the C∗-algebra generated by iA(A)∪
iA(A)t for a universal representation (iA, t) of (A,α,L). Exel’s crossed product

A×α,L N of (A,α,L) is the quotient C∗-algebra of T (A,α,L) by the ideal gener-

ated by the set

{iA(a)− k : a ∈ Aα(A)A and (iA(a), k) is a redundancy of (iA, t)}.

Existence of the universal representation (iA, t) of an Exel system (A,α,L) can

be deduced from Proposition 2.14, cf. the proof of Lemma 3.2 below. It can be

also obtained by realizing T (A,α,L) as a Toeplitz algebra of a C∗-correspondence

ML introduced by Exel in [12].

More specifically, let (A,α,L) be an Exel system. One makes A into a semi-

inner product (right)A-moduleAL by puttingm·a := mα(a), 〈m,n〉L := L(m∗n),

n,m ∈ AL, a ∈ A, and defines ML to be the associated Hilbert A-module:

ML := AL/N, N := {m ∈ AL : 〈m,m〉L = 0}.

Denoting by q : AL →ML the quotient map one gets, cf. [12], [9], that

a · q(m) := q(am), m ∈ AL, a ∈ A,
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yields a well defined left action of A on ML making ML into a C∗-correspondence.

We note that A ·ML = ML, that is ML is an essential C∗-correspondence. More-

over, the kernel of the left action of A on ML coincides with the GNS-kernel NL
of L, cf. Definition 2.3.

The following fact was proved in [10, Lemmas 3.2 and 3.3] for extendible Exel

systems. However, the proofs exploit only extendability of a transfer operator.

We will show in Proposition 4.2 below, that this is automatic. Another reason for

omitting the proof of the next Proposition 2.26 is that it will follow from our more

general results, cf. Corollary 4.5. We include it here, for the sake of discussion.

Proposition 2.26. We have a one-to-one correspondence between representa-

tions (π, S) of (A,α,L) and representations (π, πML) of the C∗-correspondence

ML. In particular, we have an isomorphism T (A,α,L) ∼= T (ML).

Previous versions of the above result were a point of departure in [14]. More

specifically, the authors of [14] considered ‘partial Exel systems’ (A,α,L) where L
is not everywhere defined and α may attain values outside of A. For such triples

they defined a crossed product O(A,α,L), in essence, simply to be OML , where

ML is a generalization of the C∗-correspondence defined above to the ‘partial

case’. In the present paper we will only make use of [14, Definition 1.6] applied

to ‘global’ Exel systems. Thus we adopt the following definition.

Definition 2.27. The Exel-Royer’s crossed product O(A,α,L) associated to an

Exel system (A,α,L) is the quotient of T (A,α,L) by the ideal generated by the

set

{iA(a)− k : a ∈ JML and (iA(a), k) is a redundancy of (iA, t)}
where JML is Katsura’s ideal (7) associated to the C∗-correspondence ML.

Remark 2.28. Since the kernel of the left action of A on ML is equal to NL,

we have JML = N⊥L ∩ J(ML). It can be readily deduced from Proposition 2.26

and Remark 2.20, see [7, Proposition 4.5], that we have a natural isomorphism

O(A,α,L) ∼= OML .

3. Crossed products by completely positive maps

Throughout this section, we fix a completely positive map % : A→ A, and refer

to the pair (A, %) as to a C∗-dynamical system. We introduce relative crossed

products C∗(A, %; J) as quotients of a certain Toeplitz algebra. Then we realize

them as relative Cuntz Pimsner algebras and as universal C∗-algebras generated

by appropriately defined covariant representations of (A, %). At the end of this
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section we discuss two important special cases when: 1) % is multiplicative; 2) A

is commutative.

3.1. Crossed products. Following the original idea of Exel [12], we first define

a Toeplitz algebra, and then construct crossed products by ‘eliminating redun-

dancies’ in the latter.

Definition 3.1. A representation of (A, %) is a pair (π, S) consisting of a non-

degenerate representation π : A→ B(H) and an operator S ∈ B(H) such that

(10) S∗π(a)S = π(%(a)) for all a ∈ A.

If π is faithful we call (π, S) faithful. We denote by C∗(π, S) the C∗-algebra

generated by π(A) ∪ π(A)S. We define the Toeplitz algebra of (A, %) to be the

C∗-algebra T (A, %) := C∗(iA(A), t) where (iA, t) is the universal representation

of (A, %). Hence for any representation (π, S) of (A, %) the assignments

(11) iA(a) 7−→ π(a), iA(a)t 7−→ π(a)S, a ∈ A,

define the epimorphism from T (A, %) onto C∗(π, S).

Lemma 3.2. Any C∗-dynamical system (A, %) admits a universal representation

and hence the Toeplitz algebra T (A, %) exists.

Proof. Let (π, S) be a representation of (A, %) and let {µλ}λ∈Λ be an approxi-

mate unit in A. Using non-degeneracy of π and relation (10) we get

‖S‖2 = lim
λ∈Λ
‖π(µλ)S‖2 = lim

λ∈Λ
‖S∗π(µ2

λ)S‖ = lim
λ∈Λ
‖π(%(µ2

λ))‖ ≤ ‖%‖.

Now let {(πi, Si)}i∈I be a set of representation, where πi : A → B(Hi) and

Si ∈ B(Hi). The above inequality implies that the direct product
∏
i∈I Si is an

element of
∏
i∈I B(Hi). In particular, embedding

∏
i∈I B(Hi) in a non-degenerate

way into B(H) for some Hilbert space H, we see that (
∏
i∈I πi,

∏
i∈I Si) is a

representation of (A, %). Thus the assertion follows by Proposition 2.14. �

To study the structure of C∗(π, S) = C∗(π(A)∪ π(A)S) one needs to understand

the relationship between the following ‘monomials’:

π(a)Sπ(b)Sπ(c), π(a)S∗π(b)S∗π(c), π(a)S∗π(b)Sπ(c), π(a)Sπ(b)S∗π(c).

As we will see in the course of our analysis, the first two behave like ‘simple

tensors’, and by (10) the third one is in π(A). Establishing the relationship with

the fourth ‘monomial’ requires determining additional data which is encoded in

an ideal that we are about to introduce. In the context of C∗-correspondences,
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this ideal is closely related with the one considered in [23, Definition 5.8], and is

called the ideal of covariance in [30, Definition 4.5].

Definition 3.3. By a redundancy of a representation (π, S) of (A, %) we mean a

pair (π(a), k) such that a ∈ A, k ∈ π(A)Sπ(A)S∗π(A) and

π(a)π(b)S = kπ(b)S for all b ∈ A.

Let J(π,S) be the set of elements a ∈ A such that (π(a), k) is a redundancy of

(π, S) with π(a) = k. Clearly, it is an ideal in A and

J(π,S) = {a ∈ A : π(a) ∈ π(A)Sπ(A)S∗π(A)}.

We call it the ideal of covariance for (π, S).

Remark 3.4. Using (10), we see that π(A)Sπ(A)S∗π(A) is a C∗-algebra that acts

on the space π(A)S. Moreover, this action is faithful. Thus, if (π(a), k) is a

redundancy of (π, S), then k is uniquely determined by a, and we have π(a) = k

if and only if a ∈ J(π,S).

Let us consider the GNS-kernel N% of %, see (3), and a representation (π, S)

of (A, %). If a ∈ N% then the pair (π(a), 0) is necessarily a redundancy because

‖π(a)π(b)S‖2 ≤ ‖%((ab)∗ab))‖ = 0, for all b ∈ A. In particular, a ∈ J(π,S) ∩ N%
implies π(a) = 0. Accordingly, if (π, S) is faithful then J(π,S) ⊆ N⊥% . An argument

of this sort stands behind Katsura’s motivation for introducing the ideal (7). It

explains the special role of the ideal N⊥% in the following definition.

Definition 3.5. We define the crossed product C∗(A, %) of A by % to be the

quotient of the Toeplitz C∗-algebra T (A, %) by the ideal generated by the set

{iA(a)− k : a ∈ N⊥% and (iA(a), k) is a redundancy of (iA, t)}.

For any ideal J in A we define the relative crossed product C∗(A, %; J) to be the

quotient of the Toeplitz C∗-algebra T (A, %) by the ideal generated by the set

{iA(a)− k : a ∈ J and (iA(a), k) is a redundancy of (iA, t)}.

We denote by (jA, s) the representation of (A, %) that generates C∗(A, %; J).

3.2. Crossed products as relative Cuntz-Pimsner algebras. A C∗-cor-

respondence associated to a completely positive map was already considered

by Paschke [43, section 5] and sometimes is called the GNS or the KSGNS-

correspondence (for Kasparov, Stinespring, Gelfand, Naimark, Segal), cf. [31],

[19]. Namely, we let X% to be a Hausdorff completion of the algebraic tensor
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product A�A with respect to the seminorm associated to the A-valued sesquilin-

ear form given by

(12) 〈a� b, c� d〉% := b∗%(a∗c)d, a, b, c, d ∈ A.

In the sequel we use the symbol a ⊗ b to denote the image of the simple tensor

a� b in X%. The space X% becomes a C∗-correspondence over A with the left and

right actions determined by: a · (b⊗ c) = (ab)⊗ c and (b⊗ c) · a = b⊗ (ca) where

a, b, c ∈ A.

Definition 3.6. We call X% defined above the C∗-correspondence of (A, %).

Remark 3.7. Clearly, the C∗-correspondence X% is essential. The GNS-kernel (3)

of % coincides with the kernel of the left action of A on X%. Hence the left action

of A on X% is faithful if and only if % is almost faithful on A.

If A is not unital we give a meaning to the symbol a ⊗ 1, a ∈ A, using the

following lemma.

Lemma 3.8. Let {µλ}λ∈Λ be an approximate unit in A. Then, for any a ∈ A,

the limit

(13) a⊗ 1 := lim
λ∈Λ

a⊗ µλ

exists and defines a bounded linear map A 3 a 7→ a⊗ 1 ∈ X% of norm ‖%‖ 1
2 .

Proof. Since ‖a⊗ (µλ−µλ′)‖2 = ‖(µλ−µλ′)%(a∗a)(µλ−µλ′)‖ tends to zero, as

λ and λ′ tend to ‘infinity’, the net {a⊗ µλ}λ∈Λ is Cauchy and hence convergent.

Since

sup
a∈A,‖a‖=1

‖a⊗ 1‖2 = sup
a∈A,‖a‖=1

‖%(a∗a)‖ = ‖%‖,

we see that A 3 a 7→ a⊗ 1 ∈ X% is a bounded operator of norm ‖%‖ 1
2 . �

Remark 3.9. Let {µλ}λ∈Λ be an approximate unit in A. The limit

(14) 1⊗ a := lim
λ∈Λ

µλ ⊗ a, a ∈ A,

in general may not exist. However, if % is strict then it does exist and the map

A 3 a 7→ 1⊗ a ∈ X% is linear bounded, again of norm ‖%‖ 1
2 , see [31, p. 50].

The mapping in the latter remark, which exists when % is strict, plays a key role

in the construction of KSGNS-dilation of %, cf. [31, Theorem 5.6]. We adjust this

construction to get a description of representations of the C∗-correspondence X%

for arbitrary %.
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Proposition 3.10. Let X% be the C∗-correspondence of (A, %). We have a one-

to-one correspondence between representations (π, S) of (A, %) and representations

(π, πX%) of X% where

(15) πX%(a⊗ b) = π(a)Sπ(b), a⊗ b ∈ X%,

(16) S∗πX%(a⊗ b) = π(%(a)b), a, b ∈ A, S∗|(πX% (X%)H)⊥ ≡ 0.

For the corresponding representations, we have C∗(π, S) = C∗(π(A) ∪ πX%(X%))

and for any approximate unit {µλ}λ∈Λ in A:

(17) S = s- lim
λ∈Λ

πX%(µλ ⊗ 1)

where the limit is taken in the strong operator topology. If % is strict, the limit in

(17) is strictly convergent in M(C∗(π, S)), and the multiplier S ∈ M(C∗(π, S))

is determined by the formula Sπ(a) = πX%(1⊗ a), a ∈ A, cf. Remark 3.9.

Proof. Let (π, S) be a representation of (A, %) on H. The following computation(∑
i

π(ai)Sπ(bi)
)∗∑

j

π(cj)Sπ(dj) =
∑
i,j

π(b∗i )S
∗π(a∗i cj)Sπ(dj)

=
∑
i,j

π(b∗i %(a∗i cj)dj)

= π(〈
∑
i

ai ⊗ bi,
∑
j

cj ⊗ dj〉%)

implies that the mapping (15) extends to a linear contractive map πX% : X% →
B(H). It is evident that (π, πX%) is a representation of X%. We have S∗πX%(a⊗
b) = S∗π(a)Sπ(b) = π(%(a)b), for any a, b ∈ A. Since π is non-degenerate,

the range of S is contained in π(A)SH = π(A)Sπ(A)H ⊆ πX%(X%)H. Hence

S∗|(πX% (X%)H)⊥ ≡ 0 and (16) holds. Furthermore, note that for any approximate

unit {µλ}λ∈Λ in A, the net {π(µλ)}λ∈Λ converges strongly to the identity in B(H).

Thus by Lemma 3.8 and (15), we have πX%(a⊗1) = limλ∈Λ π(a)Sπ(µλ) = π(a)S,

for any a ∈ A. Therefore

π(A)S = πX%(A⊗ 1) ⊆ πX%(X%) = π(A)Sπ(A).

Hence C∗(π, S) = C∗(π(A) ∪ π(A)S) = C∗(π(A) ∪ π(A)Sπ(A)) = C∗(π(A) ∪
πX%(X%)).

Suppose now that (π, πX%) is a representation of X%. We need to show that

there exists an operator S ∈ B(H) such that (π, S) is a representation of (A, %)

satisfying (15). Let {µλ}λ∈Λ be an approximate unit in A and consider the net of

bounded operators Sλ := πX%(µλ ⊗ 1), λ ∈ Λ. Note that Sλπ(a) = πX%(µλ ⊗ a),
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a ∈ A. To see that (17) determines a bounded operator it suffices to show that

the net {Sλ}λ∈Λ is strongly Cauchy. To this end, let a ∈ A, h ∈ H and λ ≤ λ′,

in the directed set Λ. Then

‖(Sλ − Sλ′)π(a)h‖2 = ‖πX%((µλ − µλ′)⊗ a)h‖2

= 〈h, π(〈(µλ − µλ′)⊗ a), (µλ − µλ′)⊗ a〉%)h〉

= 〈h, π(a∗%((µλ − µλ′)2)a)h〉
≤ 〈h, π(a∗%(µλ − µλ′)a)h〉
= 〈π(a)h, π(%(µλ − µλ′))π(a)h〉.

Since the net {π(%(µλ))}λ∈Λ is strongly convergent the last expression tends to

zero. Hence S := s- limλ∈Λ Sλ defines a bounded operator. Let a, b ∈ A. As

‖(a − aµλ) ⊗ b‖2 = ‖b∗%((a∗ − µλa
∗)(a − aµλ))b‖ tends to zero, we get that

a⊗ b = limλ∈Λ aµλ ⊗ b in X%. Thus

πX%(a⊗ b) = lim
λ∈Λ

πX%(aµλ ⊗ b) = π(a) lim
λ∈Λ

Sλπ(b) = π(a)Sπ(b),

that is (15) holds. Moreover, for any a, b ∈ A and h, f ∈ H we have

〈πX%(a⊗ b)h, Sf〉 = lim
λ∈Λ
〈πX%(a⊗ b)h, πX%(µλ ⊗ 1)f〉

= lim
λ∈Λ
〈π(%(µλa)b)h, f〉 = 〈π(%(a)b)h, f〉.

Hence S∗πX%(a ⊗ b) = π(%(a)b) and therefore S∗π(a)Sπ(b) = S∗πX%(a ⊗ b) =

π(%(a))π(b). Since π is non-degenerate this implies (10).

Suppose now that % is strict. Then, in view of Remark 3.9, for any a ∈ A the

following limit exists

lim
λ∈Λ

Sλπ(a) = lim
λ∈Λ

πX%(µλ ⊗ a) = πX%(1⊗ a).

Similarly, we get limλ∈Λ π(a)Sλ = πX%(a⊗1). Thus, since π(A) is non-degenerate

in C∗(π, S) = C∗(π(A)∪π(A)Sπ(A)), the limit in (17) is strictly convergent. �

Remark 3.11. Let (jA, s) be the representation of (A, %) that generates the relative

crossed product C∗(A, %; J). By the above proposition s is an element of the

enveloping von Neumann algebra C∗(A, %; J)∗∗ and if % is strict then actually

s ∈M(C∗(A, %; J)).

The following lemma is a translation of [23, Proposition 3.3] to our setting, cf.

also [9, Lemma 3.5]. It implies that when considering the relative crossed prod-

ucts it suffices to restrict attention to ideals J contained in the ideal J(X%) =

φ−1(K(X%)). It will also lead us to the main result of this subsection.
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Lemma 3.12. Let (π, S) be a faithful representation of (A, %) and let (π, πX%) be

the representation of X% with πX% given by (15). A pair (π(a), k) is a redundancy

of (π, S) if and only if a ∈ J(X%) and k = (π, πX%)
(1)(φ(a)).

Proof. Note that (π, πX%)
(1) : K(X%)→ π(A)Sπ(A)S∗π(A). Thus if a ∈ J(X%)

and k = (π, πX%)
(1)(φ(a)) then k ∈ π(A)Sπ(A)S∗π(A). Moreover, for any b, c ∈ A

we have

π(a)π(b)Sπ(c) = π(a)πX%(b⊗ c) = πX%(φ(a)b⊗ c) = (π, πX%)
(1)(φ(a))πX%(b⊗ c)

= (π, πX%)
(1)(φ(a))π(b)Sπ(c).

Hence by non-degeneracy of π, we see that (π(a), k) is a redundancy.

Now let (π(a), k) be any redundancy. Then k = (π, πX%)
(1)(t) for a certain t ∈

K(X%), and for any b, c ∈ A we have

πX%(φ(a)b⊗ c) = π(a)πX%(b⊗ c) = π(a)π(b)Sπ(c) = kπ(b)Sπ(c)

= (π, πX%)
(1)(t)πX%(b⊗ c) = πX%(t(b⊗ c)).

Since faithfulness of π implies injectivity of πX% , we get φ(a)b⊗ c = tb⊗ c, for all

b, c ∈ A. Consequently, φ(a) = t as desired. �

Theorem 3.13. Let X% be the C∗-correspondence of (A, %). For any ideal J in

A we have

C∗(A, %; J) = C∗(A, %; J ∩ J(X%)) ∼= O(J ∩ J(X%), X%).

The universal homomorphism jA : A→ C∗(A, %; J) is injective if and only if % is

almost faithful on J∩J(X%), that is if and only if J∩J(X%) ⊆ N⊥% . In particular,

C∗(A, %) ∼= OX%
and jA : A→ C∗(A, %) is injective.

Proof. By Proposition 3.10 Toeplitz algebras T (A, %) and T (X%) are naturally

isomorphic and identifying them explicitly we may assume that the universal

representation (iA, iX%) of X% in T (X%) satisfies iX%(a ⊗ b) = iA(a)t iA(b) for

a, b ∈ A. Then T (A, %) = T (X%) and by Lemma 3.12

{iA(a)− k : a ∈ J and (iA(a), k) is a redundancy of (iA, t)}
= {iA(a)− k : a ∈ J ∩ J(X%) and (iA(a), k) is a redundancy of (iA, t)}(18)

= {iA(a)− (iA, iX%)
(1)(φ(a)) : a ∈ J ∩ J(X%)}.

Hence the three algebras C∗(A, %; J), C∗(A, %; J ∩ J(X%)) and O(J ∩ J(X%), X%)

arise as quotients of the same algebra by the same ideal, cf. Remark 2.20. Thus
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they are isomorphic. For the remaining part of the assertion apply Proposition

2.21 and the fact that (kerφ)⊥ = N⊥% . �

Remark 3.14. In [49, Subsection 3.3], a crossed product by a completely positive

map % was defined as Pimsner’s (augmented) C∗-algebra associated to the C∗-

correspondenceX%. Thus Schweizer’s crossed product is isomorphic to the relative

crossed product C∗(A, %;A) = C∗(A, %; J(X%)).

Remark 3.15. Using the notion of multiplicative domain, an interaction (V,H)

on a C∗-algebra A introduced by Exel in [13, Definition 3.1] can be defined as a

pair of positive maps V,H : A→ A such that

VHV = V, HVH = H, V(A) ⊆MD(H), H(A) ⊆MD(V).

Then V and H are automatically contractive completely positive maps, see [13,

Corollary 3.3]. In [28] the author considered an interaction (V,H) on a unital C∗-

algebra A such that the ranges V(A), H(A) are corners in A. The crossed product

C∗(A,V,H) defined in [28, Definition 2.10] is a universal C∗-algebra generated

by a copy of A and an operator s subject to relations

V(a) = sas∗ and H(a) = s∗as for all a ∈ A.

By [28, Corollary 2.16], C∗(A,V,H) coincides with the covariance algebra as-

sociated to (V,H) in [13]. The C∗-correspondences XV and XH are (mutually

opposite) Hilbert bimodules, see [28, Lemma 2.11]. Hence by [28, Proposition

2.14] and [22, Proposition 3.7], C∗(A,V,H) is isomorphic to both OXV and OXH .

In particular, by Theorem 3.13, we get

(19) C∗(A,V,H) ∼= C∗(A,V) ∼= C∗(A,H),

where C∗(A,V) and C∗(A,H) are crossed products in the sense of Definition 3.5.

3.3. Universal description and gauge-invariant uniqueness theorem. We

describe the C∗-algebra C∗(A, %; J) as a universal object in the following way.

Definition 3.16. Let J be an ideal in A. We say that a representation (π, S) of

(A, %) is J-covariant if J∩J(X%) ⊆ J(π,S) or just covariant if N⊥% ∩J(X%) ⊆ J(π,S).

Proposition 3.17. Let J be an ideal in A. The crossed product C∗(A, %; J) is

universal with respect to J-covariant representations of (A, %), that is (jA, s) is

J-covariant and for every J-covariant representation (π, S) of (A, %) the mapping

(20) jA(a) 7−→ π(a), jA(a)s 7−→ π(a)S, a ∈ A,

extends to a (necessarily unique) epimorphism π oJ S : C∗(A, %; J)→ C∗(π, S).
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Proof. That (jA, s) is J-covariant follows from the equality (18) and the defini-

tion of C∗(A, %; J). Let (π, S) be a J-covariant representation of (A, %), and let

π o{0} S : T (A, %)→ C∗(π, S) be the epimorphism determined by (11). Clearly,

πo{0}S maps redundancies of (iA, iX%) onto redundancies of (π, S). Thus in view

of (18), using J ∩ J(X%) ⊆ J(π,S), we conclude that π o{0} S factors through to

the desired epimorphism π oJ S : C∗(A, %; J)→ C∗(π, S). �

Using Katsura’s gauge-invariant uniqueness theorem for Cuntz-Pimsner algebras

[23, Theorem 6.4] we get the following version of this standard tool for C∗(A, %).

One could formulate a more general result for crossed products C∗(A, %; J), cf.

for instance [27, Theorem 9.1], but we will not need it here.

Proposition 3.18. Let (π, S) be a covariant representation of (A, %). The epi-

morphism given by (20) is an isomorphism:

C∗(π, S) ∼= C∗(A, %)

if and only if (π, S) is faithful and there exists a strongly continuous action β :

T → Aut(C∗(π, S)) such that βz(π(a)) = π(a) and βz(π(a)S) = zπ(a)S for all

a ∈ A and z ∈ T.

Proof. If (π, S) is a faithful covariant representation of (A, %) then by Lemma

3.12 the corresponding representation (π, πX%) of X% is covariant in the sense of

[23, Definition 3.4]. Since C∗(A, %) ∼= OX% , by Theorem 3.13, it suffices to apply

[23, Theorem 6.4]. �

3.4. The case when % is multiplicative. In this section, we assume that % is

multiplicative and we denote it by α. In other words, we assume that α : A→ A

is an endomorphism. We show that our relative crossed products C∗(A,α; J)

coincide with various crossed products by endomorphisms appearing in the lit-

erature. The latter are typically studied in the case where α is extendible. We

warn the reader that representations of endomorphisms are considered in a dif-

ferent convention than we adopted in Definition 3.1. For the sake of discussion

we include the following definition.

Definition 3.19. Let α : A→ A be an extendible endomorphism and let J be an

ideal in A. We say that (π, U) is a representation of the endomorphism α if (π, S),

where S = U∗, is a representation of (A,α) in the sense of Definition 3.1. Thus

we assume that (π, U) consists of a non-degenerate representation π : A→ B(H)

and an operator U ∈ B(H) such that

(21) Uπ(a)U∗ = π(α(a)) for all a ∈ A.
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Further under these assumptions:

i) We say that (π, U) is a J-covariant representation of α if

J ⊆ {a ∈ A : U∗Uπ(a) = π(a)}.

We put C∗endo(A,α; J) := C∗(iA(A) ∪ iA(A)u) where (iA, u) is the uni-

versal J-covariant representation of the endomorphism α. We also put

C∗endo(A,α) := C∗endo(A,α; (kerα)⊥).

ii) We say that (π, U) is isometric if U is an isometry. The Stacey’s crossed

product is Ao1
α N := C∗({iA(a)unu∗m : a ∈ A, n,m ∈ N}) where (iA, u)

is the universal isometric representation of α.

iii) We say that (π, U) is partial-isometric if

(22) U is a partial isometry and U∗U belongs to the commutant of A.

The partial-isometric crossed product is A oα N := C∗(iA(A) ∪ uiA(A))

where (iA, u) is the universal partial-isometric representation of α.

Remark 3.20. The relation (21) implies that U is necessary a partial isometry

(cf. Proposition 3.21 below). All of the authors mentioned below assumed that

the universal operator u belongs to the multiplier algebra of the corresponding

crossed product. We did not require that explicitly in Definition 3.19 but it follows

from the axioms (see the second part of Proposition 3.26). Moreover, we have the

following comments:

i). The crossed product C∗endo(A,α; J) was introduced in [30, Definition 1.12]

in the case A is unital. It was generalized to the non-unital case in [29, Definition

4.8]. These papers deal only with the ideals J contained in (kerα)⊥. However, as

explained, for instance in [29, Remark 4.3] or [30, Subsection 5.3], if J ( (kerα)⊥,

then there is a canonical quotient system (A/R,αR) such that the image qR(J) of

J in A/R is contained in (kerαR)⊥ and C∗endo(A,α; J) ∼= C∗endo(A/R,αR; qR(J)).

ii). The crossed product A o1
α N was introduced in [51, Definition 3.1] as a

crossed product of multiplicity 1. The author of [51] did not assume explicitly

that α is extendible but he uses extendibility of α in his arguments. We note that

a representation (π, U) of α is isometric if and only if it is A-covariant.

iii). The crossed product A oα N was defined in [37, p. 73] (in a semigroup

context) essentially as Fowler’s Toeplitz crossed product [17, p. 344], cf. [17,

Proposition 3.4] or [37, Proposition 4.7].

The fact that the following covariance relation (23) is automatic went unnoticed

in a few papers preceding [30], cf. [30, Remark 1.3].
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Proposition 3.21. Let α : A → A be an endomorphism and let (π, S) be a

representation of (A,α), in the sense of Definition 3.1. Then we automatically

have that S is a partial isometry and

(23) π(a)S = Sπ(α(a)), for all a ∈ A.

In particular, the projection SS∗ belongs to the commutant of π(A), and the ideal

of covariance for (π, S), in the sense of Definition 3.3, is given by the formula

(24) J(π,S) = {a ∈ A : SS∗π(a) = π(a)}.

Proof. Let {µλ}λ∈Λ be an approximate unit in A. Multiplicativity of α im-

plies that the increasing net {π(α(µλ))}λ∈Λ converges strongly to a projection

in B(H). By (10), and non-degeneracy of π, we have s- limλ∈Λ π(α(µλ)) =

s- limλ∈Λ S
∗π(µλ)S = SS∗. Hence S is a partial isometry. Following the ar-

gument in the proof of [30, Lemma 1.2], with U = S∗, we get the commutation

relation (23).

Now, by (23) and its adjoint version (S∗π(a) = π(α(a))S∗, a ∈ A) one gets

SS∗π(a) = Sπ(α(a))S∗ = π(a)SS∗, for a ∈ A. Hence SS∗ belongs to the com-

mutant of π(A).

By (23) we have π(A)Sπ(A)S∗π(A) = Sπ(α(A)Aα(A))S∗. Since S is a partial

isometry, this implies that J(π,S) ⊆ {a ∈ A : SS∗π(a) = π(a)}. Conversely, for

any a ∈ A such that SS∗π(a) = π(a), again by (23), we have

π(a) = SS∗π(a) = Sπ(α(a))S∗ ∈ Sπ(α(A)Aα(A))S∗ = π(A)Sπ(A)S∗π(A).

This proves (24). �

Remark 3.22. If A is unital and (π, U) is a representation of α (as in Definition

3.19), then the set I(π,U) := {a ∈ A : U∗Uπ(a) = π(a)} was called in [30,

Definition 1.7] the ideal of covariance for (π, U). In view of (24) we have I(π,U) =

J(π,S) where S = U∗.

The following lemma implies that in the definition of crossed products by ex-

tendible endomorphisms we can put the generating operator either on the left or

on the right of the generating algebra (the outcome will be the same).

Lemma 3.23. If α : A→ A is an extendible endomorphism and (π, S) is repre-

sentation of (A,α), then

C∗(π(A) ∪ π(A)S) = C∗(π(A) ∪ Sπ(A)) = C∗({π(a)S∗nSm : a ∈ A, n,m ∈ N}).

Proof. By (23) we have π(A)S = Sπ(α(A)) ⊆ Sπ(A). Thus we get

C∗(π(A) ∪ π(A)S) ⊆ C∗(π(A) ∪ Sπ(A)) ⊆ C∗({π(a)S∗nSm : a ∈ A, n,m ∈ N}).
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We show that the rightmost algebra is contained in the leftmost one. Recall that

for any approximate unit {µλ}λ∈Λ in A the net {π(α(µλ))}λ∈Λ converges strongly

to S∗S, cf. the proof Proposition 3.21. Moreover, since α is extendible, for any

a ∈ A, the net {aα(µλ)}λ∈Λ converges in norm (to aα(1)). Thus for any a ∈ A,

using the adjoint of (23), we get

π(a)S∗ = π(a)S∗SS∗ = lim
λ∈Λ

π(aα(µλ))S∗ = lim
λ∈Λ

π(a)S∗π(µλ) ∈ π(A)S∗π(A)

(π(A)S∗π(A) is a closed space by the Cohen-Hewitt Factorization Theorem).

Hence π(A)S∗ ⊆ π(A)S∗π(A). By (23), we also have π(A)S ⊆ Sπ(A). The last

two inclusions, used inductively, give us that

π(A)S∗nSm ⊆ (π(A)S∗)...(π(A)S∗)︸ ︷︷ ︸
n times

(π(A)S)...(π(A)S)︸ ︷︷ ︸
m times

.

Hence C∗({π(a)S∗nSm : a ∈ A, n,m ∈ N}) ⊆ C∗(π(A) ∪ π(A)S). �

Corollary 3.24. For any extendible endomorphism α : A → A we have that

Ao1
α N = C∗endo(A,α;A) and Aoα N = C∗endo(A,α; {0}).

Proof. Since a representation (π, U) of α is isometric if and only if it is A-

covariant, we may identify the corresponding universal representations. Then

applying Lemma 3.23 to (iA, u
∗) we get

Ao1
α N = C∗({iA(a)unu∗m : a ∈ A, n,m ∈ N}) = C∗(iA(A) ∪ iA(A)u)

= C∗endo(A,α;A).

Similarly, using Proposition 3.21 we see that partial-isometric representations of α

coincide with {0}-covariant representations of α (which are simply representations

of α). Hence identifying the corresponding universal representations and applying

Lemma 3.23 to (iA, u
∗) we get A oα N = C∗(iA(A) ∪ uiA(A)) = C∗(iA(A) ∪

iA(A)u) = C∗endo(A,α; {0}). �

The crossed products C∗endo(A,α; J) can be realized as relative Cuntz-Pimsner

algebras associated to a certain C∗-correspondence Eα associated to α (this fact is

extensively discussed in [30] in the case when A is unital). The C∗-correspondence

in question was already considered by Pimsner [46] and it is defined by the for-

mulas

Eα := α(A)A, 〈x, y〉A := x∗y, a · x · b := α(a)xb, x, y ∈ α(A)A, a, b ∈ A.

Pimsner’s C∗-correspondence Eα and KSGNS C∗-correspondence Xα are natu-

rally isomorphic.
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Lemma 3.25. If α : A → A is an endomorphism, then the map Xα 3 a ⊗ b →
α(a)b ∈ Eα determines an isomorphism of C∗-correspondences Xα

∼= Eα. In

particular, we have J(Xα) = J(Eα) = A.

Proof. We leave it to the reader, as an easy exercise, to check that the prescribed

map determines the desired isomorphism. For every a ∈ A and x ∈ E we can write

a = a1a2, where a1, a2 ∈ A, and then a · x = Θα(a1),α(a∗2)x. Thus J(Eα) = A. �

Now we are ready to state the main result of this subsection.

Proposition 3.26. Let α : A → A be an endomorphism and let J be an ideal

in A. A representation (π, S) of (A,α) is J-covariant (in the sense of Definition

3.16) if and only if

(25) J ⊆ {a ∈ A : SS∗π(a) = π(a)}.

Thus the C∗-algebra C∗(A,α; J) is generated by jA(A) ∪ jA(A)s where (jA, s) is

a universal representation for the representations of (A,α) satisfying (25).

If α is extendible, then s ∈M(C∗(A,α; J)), C∗(A,α; J) is generated by jA(A)∪
sjA(A), and the assignments jA(a)→ iA(a), sjA(a)→ u∗iA(a), a ∈ A, establish

the isomorphisms

C∗(A,α; J) ∼= C∗endo(A,α; J), C∗(A,α) ∼= C∗endo(A,α),

C∗(A,α;A) ∼= Ao1
α N, C∗(A,α; {0}) ∼= Aoα N.

Proof. By the formula (24) and the second part of Lemma 3.25 we get that a

representation (π, S) of (A,α) is J-covariant if and only if (25) holds. Then the

universal picture of C∗(A,α; J) follows by Proposition 3.17.

Assume now that α is extendible. Then s ∈M(C∗(A,α; J)) by the last part of

Proposition 3.10, and C∗(A,α; J) = C∗(jA(A) ∪ sjA(A)) by Lemma 3.23. Thus

the universal descriptions immediately give us the isomorphism C∗(A,α; J) ∼=
C∗endo(A,α; J). Taking J = (Nα)⊥ = (kerα)⊥, we get C∗(A,α) ∼= C∗endo(A,α).

By Corollary 3.24 we get C∗(A,α;A) ∼= Ao1
α N and C∗(A,α; {0}) ∼= Aoα N. �

3.5. The case when A is commutative. In this subsection, we assume that

A = C0(D) is the algebra of continuous, vanishing at infinity functions on a

locally compact Hausdorff space D. We let Mes(D) be the space of Radon positive

measures on D and treat Mes(D) as the subset of the dual space A∗ equipped

with the w∗-topology. Let us start with a few simple observations.

Lemma 3.27. We have a one-to-one correspondence given by the relation

%(a)(x) =

∫
D

a(y)dµx(y), x ∈ D, a ∈ A,



30 BARTOSZ KOSMA KWAŚNIEWSKI

between positive maps % on A and continuous, uniformly bounded maps

(26) D 3 x µ7−→ µx ∈ Mes(D)

that vanish at infinity in the w∗-sense, that is for every a ∈ A and every ε > 0

the set {x : |µx(a)| ≥ ε} is compact in D. Under this correspondence ‖%‖ =

supx∈D ‖µx‖.

Proof. The assertion readily follows from Riesz theorem, cf., for instance, [5,

Section 1]. In particular, using Lemma 2.1 we get ‖%‖ = supx∈D ‖µx‖. �

We denote by Closed(D) the set of all closed subsets of D. A mapping Φ : D →
Closed(D) is lower-semicontinuous if for every open V ⊆ D the set {x ∈ D : V ∩
Φ(x) 6= ∅} is open. For any such mapping the set Dom(Φ) := {x ∈ D : Φ(x) 6= ∅}
is open in D.

Lemma 3.28. Any continuous mapping (26) induces a lower-semicontinuous

mapping

(27) D 3 x Φ7−→ suppµx ∈ Closed(D).

Proof. Assume that V ∩ Φ(x0) 6= ∅ where x0 ∈ D and V ⊆ D is open. Then

there is a positive function a ∈ Cc(D) that vanishes outside V and such that

µx0
(a) > 0. Continuity of µ implies that U := {x ∈ D : µx(a) > 0} is open. Since

x0 ∈ U ⊆ {x ∈ D : V ∩ Φ(x) 6= ∅}, this proves the assertion. �

Let us fix a positive map % and the corresponding maps µ and Φ given by (26)

and (27). We associate to Φ the following relation on D:

(28) RΦ :=
⋃

x∈Dom(Φ)

{x} × Φ(x).

If RΦ is closed in D×D, then µ is called a topological relation in [5]. In this case,

as we show below, µ can also be viewed as a topological quiver. In general, the

relationship with topological quivers is subtle. We recall the relevant definition,

see [39, Example 5.4] or [40, Definition 3.1]. We adopt the convention concerning

the roles of the maps r, s as presented in [39] (it differs from the one in [40]). It fits

to conventions we adopt in Section 5 for graph C∗-algebras. It is also consistent

with the notation used for topological graphs by Katsura [24]. We stress that

we use the term topological graph in a broader sense than [24, Definition 2.1].

Namely, we do not assume that the source map is a local homeomorphism. Also

we do not assume that the topological spaces underlying a topological quiver are

second countable, as it is done in [40, Definition 3.1].
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Definition 3.29. A topological graph is a quadruple E = (E0, E1, r, s) consisting

of locally compact Hausdorff spaces E0, E1 and continuous maps r, s : E1 → E0,

where s is additionally assumed to be open. An s-system on the graph E is a

family of Radon measures λ = {λv}v∈E0 on E1 such that

(Q1) suppλv = s−1(v) for all v ∈ E0,

(Q2) v →
∫
E1 a(e)dλv(e) is an element of Cc(E

0) for all a ∈ Cc(E1).

The quintuple (E0, E1, r, s, λ) where E := (E0, E1, r, s) is a topological graph and

λ is an s-system on E is called a topological quiver.

The following lemma and proposition should be compared with [19, Proposition

2.2] stated (essentially without a proof) in the context of Markov operators, see

discussion below.

Lemma 3.30. Consider the quintuple

Q% := (D,RΦ, r, s, λ)

where RΦ is given by (28), s(x, y) := x, r(x, y) := y and λx is a measure supported

on {x} × Φ(x) given by λx({x} × U) = µx(U). Then Q% satisfies all axioms of

topological quiver, except that openness of the source map and axiom (Q1) hold

for the restriction s|RΦ
to RΦ, rather than for s : RΦ → D itself.

Proof. Openness of s : RΦ → D is equivalent to lower-semicontinuity of Φ

and thus follows from Lemma 3.28. To show the axiom (Q2) define a map Ψ :

Cc(D)� Cc(D)→ C0(D) by the formula

Ψ(
∑
i

ai � bi)(x) :=

∫ ∑
i

ai � bi dλx =
∑
i

ai(x)

∫
bi dµx =

(∑
i

ai%(bi)

)
(x).

It is well defined because
∑
i ai%(bi) ∈ C0(D) and it is linear because it is given

by the integral. It is bounded with ‖Ψ‖ ≤ supx∈D ‖λx‖ = supx∈D ‖µx‖ = ‖%‖.
Thus, since Cc(D)�Cc(D) is uniformly dense in C0(D ×D) we deduce that the

formula Ψ(a)(x) =
∫
adλx defines a bounded linear map Ψ : C0(D×D)→ C0(D).

Concluding, for any a ∈ Cc(RΦ) we see that x →
∫
E1 a(x, y)dλx(y) defines a

continuous function on D which vanishes outside the compact set s(supp (a)).

This proves (Q2). The rest is clear by construction. �

Remark 3.31. By the above lemma the quintuple (D,RΦ, r, s, λ) is a topological

quiver whenever RΦ is locally compact. However, if RΦ is not closed in D × D
then the mapping (29) below, with RΦ in place of RΦ, is not well defined.
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Proposition 3.32. The quintuple Q% = (D,RΦ, r, s, λ) from Lemma 3.30 gives

rise to a C∗-correspondence XQ% which is the Hausdorff completion of the semi-

inner C∗-correspondence defined on Cc(RΦ) via

(a · f · b)(x, y) =
(
(a ◦ s)f(b ◦ r)

)
(x, y) = a(x)f(x, y)b(y),

and

〈f, g〉Q%(x) =

∫
RΦ

fgdλx =

∫
Φ(x)

f(x, y)g(x, y)dµx(y),

f, g ∈ Cc(RΦ), a, b ∈ C0(D) = C0(D). Moreover, putting W (a � b)(x, y) :=

a(x)b(y), for (x, y) ∈ RΦ the mapping determined by

(29) Cc(D)� Cc(D) 3 a� b→W (a� b) ∈ Cc(RΦ),

factors through and extends to an isomorphism of C∗-correspondences X%
∼= XQ% .

Proof. It is a routine exercise to check that Cc(RΦ) is a semi-inner product

(right) A-module, equipped with a left A-module action by adjointable operators,

[31, p. 3]. Thus we get the C∗-correspondence XQ% . Furthermore, one readily

checks that (29) determines a well-defined map W : Cc(D) � Cc(D) → Cc(RΦ)

satisfying

aW (f � g)b = W (af � gb), 〈W (f � g),W (f � g)〉Q = 〈f � g, f � g〉%,

for all a, b ∈ C0(D), f, g ∈ Cc(D). Since, the image of Cc(D)� Cc(D) is dense in

X% it follows that W factors through and extends to an isometric homomorphism

of C∗-correspondences W : X% → XQ% . To see it is surjective, note that by the

Stone-Weierstrass theorem for any f ∈ Cc(RΦ) we can find a sequence {fn} ⊆
Cc(D)�Cc(D) such that W (fn) converges uniformly to f , and thus all the more

in the semi-norm induced by 〈·, ·〉Q. Hence W is the desired isomorphism. �

By [40, Definition 3.17], the C∗-algebra associated to a topological quiver Q is the

Cuntz-Pimsner algebra OXQ of a certain C∗-correspondence XQ. If the quintuple

Q% = (D,RΦ, r, s, λ) defined in Lemma 3.30 is a topological quiver, then the

C∗-correspondence XQ% constructed in Proposition 3.32 coincides with the C∗-

correspondence associated to Q% in [40]. Thus Proposition 3.32 and Theorem 3.13

give the following proposition.

Proposition 3.33. Suppose that the quintuple Q% = (D,RΦ, r, s, λ) defined in

Lemma 3.30 is a topological quiver (it is automatic when RΦ is closed). Then

the crossed product C∗(A, %) is naturally isomorphic to the C∗-algebra C∗(Q%)
associated to Q%.
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If the set RΦ is closed, that is, if µ is a topological relation, then the C∗-

correspondence XQ% constructed in Proposition 3.32 coincides with the one asso-

ciated to µ in [5]. In particular, Brenken defines a C∗-algebra C(µ) associated to

the topological relation µ as Pimsner’s (augmented) C∗-algebra O(J(XQ%), XQ%).

Hence by Proposition 3.32 and Theorem 3.13 we have the following proposition.

Proposition 3.34. If % : C0(D) → C0(D) is such that the map µ given by

(26) is a topological relation then the C∗-algebra C(µ) associated to µ is naturally

isomorphic to the relative crossed product C∗(A, %;A).

Suppose now that D is compact and % is unital (equivalently, every measure

µx, x ∈ D, is a probability distribution). Then % is called a Markov operator in

[19, Definition 1]. The closure RΦ of the set (28) coincides with the support of %

defined in [19, Definition 4]. It seems that the authors of [19] tacitly assumed that

the corresponding set RΦ is closed, since they model their algebras via C∗-algebras

associated to topological quivers. Namely, they define [19, Definition 7] the C∗-

algebra C∗(%) of the Markov operator % to be the C∗-algebra of the quintuple

(D,RΦ, r, s, λ) described in Lemma 3.30. But in general neither (D,RΦ, r, s, λ)

nor (D,RΦ, r, s, λ), satisfies all of the axioms of a topological quiver.

Example 3.35. Consider the following Markov operators %1, %2 on C([0, 1]):

%1(a)(x) =

{∫ 1

0
a(t)fx(t) dt x 6= 0

a(1), x = 0
, fx(t) =

t1/x∫ 1

0
s1/x ds

;

%2(a)(x) = f(x)a(0) + f(1− x)a(1), f(x) = χ[0,1/3)(x) + (2− 3x)χ[1/3,2/3)(x).

Then the corresponding relations on [0, 1] are

R1 =
(

(0, 1]× [0, 1]
)
∪ {(0, 1)}, R2 =

(
[0, 2/3)× {0}

)
∪
(

(1/3, 1]× {1}
)
.

Plainly, R1 is not locally compact in (0, 1), while the source map on R2 is not

open.

The above example shows that the assertion in [19, Proposition 2.2] is false.

Proposition 3.32 could be considered a correct version of this statement. It sug-

gests that in general the C∗-algebra C∗(%) should be defined as the Cuntz-Pimsner

algebra OXQ% of the C∗-correspondence XQ% described in Proposition 3.32. Then

Theorem 3.13 gives us the following proposition.

Proposition 3.36. The C∗-algebra C∗(%) of a Markov operator % : C(D) →
C(D) is naturally isomorphic to the crossed product C∗(A, %).
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4. A new look at Exel systems and their crossed products

Throughout this section, (A,α,L) denotes an Exel system. We show that Exel-

Royer’s crossed product O(A,α,L) is the crossed product C∗(A,L) and Exel’s

crossed product Aoα,L N is the relative crossed product C∗(A,L;Aα(A)A). We

study in detail the structure of Exel systems with the property that α ◦ L is a

conditional expectation, and discuss cases when we have Aoα,L N = C∗(A,L).

4.1. Exel’s crossed products as crossed products by transfer operators.

Let us start with the following simple but fundamental observation.

Lemma 4.1. Any transfer operator is a completely positive map.

Proof. Using (8) and its symmetrized version: L(α(b)a) = bL(a), a, b ∈ A, for

any ai, bi ∈ A, i = 1, ..., n, we get

(30)

n∑
i,j=1

b∗iL(a∗i aj)bj = L
(( n∑

i=1

aiα(bi)
)∗( n∑

j=1

ajα(bj)
))
≥ 0.

Hence L is a completely positive map. �

Authors of [10] and [35] considered Exel systems (A,α,L) under the additional

assumption that both α and L are extendible. It turns out that extendibility of

L is automatic.

Proposition 4.2. Any transfer operator L for α is extendible. Its strictly con-

tinuous extension L : M(A)→M(A) is determined by the formula

(31) L(m)a = L(mα(a)), a ∈ A, m ∈M(A).

In particular, L(1) is a positive central element in M(A), and if α is extendible

then the triple (M(A), α,L) is an Exel system.

Proof. Fix m ∈ M(A). We claim that (31) defines a multiplier, that is an

adjointable mapping L(m) : A → A where we view A as the standard Hilbert

A-module. Indeed, for any a, b ∈ A we have

(L(m)a)∗b = L(mα(a))∗b = L(α(a∗)m∗)b = L(α(a∗)mα(b)) = a∗(L(m∗)b).

Hence L(m) ∈ M(A) and L(m)∗ = L(m∗). Accordingly, (31) defines a ∗-
preserving mapping L : M(A) → M(A). It follows directly from (31) that L
is a strictly continuous extension of L : A → A. Moreover, for a ∈ A, we have

L(1)a = L(1α(a)) = L(α(a)1) = aL(1). Thus L(1) belongs to the commutant of

A in M(A). This commutant coincides with the center of M(A). If additionally
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α is extendible then L is a transfer operator for α because (8) is preserved when

passing to strict limits. �

Another somehow unexpected fact is that the first relation in (9) is superfluous.

Proposition 4.3. Suppose that (A,α,L) is an Exel system. For any representa-

tion (π, S) of (A,L) we automatically have

Sπ(a) = π(α(a))S, a ∈ A.

Thus the classes of representations of (A,L) and (A,α,L) coincide and

T (A,L) = T (A,α,L).

Moreover, the notions of redundancy for (π, S) as a representation of (A,L) and

as a representation of (A,α,L) coincide.

Proof. Let (π, S) be a representation of (A,L), π : M(A)→ B(H) the extension

of π, and L the strictly continuous extension of L, which exists by Proposition

4.2. It readily follows that (π, S) is a representation of (M(A),L). In particular,

S∗S = π(L(1)). Using this and (31), one sees that each of the expressions

S∗π(α(a∗))Sπ(a), S∗π(α(a∗))π(α(a))S, π(a∗)S∗Sπ(a), π(a∗)S∗π(α(a))S

is equal to π
(
L(α(a∗a))

)
, for any a ∈ A. Hence we get

‖Sπ(a)− π(α(a))S‖2 = ‖
(
S∗π(α(a∗))− π(a∗)S∗

)(
Sπ(a)− π(α(a))S

)
‖ = 0.

This finishes the proof of the first part of the assertion. For the second part it

suffices to show that π(A)Sπ(A)S∗π(A) = π(A)SS∗π(A). In view of what we

have just shown we have

π(A)Sπ(A)S∗π(A) = π(A)π(α(A))SS∗π(A) ⊆ π(A)SS∗π(A).

Moreover, the last inclusion is the equality because π(a)S = limλ∈Λ π(aα(µλ))S

for any approximate unit {µλ}λ∈Λ in A. Indeed,

‖π(a)S − π(aα(µλ))S‖2 = ‖π
(
L(a∗a)− L(a∗a)µλ − µλL(a∗a) + µλL(a∗a)µλ

)
‖

clearly tends to 0. �

The above coincidence can be explained at the level of C∗-correspondences.

Lemma 4.4. The C∗-correspondence ML associated to (A,α,L) and the C∗-

correspondence XL associated to (A,L) are isomorphic, via the mapping deter-

mined by a⊗ b 7−→ q(aα(b)), a, b ∈ A.
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Proof. That a⊗ b 7−→ q(aα(b)) yields a well defined isometry follows from the

equality in (30). Clearly, it is a C∗-correspondence map. It is onto because

q(aα(µλ)) converges in ML to q(a) for any a ∈ A and any approximate unit {µλ}
in A, cf. [25, Lemma 3.6]. �

Corollary 4.5. For every Exel system (A,α,L) we have

T (ML) ∼= T (XL) ∼= T (A,L) = T (A,α,L).

Proof. We have T (ML) ∼= T (XL) by Lemma 4.4. Proposition 3.10 implies that

T (XL) ∼= T (A,L), and we have T (A,L) = T (A,α,L) by Proposition 4.3. �

Remark 4.6. The isomorphism T (ML) ∼= T (A,α,L) was proved in [9, Corollary

3.3], cf. [25, Theorem 3.7], for A unital, and independently in [10, Proposition

3.1] and [35, Proposition 4.1], for extendible Exel systems.

Now we are in a position to show the main result of this subsection.

Theorem 4.7. For any Exel system (A,α,L) we have

C∗(A,L) = O(A,α,L) ∼= OML , A×α,L N = C∗(A,L; J),

where J := Aα(A)A. In particular, we have

A×α,L N ∼= O(XL, J ∩ J(XL)) ∼= O(ML, J ∩ J(ML)),

and the universal homomorphism jA : A→ A×α,L N is injective if and only if L
is almost faithful on Aα(A)A ∩ J(ML).

Proof. Equality A ×α,L N = C∗(A,L; J) follows from Proposition 4.3. To get

O(A,α,L) = C∗(A,L) combine Proposition 4.3, Lemma 4.4 and the first part

of Theorem 3.13. The isomorphism C∗(A,L) ∼= OML follows now either from

Remark 2.28 or from Lemma 4.4 and Theorem 3.13. The second part of the

assertion follows now from Lemma 4.4 and Theorem 3.13. �

Remark 4.8. The second part of the assertion in the above theorem generalizes [9,

Proposition 3.10 and Theorem 4.2] proved in the unital case, and [10, Theorems

4.1 and 4.3] where authors assumed extendibility of the Exel system.

Brownlowe, Raeburn and Vitadello proved in [10, Corollary 4.2] that Exel’s

crossed products for Exel systems (C0(T ), α,L) induced by classical dynamical

systems (T, τ) are naturally isomorphic to OML . For these systems L is faithful

and α is extendible. It turns our that the latter properties suffice to get the

corresponding isomorphism.
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Proposition 4.9. Let (A,α,L) be an Exel system and suppose that one of the

following conditions hold:

i) L is almost faithful on A and α is a non-degenerate homomorphism.

ii) L is faithful and α is extendible.

Then A×α,L N = C∗(A,L) ∼= OML .

Proof. i). The assumptions imply that N⊥L = A and Aα(A)A = A. By Theorem

4.7, we get A×α,L N = C∗(A,L;A) = C∗(A,L;N⊥L ) = C∗(A,L) ∼= OML .

ii). By item i) it suffices to show that α is non-degenerate. For any a ∈ A the

element L((a− aα(1))∗(a− aα(1))) is equal to

L(a∗a)− L(α(1)a∗a)− L(a∗aα(1)) + L(α(1)a∗aα(1)) = 0.

Thus by faithfulness of L we have a = α(1)a. This implies that A = α(1)A =

α(A)A. �

Remark 4.10. Kakariadis and Peters [25, Remark 3.19] raised a question whether

Exel’s crossed product A ×α,L N is always isomorphic to the Cuntz-Pimsner al-

gebra OML (by Theorem 4.7, the latter is always isomorphic to C∗(A,L)). The

answer to this question, stated as it is, is no. The reason is that A always embeds

into OML ∼= C∗(A,L) while for Exel’s crossed product in general this fails, see for

instance [9, Example 4.7]. Thus, taking into account Theorem 4.7, we propose

the following modified version of this question:

Let (A,α,L) be an Exel system such that Aα(A)A∩J(ML) ⊆ N⊥L .

Do the crossed products C∗(A,L) and A×α,L N coincide?

Since C∗(A,L; J) = C∗(A,L; J ∩ J(ML)), the answer to the above question, for

systems under consideration, is positive if and only if

(32) N⊥L ∩ J(ML) ⊆ Aα(A)A.

The most problematic part in establishing (32) is determining J(ML). For in-

stance, when α is extendible and L is faithful then Aα(A)A = A = N⊥L and

hence (32) holds independently of J(ML). Interestingly enough, if addition-

ally E = L ◦ α : A → α(A) ⊆ A is a conditional expectation of finite-type

then J(ML) = A, see [15]. However, in general we have Aα(A)A 6= N⊥L and

J(ML) ∩ N⊥L 6= N⊥L . This may happen already when L is faithful but α is not

extendible, cf. Lemmas 5.8 and 5.9. Surprisingly, when α(A) is a corner in A,

see Theorem 4.22 below, and also for all Exel systems considered in Section 5 we

have J(ML) ∩N⊥L = Aα(A)A.
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4.2. Regular transfer operators. Most of natural Exel systems appearing in

applications, see [12], [15], [9], [10], [26], have the property that α ◦ L is a con-

ditional expectation onto α(A). In [12] Exel called transfer operators with that

property non-degenerate. However, we have reasons to change this name. Firstly,

the term ‘non-degenerate’ when referred to a positive operator is sometimes used

to mean a faithful map [13, page 60] or a strict map [49, subsection 3.3]. Sec-

ondly, there are historical reasons. Namely, transfer operators on unital com-

mutative C∗-algebras, under the name averaging operators, were studied at least

from 1950’s see [45], cf. [26]. The averaging operators are called regular exactly

when the corresponding composition α ◦ L is a conditional expectation, cf. [26,

Proposition 2.1.i)]. Therefore we adopt the following definition.

Definition 4.11. Let (A,α,L) be an Exel system. We say that both the transfer

operator L and the Exel system (A,α,L) are regular, if E := α◦L is a conditional

expectation onto α(A).

Let us start with a simple fact.

Lemma 4.12. Let (A,α,L) be an Exel system. The range L(A) of the transfer

operator L is a self-adjoint two-sided (not necessarily closed) ideal in A such that

kerα ⊆ L(A)⊥.

Proof. Since L is linear and ∗-preserving, L(A) is a self-adjoint linear space.

The space L(A) is a two-sided ideal in A by (8). For a ∈ kerα we have aL(A) =

L(α(a)A) = L(0) = 0. Hence kerα ⊆ L(A)⊥. �

Suppose that the central positive element L(1) ∈M(A), described in Proposition

4.2, is a projection. Then by the above lemma the multiplier L(1) projects A

onto an ideal contained in (kerα)⊥. It turns out that L is regular exactly when

L(1) projects A onto (kerα)⊥.

Proposition 4.13. Let (A,α,L) be an Exel system and let {µλ} be an approxi-

mate unit in A. The following conditions are equivalent:

i) L is regular, that is E = α ◦ L : A→ α(A) is a conditional expectation,

ii) {α(L(µλ))} is an approximate unit in α(A),

iii) α ◦ L ◦ α = α,

iv) {L(µλ)} converges strictly to a projection L(1) ∈M(A) onto (kerα)⊥,

v) (α,L) is an interaction in the sense of [13, Definition 3.1], see Remark

3.15.
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In particular, if the above equivalent conditions hold, then kerα is a complemented

ideal in A, L(1)A = L(A) = (kerα)⊥, (1− L(1))A = kerα, and

(33) L(a) = α−1(E(a)), α(a) = L−1(L(1)a), a ∈ A,

where α−1 is the inverse to the isomorphism α : (kerα)⊥ → α(A), and L−1 is the

inverse to the isomorphism L : α(A)→ L(A).

Proof. i)⇒ii). For any a ∈ α(A) we have limλ∈Λ α(L(µλ))a = limλ∈ΛE(µλa) =

E(a) = a.

ii)⇒iii). For any a ∈ A we have

α(a) = lim
λ∈Λ

α(L(µλ))α(a) = lim
λ∈Λ

α(L(µλ)a) = lim
λ∈Λ

α(L(µλα(a))) = α(L(α(a))).

iii)⇒iv). By Proposition 4.2, {L(µλ)} converges strictly to a central element

L(1) in M(A). In particular, using (31), for a ∈ A, we get

L(1)2a = L(1)L(α(a)) = L(α(L(α(a)))) = L(α(a)) = L(1)a.

Hence L(1) is a projection. On one hand (1− L(1))A ⊆ kerα because

α((1− L(1))a) = α(a)− α(L(α(a))) = α(a)− α(a) = 0,

for any a ∈ A. On the other hand, kerα ⊆ (1− L(1))A because if a ∈ kerα then

(1− L(1))a = a− L(α(a)) = a.

Accordingly, kerα = (1− L(1))A and (kerα)⊥ = L(1)A.

iv)⇒v). If L(1) is a projection onto (kerα)⊥ then in view of (31) for a ∈ A we

have

α(a) = α(L(1)a) = α(L(α(a)),

that is α = α ◦ L ◦ α. By Lemma 4.12, kerα ⊆ L(A)⊥. This implies that

L(A) ⊆ (L(A)⊥)⊥ ⊆ (kerα)⊥ = L(1)A. Consequently,

L(a) = L(1)L(a) = L(α(L(a))),

that is L = L ◦ α ◦ L. We note that as L(1)A = L(α(A)) ⊆ L(A) we actually

get L(A) = L(1)A = (kerα)⊥. Clearly, L(A) ⊆ MD(α) = A. We have α(A) ⊆
MD(L) because

L(α(a)b) = aL(b) = L(1)aL(b) = L(α(a))L(b),

and similarly L(bα(a)) = L(b)L(α(a)), a, b ∈ A.

v)⇒i). E = α ◦ L is a conditional expectation by [13, Corollary 3.3]. �
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Remark 4.14. If A is unital the equivalence of conditions i), ii), iii) above (with

units in place of approximate units) was proved by Exel [12, Proposition 2.3],

and in [26, Proposition 1.5] it was noticed that they imply that L(1) is a central

projection with L(1)A = L(A) = (kerα)⊥.

The following classification of regular transfer operators generalizes [26, Theo-

rem 1.6] to the non-unital case.

Proposition 4.15. Fix an endomorphism α : A → A. If α admits a regular

transfer operator then its kernel is a complemented ideal in A and the formulas

L = α−1 ◦ E, E = α ◦ L

where α−1 is the inverse to α : (kerα)⊥ → α(A), establish a one-to-one cor-

respondence between conditional expectations E from A onto α(A) and regular

transfer operators L for α.

In particular, if the range of α is a hereditary subalgebra of A, then α admits

at most one regular transfer operator.

Proof. The first part follows immediately from Proposition 4.13. For the second

part notice that every conditional expectation E : A → B ⊆ A is determined by

its restriction to the hereditary C∗-subalgebra BAB of A generated by B. �

Now, we reverse the situation and parametrize all regular Exel systems for a

fixed transfer operator. To this end, we recall, cf. [49, subsection 1.3], that a

completely positive contraction % : A → B is called a retraction if there exists a

homomorphism θ : B → A such that % ◦ θ = idB ; then θ is called a section of %.

Proposition 4.16. A completely positive mapping L : A→ A is a regular transfer

operator for a certain endomorphism if and only if L(A) is a complemented ideal

in A and L : A→ L(A) is a retraction.

If the above conditions hold, we have bijective correspondences between the

following objects:

i) endomorphisms α : A→ A making (A,α,L) into a regular Exel system,

ii) sections θ : L(A)→ A of L : A→ L(A),

iii) C∗-subalgebras B ⊆MD(L) such that L : B → L(A) is a bijection.

These correspondences are given by the relations

(34) α(a) = θ(L(1)a), a ∈ A, B = α(A) = θ(L(A)),

where L(1) is the projection onto L(A) and θ : L(A) → B is the inverse to

L : B → L(A).
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Proof. By virtue of Proposition 4.13, if L is a regular transfer operator for

α then L(A) is a complemented ideal in A and α is given by the first formula

in (34). Conversely, if L(A) is a complemented ideal in A, then the projection

L(1) ∈M(A) onto L(A) commutes with elements of A. Hence for any section θ :

L(A)→ A, the first formula in (34) defines a homomorphism such that (A,α,L)

is a regular Exel system. Thus we have a bijection between objects in items i) and

ii). If θ is a section of L : A → L(A) and α is the corresponding endomorphism

then B := α(A) = θ(L(A)) is a C∗-subalgebra of MD(L) by Proposition 4.13v).

By the same proposition L : B → L(A) is a bijection. Conversely, if B is a C∗-

algebra such that B ⊆MD(L) and L : B → L(A) is a bijection, then the inverse

to L : B → L(A) is a section of L : A → L(A). This shows the correspondence

between objects in ii) and iii). �

Example 4.17 (cf. Example 4.7 in [9]). Let L : C([0, 2]) → C([0, 2]) be given

by L(a)(x) = a(x/2). Regular Exel systems (C([0, 2]), α,L) are parametrized by

continuous extensions of the mapping [0, 1] 3 x→ 2x ∈ [0, 2]; for any such system

we have

α(a)(x) =

{
a(2x), if x ∈ [0, 1]

a(γ(x)), if x ∈ [1, 2]
, a ∈ C([0, 2]),

where γ : [1, 2]→ [0, 2] is continuous and γ(1) = 2. In other words, the algebras B

in Proposition 4.16 correspond to continuous mappings on [0, 2] whose restriction

to [0, 1] is 2x.

4.3. Exel’s crossed products for regular Exel systems. By Theorem 4.7, A

embeds into A×α,LN if and only if Aα(A)A∩J(ML) ⊆ N⊥L . In this subsection, we

consider regular Exel systems satisfying stronger, but easier to check in practice,

condition: Aα(A)A ⊆ N⊥L . The latter inclusion holds, for instance, for systems

with faithful transfer operators or with corner endomorphisms. These are the

cases when Exel’s crossed product boasts its greatest successes, see [12], [15], [9],

[10]. We show that for such systems Exel crossed product A×α,LN can be defined

without a use of α.

We recall that any positive map L : A → A restricts to the homomorphism

L : MD(L)→ L(A). The kernel (kerL|MD(L)) of this homomorphism is an ideal

in MD(L) and we may consider its annihilator (kerL|MD(L))
⊥ in MD(L). Thus

(kerL|MD(L))
⊥ is a C∗-subalgebra of A.

Proposition 4.18. Suppose that (A,α,L) is a regular Exel system such that

L is faithful on Aα(A)A. Then α(A) = (kerL|MD(L))
⊥. Hence α is uniquely



42 BARTOSZ KOSMA KWAŚNIEWSKI

determined by L and

A×α,L N = C∗(A,L;A(kerL|MD(L))⊥A).

In particular, if A(kerL|MD(L))⊥A = N⊥L , then A×α,L N = C∗(A,L).

Proof. On one hand, by Proposition 4.16, α(A) ⊆ Aα(A)A ∩MD(L) and L :

α(A) → L(A) is an isomorphism. On the other hand, since L is faithful on

Aα(A)A, the map L : Aα(A)A∩MD(L)→ L(A) is an injective homomorphism.

This implies that α(A) = Aα(A)A ∩MD(L). Since α(A) = Aα(A)A ∩MD(L)

is an ideal in MD(L) and L : α(A) → L(A) is an isomorphism we actually get

α(A) = (kerL|MD(L))
⊥. Thus, by Proposition 4.16, α is uniquely determined

by L. By Theorem 4.7 we get A ×α,L N = C∗(A,L;A(kerL|MD(L))⊥A), and if

A(kerL|MD(L))⊥A = N⊥L , then we actually have A ×α,L N = C∗(A,L;N⊥L ) =

C∗(A,L;N⊥L ∩ J(XL)) = C∗(A,L). �

Now we consider Exel systems (A,α,L) where α and L have somehow equal

rights. Algebras arising from such systems were studied for instance in [43], [12],

[2], [26], [28], [29].

Definition 4.19. We say that a regular Exel system (A,α,L) is a corner system

if α(A) is a hereditary subalgebra of A.

The above terminology is justified by Lemma 4.20 and Remark 4.23 below.

We note that corner systems (A,α,L) satisfy condition Aα(A)A ⊆ N⊥L . Indeed,

since α(A) is hereditary and L is faithful on α(A), Lemma 2.4 implies that L is

almost faithful on Aα(A)A.

Lemma 4.20. Let (A,α,L) be an Exel system. The following statements are

equivalent:

i) (A,α,L) is a corner system.

ii) α is extendible and

(35) α(L(a)) = α(1)aα(1) for all a ∈ A.

iii) α has a complemented kernel and a corner range; L is a unique regular

transfer operator for α and it is given by the formula

(36) L(a) = α−1(pap), a ∈ A,

where p ∈ M(A) is a projection such that α(A) = pAp, and α−1 is the

inverse to the isomorphism α : (kerα)⊥ → pAp.
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iv) L(A) is a complemented ideal in A and (kerL|MD(L))
⊥ is a hereditary

subalgebra of A mapped by L onto L(A); α is given by the formulas:

(37) α|L(A)⊥ ≡ 0 and α(a) = L−1(a), for a ∈ L(A),

where L−1 is the inverse to the isomorphism L : (kerL|MD(L))
⊥ → L(A).

If the above equivalent statements hold then α(A) = α(1)Aα(1) = (kerL|MD(L))
⊥.

Proof. i)⇒ii). Let {µλ}λ∈Λ be an approximate unit in A. Since L is isometric

on α(A) = α(A)Aα(A), for any a ∈ A, we have

‖
(
α(µλ)− α(µλ′)

)
a‖2 = ‖

(
α(µλ)− α(µλ′)

)
aa∗
(
α(µλ)− α(µλ′)

)
‖

= ‖L
((
α(µλ)− α(µλ′)

)
aa∗
(
α(µλ)− α(µλ′)

))
‖

≤ 2‖L(aa∗)(µλ − µλ′)‖.

The last term is arbitrarily small for sufficiently large λ and λ′. Accordingly,

{α(µλ)}λ∈Λ is strictly Cauchy and thereby strictly convergent. Hence α is ex-

tendible and we have α(A) = α(1)Aα(1). Since E(a) = α(1)aα(1) is the unique

conditional expectation onto α(A) we conclude, using Proposition 4.15, that (35)

holds.

ii)⇒iii). Note that (35) implies that α(A) = α(1)Aα(1) is a corner in A. In

particular, (A,α,L) is regular because E(a) = (α ◦ L)(a) = α(1)aα(1) is a condi-

tional expectation onto α(A). Thus by Proposition 4.15, kerα is complemented

and L(a) = α−1(α(1)aα(1)) a ∈ A.

iii)⇒iv). Decomposing A into parts pAp, (1−p)Ap, pA(1−p), (1−p)A(1−p),
the map L assumes the form

L
(
a11 a12

a21 a22

)
= α−1(a11).

By Proposition 2.6, it is immediate that pAp⊕ (1− p)A(1− p) ⊆MD(L). More-

over, if a = a12 +a21 ∈MD(L), where a12 ∈ (1− p)Ap and a21 ∈ pA(1− p), then

using (5) we get

α−1(a∗12a12) = 0, α−1(a21a
∗
21) = 0.

Since a∗12a12 and a21a
∗
21 belong to pAp, it follows that a = a12 + a21 = 0. Hence

MD(L) = pAp⊕ (1− p)A(1− p). Consequently, (kerL|MD(L))
⊥ = pAp. Now the

formula (37) is immediate.

iv)⇒i). It follows from Proposition 4.16. �

Remark 4.21. Transfer operators satisfying (35) are called complete transfer oper-

ators in [2], [26], [28], [29]. The pair (A,α) where α is an endomorphism satisfying

condition iii) of Lemma 4.20, is called a reversible C∗-dynamical system in [29].
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In the case when A is unital, Exel systems satisfying (35) were considered in

[2] and [25]. In particular, it was shown in [2, Theorem 4.16] that A ×α,L N is

isomorphic to C∗(A,α), and in [25, Theorem 3.14] that A ×α,L N is isomorphic

to OML . By Theorem 4.7, we know that OML ∼= O(A,α,L) = C∗(A,L). Hence

combining these results we get the following isomorphisms A×α,LN ∼= C∗(A,L) ∼=
C∗(A,α). We now generalize this fact to the non-unital case.

Theorem 4.22. Suppose (A,α,L) is a corner Exel system. Then α and L de-

termine each other uniquely and we have

A×α,L N = C∗(A,L) ∼= C∗(A,α).

In particular, A×α,LN can be viewed as a C∗-algebra generated by jA(A)∪jA(A)s

where jA : A→ A×α,L N is a non-degenerate homomorphism, s ∈M(A×α,L N),

(38) sjA(a)s∗ = jA(α(a)), s∗jA(a)s = jA(L(a)), a ∈ A,

and the pair (jA, s) is universal for the pairs with the above properties.

Proof. Lemma 4.20 implies that α and L determine each other uniquely. By

Theorem 4.7, to prove the equality A×α,L N = C∗(A,L) it suffices to show that

Aα(A)A = N⊥L ∩ J(XL). To this end, we use the isomorphism XL ∼= ML from

Lemma 4.4. For x ∈ A we have q(x) = q(xα(1)) ∈ ML. For any x, y, z ∈ A we

get

Θq(x),q(y)q(z) = q(x)L(y∗z) = q(xα(L(y∗z))) = q(xα(1)y∗zα(1)) = (xα(1)y)q(z).

Thus φ(xα(1)y) = Θq(x),q(y). It follows that φ sends Aα(A)A = Aα(1)A ⊆ N⊥L =

(kerφ)⊥ isometrically onto K(XL) ∼= K(ML). Hence Aα(A)A = J(XL)∩N⊥L and

we have A×α,L N = C∗(A,L).

In order to show that the first relation in (38) holds in A ×α,L N = C∗(A,L)

(the second holds trivially) it suffices to check that (iA(α(a)), tiA(a)t∗), for a ∈ A,

is a redundancy of the Toeplitz representation (iA, t) (note that α(A) ⊆ N⊥L ).

Invoking Proposition 4.3 we have tiA(a) = iA(α(a))t. Thus, using (35), for any

b, c ∈ A we get

(tiA(a)t∗) iA(b)t iA(c) = tiA(aL(b)c) = iA(α(aL(b)c))t = iA(α(a)bα(c))t

= iA(α(a)) iA(b)t iA(c).

Since iA is non-degenerate this shows that (iA(α(a)), tiA(a)t∗) is a redundancy

and thus (38) holds. Moreover, since the ideal J(XL)∩N⊥L = Aα(A)A is generated

by α(A) we see that the kernel of the quotient map T (A,L) → C∗(A,L) is the

ideal generated by differences iA(α(a))− tiA(a)t∗, a ∈ A. Hence (C∗(A,L), jA, s)
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is universal with respect to relations (38), cf. Proposition 3.17. By [29, Propo-

sition 4.6], cf. Proposition 3.26, C∗(A,α) is universal with respect to the same

relations and thus C∗(A,α) ∼= C∗(A,L). �

Remark 4.23. If A is unital then an Exel system (A,α,L) is a corner system if

and only if (α,L) is a corner interaction studied in [28], see Proposition 4.13v).

In particular, the isomorphism C∗(A,L) ∼= C∗(A,α) is an instance of the isomor-

phism (19). An examination of the argument leading to (19) shows that it holds

also in the non-unital case if one defines a corner interaction as an interaction

(V,H) over A where both V and H are extendible and have corner ranges. Thus

corner interactions give a symmetrized framework for corner Exel systems, and

one could think of them as partial automorphism of A whose domain and range

are corners in A.

5. Graph C∗-algebras as crossed products by completely positive

maps

In this section, we test Exel’s construction and the results of the present paper

against the original idea standing behind [12] that Cuntz-Krieger algebras (or

more generally graph C∗-algebras) could be viewed as crossed products associated

to topological Markov shifts. We recall Brownlowe’s [7] realization of graph C∗-

algebras C∗(E) as Exel-Royer’s crossed product for partially defined Exel system

(DE , α,L) and discuss when the maps α and L can be extended to the whole of

diagonal algebraDE . This leads us to a complete description of Perron-Frobenious

operators on DE associated to quivers on E. We prove that the crossed product

of DE by any such operator is isomorphic to C∗(E).

5.1. Graph C∗-algebras as Exel-Royer’s crossed products. For graphs and

their C∗-algebras we use the notation and conventions of [47], [10], [18]. Through-

out this section, we fix an arbitrary countable directed graph E = (E0, E1, r, s).

Hence E0 and E1 are countable sets and r, s : E1 → E0 are arbitrary maps. We

denote by En, n > 0, the set of finite paths µ = µ1...µn satisfying s(µi) = r(µi+1),

for all i = 1, ..., n. Then |µ| = n stands for the length of µ and E∗ =
⋃∞
n=0E

n is

the set of all finite paths (vertices are treated as paths of length zero). We put

E∞ to be the set of infinite paths. The maps r, s extend naturally to E∗ and r

extends also to E∞.

The graph C∗-algebra C∗(E) is generated by a universal Cuntz-Krieger E-

family consisting of partial isometries {se : e ∈ E1} and mutually orthogonal pro-

jections {pv : v ∈ E1} such that s∗ese = ps(e), ses
∗
e ≤ pr(e) and pv =

∑
r(e)=v ses

∗
e
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whenever the sum is finite (i.e. v is a finite receiver). It follows that C∗(E) =

span{sµs∗ν : µ, ν ∈ E∗} where sµ := sµ1sµ2 ....sµn for µ = µ1...µn ∈ En, n > 0,

and sµ = pµ for µ ∈ E0. We denote by DE := span{sµs∗µ : µ ∈ E∗} the diagonal

C∗-subalgebra of C∗(E).

It is attributed to folklore, see [16] or [53] for an extended discussion, that

the Gelfand spectrum of DE can be identified with the boundary space of E.

To be more specific, we define E∗inf := {µ ∈ E∗ : |r−1(s(µ))| = ∞} and E∗s :=

{µ ∈ E∗ : r−1(s(µ)) = ∅}, so E∗inf is the set of paths that start in infinite

receivers, and E∗s is the set of paths that start in sources. For any η ∈ E∗ \ E0

let ηE≤∞ := {µ = µ1... ∈ E∗ ∪ E∞ : µ1...µ|η| = η} and for v ∈ E0 put vE≤∞ :=

{µ ∈ E∗ ∪ E∞ : r(µ) = v}. The boundary space of E, cf. [53, Section 2] or [7,

Subsection 4.1], is the set

∂E := E∞ ∪ E∗inf ∪ E∗s
equipped with the topology generated by the ‘cylinders’ Dη := ∂E ∩ ηE≤∞,

η ∈ E∗, and their complements. In fact, the sets Dη \
⋂
µ∈F Dµ, where η ∈ E∗

and F ⊆ ηE≤∞∩E∗ is finite, form a basis of compact and open sets for Hausdorff

topology on ∂E, [53, Section 2] or [7, Section 2]. Passing to a dual description of

the assertion in [53, Theorem 3.7] we get the following proposition.

Proposition 5.1. We have an isomorphism DE ∼= C0(∂E) determined by the

formula

(39) sµs
∗
µ 7−→ χDµ , µ ∈ E∗.

The one-sided topological Markov shift associated to E is the map σ : ∂E\E0 →
∂E defined, for µ = µ1µ2... ∈ ∂E \ E0, by the formulas

σ(µ) := µ2µ3... if µ /∈ E1, and σ(µ) := s(µ1) if µ = µ1 ∈ E1.

By [7, Proposition 2.1] the shift σ is a local homeomorphism. Furthermore, results

of [7, Propositions 2.1 and 4.4] imply the following proposition (we adopt the

convention that a sum over the empty set is zero).

Proposition 5.2 (Brownlowe). The formulas

(40) α(a)(µ) = a(σ(µ)), L(a)(µ) =
∑

ν∈σ−1(µ)

a(ν)

define respectively a homomorphism α : C0(∂E)→M(C0(∂E \E0)) and a linear

map L : Cc(∂E \E0)→ Cc(∂E). Moreover, the triple (C0(∂E), α,L) forms a C∗-

dynamical system in the sense of [9, Definition 1.2], and we have an isomorphism

O(C0(∂E), α,L) ∼= C∗(E).
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The above mappings (40) have the following important algebraic description.

The isomorphism DE ∼= C0(∂E) from Proposition 5.1 gives rise to ∗-isomorphisms

M(span{sµs∗µ : µ ∈ E∗ \ {0}}) ∼= M(C0(∂E \ E0)) and span{sµs∗µ : µ ∈ E∗ \
E0} ∼= Cc(∂E). Using these isomorphisms the mappings in (40) are intertwined

respectively with a homomorphism Φ : DE →M(span{sµs∗µ : µ ∈ E∗ \ E0}) and

a linear map Φ∗ : span{sµs∗µ : µ ∈ E∗ \ E0} → span{sµs∗µ : µ ∈ E∗} which are

given by the formulas

(41) Φ(a) =
∑
e∈E1

seas
∗
e, Φ∗(a) =

∑
e∈E1

s∗ease,

where the first sum is strictly convergent and the second is finite. (It suffices to

check it on the spanning elements sµs
∗
µ and χDµ , µ ∈ E∗, which we leave to the

reader.) When E has no infinite emitters (see Proposition 5.3 below) the formula

Φ(a) =
∑
e∈E1 seas

∗
e defines a self-map on the whole of the graph C∗-algebra

C∗(E). In the literature, this mapping, usually considered when E is locally

finite (i.e. r and s are finite-to-one), is called a non-commutative Markov shift

and its ergodic properties are well studied, cf., for instance, [20].

5.2. Non-commutative Perron-Frobenius operators arising from quiv-

ers. The mappings α and L considered in Proposition 5.2 are viewed as partial

mappings on C0(∂E), cf. [14], [7]. Now we discuss the problem of when the

formulas (40), or their analogues, define honest mappings on C0(∂E).

Proposition 5.3. The following conditions are equivalent:

i) the first of formula in (40) defines an endomorphism α : C0(∂E) →
C0(∂E),

ii) σ : ∂E\E0 → ∂E is a proper map (preimage of a compact set is compact),

iii) σ is a finite-to-one mapping,

iv) there are no infinite emitters in E,

v) the sum
∑
e∈E1 seas

∗
e converges in norm for every a ∈ C∗(E),

vi) the range of the homomorphism Φ is contained in span{sµs∗µ : µ ∈ E∗ \
E0} ⊆ DE, and hence Φ : DE → DE is an endomorphism.

In particular, if the above equivalent conditions hold, then the first formula in

(41) defines a completely positive map Φ : C∗(E)→ C∗(E) which restricts to an

endomorphism Φ : DE → DE.

Proof. i)⇔ii). It is a well known general fact that a continuous mapping

τ : X → Y between locally compact Hausdorff spaces X,Y , gives rise to the

composition operator from C0(Y ) to C0(X) (rather than to Cb(X) = M(C0(X)))

if and only if τ is proper.
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ii)⇒iii). If σ is a proper local homeomorphism then σ−1(µ), µ ∈ ∂E, is compact

and cannot have a cluster point. Hence σ is finite-to-one.

iii)⇒iv). It follows readily from the definition of σ.

iv)⇒v). Consider a net, indexed by finite sets F ⊆ E1 ordered by inclusion,

consisting of mappings αF : C∗(E) → C∗(E) given by αF (a) :=
∑
e∈F seas

∗
e.

Since the projections ses
∗
e, e ∈ F , are mutually orthogonal we get ‖αF (a)‖ =

maxe∈F ‖seas∗e‖ ≤ ‖a‖, and thus αF is a contraction. Let a ∈ C∗(E). For

any ε > 0 there is a finite linear combination b =
∑
µ,ν∈K cµ,νsµs

∗
ν such that

‖a− b‖ ≤ ε (K ⊆ E∗ is finite set). Since E has no infinite emitters the set

F = {e ∈ E1 : s(e) = r(µ) for some µ ∈ K} =
⋃

v∈r(K)

s−1(v)

is finite. Clearly, for any finite set F ′ ⊆ E∗ containing F we have αF ′(b) = αF (b).

Thus

‖αF ′(a)− αF (a)‖ ≤ ‖αF ′(a)− αF ′(b)‖+ ‖αF (b)− αF (a)‖ ≤ 2ε.

Hence the net {αF (a)}F is Cauchy and the sum
∑
e∈E1 seas

∗
e converges in norm.

v)⇒vi). It is straightforward.

vi)⇒i). Note that the isomorphism DE ∼= C0(∂E) given by (39) intertwines Φ

and α. �

One can check that the second formula in (40) defines a mapping L : Cc(∂E)→
Cc(∂E) if and only if E has no infinite receivers. But even if the graph E is

locally finite, this mapping might be unbounded. On the other hand, if E is

locally finite, we can adjust the formula for L by adding averaging as in (1), and

then L has norm one, so in particular it extends to a self-map of C0(∂E). This

motivates us to consider slightly more general averagings, which will allow us to

get a bounded positive operator on C0(∂E) for arbitrary graphs. Accordingly, we

wish to consider strictly positive numbers λ = {λe}e∈E1 such that the formula

(42) Lλ(a)(µ) =
∑

e∈E1, eµ∈∂E

λe a(eµ)

defines a mapping on C0(∂E). We note that fixing the family {λe}e∈E1 is equiv-

alent to fixing a system of measures {λv}v∈E0 on E1 making the graph E into

a (topological) quiver. Indeed, the relation λe = λs(e)({e}) establishes a one-to-

one correspondence between families {λe}e∈E1 of strictly positive numbers and

s-systems of measures {λv}v∈E0 on E, cf. Definition 3.29. In particular, if E
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has no infinite emitters one can put λe := |s−1(s(e))|−1, e ∈ E1, which corre-

sponds to the situation where all the measures {λv}v∈E0 are uniform probability

distributions. In this case one recovers from (42) the second formula in (1).

Proposition 5.4. Let λ = {λe}e∈E1 be a family of strictly positive numbers. The

following conditions are equivalent:

i) the formula (42) defines a bounded operator Lλ : C0(∂E)→ C0(∂E),

ii) the following conditions are satisfied:

(43)

 ∑
e∈s−1(v)

λe


v∈s(E1)

∈ `∞
(
s(E1)

)
,

(44)

 ∑
e∈r−1(v)∩s−1(w)

λe


w∈s(r−1(v))

∈ c0
(
s(r−1(v))

)
for all v ∈ r(E1),

iii) the sum

(45) uλ :=
∑
e∈E1

√
λe se

converges strictly in M(C∗(E)),

iv) the sum
∑
e,f∈E1

√
λeλfs

∗
easf converges in norm for every a ∈ C∗(E)

and

(46) Φ∗,λ(a) :=
∑

e,f∈E1

√
λeλfs

∗
easf , a ∈ C∗(E),

defines a completely positive map Φ∗,λ : C∗(E)→ C∗(E).

If the above equivalent conditions hold then Φ∗,λ(a) = u∗λauλ, a ∈ C∗(E), and the

isomorphism DE ∼= C0(∂E) from Proposition 5.1 intertwines Φ∗,λ|DE and Lλ.

Proof. i)⇒ii). One readily sees that

(47) Lλ(χDη ) = λη1
χDσ(η)

, for any η = η1... ∈ ∂E \ E0.

Hence for any v ∈ s(E1) and any finite set F ⊆ s−1(v) we get

∑
e∈F

λe = ‖

(∑
e∈F

λe

)
χDv‖ = ‖Lλ

(∑
e∈F

χDe

)
‖ ≤ ‖Lλ‖,
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which implies condition (43). Now let v ∈ r(E1) and note that, for any µ ∈ ∂E,

Lλ(χDv )(µ) =
∑

e∈r−1(v), e∈s−1(r(µ))

λe χDv (eµ) =
∑

e∈r−1(v)

λe χDs(e)(µ)

=
∑

w∈s(r−1(v))

∑
e∈r−1(v)∩s−1(w)

λe χDw(µ).

Since the sets Dw are disjoint and open, Lλ(χDv ) ∈ C0(∂E) implies condition

(44). For future reference, note that in view of the above calculation we have (we

treat empty sums as zero)

(48) Lλ(χDv ) =
∑

e∈r−1(v)

λe χDs(e) , v ∈ E0.

ii)⇒iii). Let v ∈ s(E1). For a finite set F ⊆ s−1(v) we have ‖
∑
e∈F
√
λese‖2 =

‖
∑
e∈F λepv‖ =

∑
e∈F λe. Since

∑
e∈s−1(v) λe < ∞, by (43), it follows that the

sum uv :=
∑
e∈s−1(v)

√
λese converges in norm. Thus for any finite set F ⊆ s(E1)

we have

(49) uF :=
∑
v∈F

uv =
∑
v∈F

∑
e∈s−1(v)

√
λe se =

∑
e∈s−1(F )

√
λe se ∈ C∗(E).

By (43), M := supv∈s(E1)

∑
e∈s−1(v) λe is finite. The set of elements uF is

bounded:

(50) ‖uF ‖2 = ‖u∗FuF ‖ = ‖
∑
v∈F

∑
e∈s−1(v)

λepv‖ = max
v∈F

∑
e∈s−1(v)

λe ≤M.

Condition (44) implies that for any v ∈ E0 the sum
∑
e∈r−1(v)

√
λese converges

in norm. Indeed, for any finite set F ⊆ r−1(v) we have

‖
∑
e∈F

√
λese‖2 = ‖

∑
e∈F

λeps(e)‖ = max
w∈s(r−1(v))

∑
e∈r−1(v)∩s−1(w)∩F

λe,

which by (44) can be made arbitrarily small by choosing F lying outside a suffi-

ciently large finite subset of r−1(v).

Now fix a (nonzero) finite linear combination a =
∑
µ,ν∈K λµ,νsµs

∗
ν , where

K ⊆ E∗ is finite. Since we know, by (50), that ‖
∑
e∈F

√
λe se‖ ≤

√
M for every

finite F ⊆ E1, to prove the strict convergence of the sum in (45) it suffices to

check the convergence in norm of the two series
∑
e∈E1

√
λe sea and

∑
e∈E1

√
λe s

∗
ea.

Firstly, note that for v ∈ E0 we have uva = 0 unless v ∈ r(K). Hence for any

finite set F ⊆ s(E1) containing r(K) we get uFa = ur(K)a. Recall, see (49), that

ur(K) =
∑
e∈s−1(r(K))

√
λese converges in norm. Therefore, for any ε > 0 there is
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a finite set F0 ⊆ s−1(r(K))∩E1 such that for any finite F ⊆ E1 disjoint with F0

we have

‖
∑
e∈F

√
λesea‖ = ‖

∑
e∈F∩s−1(r(K))

√
λesea‖ ≤ ε.

This means that the sum
∑
e∈E1

√
λe sea converges in C∗(E).

Secondly, note that for e ∈ E1 we have s∗ea = 0 unless eµ ∈ K for some µ ∈ E∗,
or r(e) ∈ K ∩ E0. Recall that the sum

∑
e∈r−1(v)

√
λes
∗
e is norm convergent for

all v ∈ E0. Thus for a fixed ε > 0 we can find a finite set F1 ⊆ E1 such that for

any F disjoint with F1 we have

‖
∑

e∈r−1(v)∩F

√
λes
∗
e‖ ≤

ε

|K ∩ E0| · ‖a‖
for all v ∈ K ∩ E0.

Then for any finite F ⊆ E1 lying outside the finite set F0 := {e ∈ E1 : eµ ∈
K,µ ∈ E∗} ∪ F1 we get

‖
∑
e∈F

√
λes
∗
ea‖ = ‖

∑
v∈K∩E0

∑
e∈r−1(v)∩F

√
λes
∗
ea‖

≤
∑

v∈K∩E0

‖
∑

e∈r−1(v)∩F

√
λes
∗
e‖ · ‖a‖ ≤ ε.

Thus
∑
e∈E1

√
λe s

∗
ea converges in C∗(E). This shows that uλ =

∑
e∈E1

√
λe se con-

verges in strict topology in M(C∗(E)).

iii)⇒iv). Plainly, as the sum uλ =
∑
e∈E1

√
λe se is strictly convergent the sum

u∗λauλ =
∑
e,f∈E1

√
λeλfs

∗
easf converges in norm for every a ∈ C∗(E).

iv)⇒i). Using relations (47), (48) one readily verifies that the isomorphism

given by (39) intertwines the restriction Φ∗,λ|DE of Φ∗,λ to DE with a mapping

Lλ : C0(∂E)→ C0(∂E) given by (42). �

Remark 5.5. For uλ given by (45) we have u∗λuλ =
∑
v∈E0(

∑
e∈s−1(v) λe)pv.

Hence uλ is a partial isometry if and only if the measures {λv}v∈E0 arising from

λ = {λe}e∈E1 are normalized, that is if and only if

(51)
∑

e∈s−1(v)

λe = 1, for all v ∈ E0.

Clearly, (51) implies (43) and if no vertex in E receives edges from infinitely

many vertices then (44) is trivial. So in this case uλ can be chosen to be a partial

isometry. Nevertheless, in general there might be no systems satisfying (51) for

which the sum (45) is strictly convergent (e.g. consider the infinite countable
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graph with a vertex receiving one edge from each of the remaining ones). If E is

locally finite, one can let λv, v ∈ E0, to be uniform probability distributions by

putting λe := |s−1(s(e))|−1, e ∈ E1. In the latter case and under the assumption

that E has no sinks or sources it was noted implicitly in [10, Theorem 5.1] and

explicitly in [18, Section 5] that the formula (45) defines an isometry inM(C∗(E)).

A detailed discussion of history and analysis of operators (45), (46) associated to

systems of uniform probability measures for arbitrary finite graphs can be found

in [28].

Let us note that Φ∗,λ, given by (46), restricted to DE assumes the form

(52) Φ∗,λ(a) =
∑
e∈E1

λes
∗
ease, a ∈ DE .

In particular, in view of the last part of Proposition 5.4, it is natural to call Φ∗,λ :

C∗(E) → C∗(E) the non-commutative Perron-Frobenius operator associated to

the quiver (E1, E0, r, s, λ).

5.3. Graph C∗-algebras as crossed products C∗(DE ,L). Now we are ready

to state and prove the main result of this section. In previous subsections we have

shown that for positive numbers λ = {λe}e∈E1 satisfying (43), (44) we have two

mappings Lλ : C0(∂E) → C0(∂E) and Φ∗,λ : DE → DE , given respectively by

(42) and (52). These mappings are intertwined by the isomorphism C0(∂E) ∼= DE
determined by (39). Thus one could express the following statement equally well

in terms of (C0(∂E),Lλ) or (DE ,Φ∗,λ). We choose the second system, as it is

more convenient for our proofs. In order to shorten the notation we denote Φ∗,λ
simply by L.

Theorem 5.6. Suppose E = (E0, E1, s, r) is an arbitrary directed graph and

choose the numbers λe > 0, e ∈ E1, such that the conditions (43), (44) hold.

Then the sum

(53) L(a) :=
∑
e∈E1

λes
∗
ease, a ∈ DE ,

is convergent in norm and defines a (completely) positive map L : DE → DE such

that

C∗(E) ∼= C∗(DE ,L),

with the isomorphism determined by a 7→ jDE (a), auλ 7→ jDE (a)s, a ∈ DE, where

uλ is given by the strictly convergent sum (45). Further under these assumptions:
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i) If E has no infinite emitters, then the following sum is convergent in

norm:

(54) α(a) :=
∑
e∈E1

seas
∗
e, a ∈ DE .

It defines an endomorphism such that (DE , α,L) is an Exel system and

C∗(DE ,L) = DE oα,L N.

Moreover, (DE , α,L) is a regular Exel system if and only if (51) holds.

ii) If E has no infinite receivers then L is a transfer operator for a certain

endomorphism α if and only if E is locally finite. In this event α given

by (54) is a unique endomorphism such that (DE , α,L) is an Exel system

and L is faithful on α(DE)DE.

iii) If E is locally finite and without sources then L is faithful and α given by

(54) is a unique endomorphism such that (DE , α,L) is an Exel system.

Remark 5.7. We comment on the corresponding items in the above theorem:

i). Recall that (51) holds if and only if the operator uλ is a partial isometry. In

particular, the general question for which graphs E the numbers λe > 0, e ∈ E1,

can be chosen so that the Exel system (DE , α,L) is regular, seems to be a complex

problem.

ii). One could conjecture that in general L is a transfer operator for a certain

endomorphism if and only if E has no infinite emitters, and then this endomor-

phism is the (non-commutative) Markov shift given by (54).

iii). If E is locally finite and without sources then ∂E = E∞ and we can

put λe := |s−1(s(e))|−1, e ∈ E1. In this case, identifying DE with C0(E∞), the

mappings (54) and (53) coincide with those given by (1). In particular, Theorem

5.6 yields an isomorphism

C∗(E) ∼= C0(E∞) oα,L N

proved by Brownlowe in [7, Proposition 4.6], and when E has no sinks by Brown-

lowe, Raeburn and Vitadello in [10, Theorem 5.1].

The proof of Theorem 5.6 will rely on the following two lemmas. We fix the

notation from the assertion of Theorem 5.6 and note that the map L : DE → DE
is well defined by Proposition 5.4. We denote by E0

s := {v ∈ E0 : r−1(v) = ∅}
and Einf := {v ∈ E0 : |r−1(v)| = ∞} the set of sources and the set of infinite

receivers, respectively.
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Lemma 5.8. Let XL be the C∗-correspondence of (DE ,L). We have N⊥L =

span{sµs∗µ : µ ∈ E∗ \ E0
s} and J(XL) = span{sµs∗µ : µ ∈ E∗ \ E0

inf}. Hence

N⊥L ∩ J(XL) = span{sµs∗µ : µ ∈ E∗ \ E0}.

Proof. Note that DE is a direct sum of two complemented ideals span{pv : v ∈
E0
s} and span{sµs∗µ : µ ∈ E∗ \ E0

s}. One readily sees that L vanishes on the

first one and is faithful on the second one. Hence NL = span{pv : v ∈ E0
s} and

N⊥L = span{sµs∗µ : µ ∈ E∗ \ E0
s}.

Let µ ∈ E∗ \ E0 and put K := λ−1
µ1

Θ(sµs∗µ⊗1),(sµs∗µ⊗1) where µ1 ∈ E1 is such

that µ1µ = µ for µ ∈ E∗ (we recall that a ⊗ 1 ∈ XL, for a ∈ DE , is given by

(13)). We claim that φ(sµs
∗
µ) = K. Indeed, for any a, b ∈ DE we have

K(a⊗ b) = K(a⊗ 1)b = λ−1
µ1

(
sµs
∗
µ ⊗ L(sµs

∗
µa)
)
b =

(
sµs
∗
µ ⊗ sµs∗µasµ1

)
b.(55)

Moreover, for any x, y ∈ DE we have

〈sµs∗µ ⊗ sµs∗µasµ1
, x⊗ y〉L = sµs

∗
µasµ1

L(sµs
∗
µx)y

= λµ1sµs
∗
µasµs

∗
µxsµ1y

= L(sµs
∗
µax)y

= 〈sµs∗µ(a⊗ 1), x⊗ y〉L.

Hence sµs
∗
µ ⊗ sµs∗µasµ1

= sµs
∗
µ(a ⊗ 1). Thus in view of (55) we get K(a ⊗ b) =

(sµs
∗
µa ⊗ 1)b = φ(sµs

∗
µ)(a ⊗ b), which proves our claim. If v ∈ E0 \ E0

inf , then

using what we have just shown we get

φ(pv) = φ(
∑

f∈r−1(v)

sfs
∗
f ) =

∑
f∈r−1(v)

λ−1
f Θ(sfs∗f⊗1),(sfs∗f⊗1) ∈ K(XL).

This shows that span{sµs∗µ : µ ∈ E∗ \E0
inf} ⊆ J(XL). Suppose, on the contrary,

that this inclusion is proper. Then there exists an element in J(XL) of the form

a =
∑
µ∈E∗\E0

inf
cµsµs

∗
µ +

∑
v∈E0

inf
cvpv where cµ, cv are complex numbers and

there is v0 ∈ E0
inf such that cv0 6= 0. Then

∑
v∈E0

inf
cvpv = a−

∑
µ∈E∗\E0

inf
cµsµs

∗
µ

is in J(XL). Hence pv0
= c−1

v0
pv0

∑
v∈E0

inf
cvpv is in J(XL). We show that the

latter is impossible. Indeed, any operator in K(XL) can be approximated by

K ∈ K(XL) given by a finite linear combination of the form

K =
∑

µ,ν,η,τ∈F
λµ,ν,η,τΘ(sµs∗µ⊗sνs∗ν),(sηs∗η⊗sτs∗τ )

where F ⊆ E∗ is a finite set. For any such combination we can find an edge

g ∈ r−1(v0) such that the projection ps(g) is orthogonal to every projection sµs
∗
µ,
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µ ∈ F . Then for τ ∈ F , and any η ∈ E∗, we have

〈sηs∗η ⊗ sτs∗τ , sgs∗g ⊗ 1〉L = sτs
∗
τL(sηs

∗
ηsgs

∗
g) = sτs

∗
τps(g)(λgs

∗
gsηs

∗
ηsg) = 0.

This implies that K(sgs
∗
g ⊗ 1) = 0. Thus, as λ−1

g ‖sgs∗g ⊗ 1‖ = 1, we get

‖φ(pv0)−K‖ ≥ λ−1
g ‖φ(pv)(sgs

∗
g ⊗ 1)−K(sgs

∗
g ⊗ 1)‖ = λ−1

g ‖sgs∗g ⊗ 1‖ = 1.

Accordingly, φ(pv0) /∈ K(XL) which is a contradiction. Thus span{sµs∗µ : µ ∈
E∗ \ E0

inf} = J(XL). �

By Proposition 5.3, if E has no infinite emitters then (54) defines an endomor-

phism α : DE → DE .

Lemma 5.9. Suppose E has no infinite emitters and α is given by (54). Then

α(DE)DE = N⊥L ∩ J(XL).

Proof. Let = µ1µ ∈ E∗ \ E0 where µ1 ∈ E1. Since

sµs
∗
µ = sµ1µs

∗
µ1µ = sµ1

s∗µ1
α(sµs

∗
µ) ∈ α(DE)DE ,

it follows from Lemma 5.8 thatN⊥L ∩J(XL) ⊆ α(DE)DE . For the reverse inclusion

it suffices to show that for any a ∈ DE we have α(a) ∈ N⊥L ∩ J(XL). To this

end, consider a net µF :=
∑
e∈F ses

∗
e ∈ N⊥L ∩ J(XL) = span{sµs∗µ : µ ∈ E∗ \E0}

indexed by finite sets F ⊆ E1 ordered by inclusion. Clearly, µFα(a) converges to

α(a). Hence α(a) ∈ N⊥L ∩ J(XL). �

Proof of Theorem 5.6:. By Proposition 5.4 the sum (53) converges in norm

and the operator uλ =
∑
e∈E1

√
λese converges strictly in M(C∗(E)). Plainly,

L(a) = uλau
∗
λ for a ∈ DE . Let us treat M(C∗(E)) as a non-degenerate subalgebra

of B(H). Then the pair (id, uλ) is a faithful representation of (DE ,L) in B(H).

We claim that it is covariant, in the sense of Definition 3.16, i.e. N⊥L ∩ J(XL) ⊆
DEuλDEu∗λ. Indeed, taking sµs

∗
µ where µ ∈ E∗ \E0, and writing µ = µ1µ where

µ1 ∈ E1 and µ ∈ E∗ we get

sµs
∗
µ = sµ1µs

∗
µ1µ = λ−1

µ1
sµ1

s∗µ1
uλ(sµs

∗
µ)u∗λ sµ1

s∗µ1
∈ DEuλDEu∗λ.

By virtue of Lemma 5.8 this proves our claim. Hence by Proposition 3.17 the

mapping jA(a) 7→ a, jA(a)s 7→ auλ, a ∈ DE , gives rise to a homomorphism from

C∗(DE ,L) into C∗(E). Let us denote it by id o uλ and note that it is actually

an epimorphism because we have

se = (
√
λe)
−1(ses

∗
e)uλps(e), for all e ∈ E1.
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Moreover, for the canonical gauge circle action γ on C∗(E) we have

γz(a) = a, γz(auλ) = zauλ, for all a ∈ DE , z ∈ T.

Thus applying Proposition 3.18 we see that id o uλ is an isomorphism. This

proves the main part of the assertion.

i). Suppose now that E has no infinite emitters. Then (54) converges in norm

by Proposition 5.3. Since

L(α(a)b) =
∑

e,f∈E1

λfs
∗
fseas

∗
ebsf =

∑
e∈E1

λeps(e)as
∗
ebse = a

∑
e∈E1

λes
∗
ebse = aL(b),

for all a, b ∈ DE , the triple (DE , α,L) is an Exel system. Similar calculations

show that

α(L(α(a))) =
∑
e∈E1

 ∑
f∈s−1(s(e))

λf

 seas
∗
e.

Hence, in view of Proposition 4.13, L is a regular transfer operator for α if and

only if (51) holds. The crossed products C∗(DE ,L) and DE oα,L N coincide by

Lemma 5.9 and Theorem 4.7.

ii). Suppose α is an endomorphism such that (DE , α,L) is an Exel system.

Putting b = ses
∗
e, e ∈ E1, in the equation L(α(a)b) = aL(b) we get s∗eα(a)se =

as∗ese. This in turn implies that

α(a)ses
∗
e = seas

∗
e, e ∈ E1.

Lack of infinite receivers in E implies that the projections ses
∗
e sum up strictly

to a projection in M(C∗(E)). Let us denote it by p. It follows that α(a)p =∑
e∈E1 seas

∗
e is in DE for any a ∈ DE . If there would be an infinite emitter v ∈ E0,

then α(pv)p =
∑
e∈s−1(v) ses

∗
e would not be an element of DE (otherwise it would

correspond via the isomorphism DE ∼= C0(∂E) to a characteristic function of a

non-compact set). Thus E must be locally finite. Furthermore, in view of Lemma

5.8, we have pDE = N⊥L . Therefore if α(DE)DE ⊆ N⊥L then α has to be given by

(54).

Item iii) follows from item ii) because for a locally finite graph without sources

we have N⊥L = DE by Lemma 5.8. �

References

[1] S. Adji, M. Laca, M. Nilsen and I. Raeburn. Crossed products by semigroups of en-

domorphisms and the Toeplitz algebras of ordered groups. Proc. Amer. Math. Soc. 122

(1994), 1133–1141.



EXEL’S CROSSED PRODUCT AND COMPLETELY POSITIVE MAPS 57

[2] A. B. Antonevich, V. I. Bakhtin and A. V. Lebedev. Crossed product of a C∗-algebra by

an endomorphism, coefficient algebras and transfer operators. Math. Sbor. (9) 202 (2011),

1253–1283.

[3] J. Arledge, M. Laca and I. Raeburn. Semigroup crossed products and Hecke algebras

arising from number fields, Doc. Math. 2 (1997), 115–138.

[4] B. Blackadar. Shape theory for C∗-algebras. Math. Scand. 56 (1985), 249–275.

[5] B. Brenken. C∗-algebras associated with topological relations. J. Ramanujan Math. Soc.

19.1 (2004), 35–55.

[6] L.G. Brown, J. Mingo and N. Shen. Quasi-multipliers and embeddings of Hilbert C∗-

modules. Canad. J. Math. 71 (1994), 1150–1174.

[7] N. Brownlowe. Realising the C∗-algebra of a higher-rank graph as an Exel’s crossed

product. J. Operator Theory (1) 68 (2012), 101–130.

[8] N. Brownlowe, N. Larsen and S. Stammeier. C∗-algebras of algebraic dynamical systems

and right LCM semigroups. arXiv:1503.01599.

[9] N. Brownlowe and I. Raeburn. Exel’s crossed product and relative Cuntz-Pimsner alge-

bras. Math. Proc. Camb. Phil. Soc. 141 (2006), 497–508.

[10] N. Brownlowe, I. Raebrun and S. T. Vittadello. Exel’s crossed product for non-unital

C∗-algebras. Math. Proc. Camb. Phil. Soc. 149 (2010), 423–444.

[11] J. Cuntz. Simple C∗-algebras generated by isometries. Commun. Math. Phys. 57 (1977),

173–185.

[12] R. Exel. A new look at the crossed-product of a C∗-algebra by an endomorphism. Ergodic

Theory Dyn. Syst. 23 (2003), 1733–1750.

[13] R. Exel. Interactions. J. Funct. Analysis, 244 (2007), 26–62.

[14] R. Exel and D. Royer. The crossed product by a partial endomorphism. Bull. Braz. Math.

Soc. 38 (2007), 219–261.

[15] R. Exel and A. Vershik. C∗-algebras of irreversible dynamical systems. Canadian J.

Math. 58 (2006), 39–63.

[16] C. Farthing. P. Muhly and T. Yeend. Higher-rank graph C∗-algebras: an inverse semi-

group approach. Semigroup Forum. 71 (2005), 159–187.

[17] N.J. Fowler. Discrete product systems of Hilbert bimodules, Pacific J. Math. 204 (2002),

335-375.

[18] A. an Huef and I. Raeburn. Stacey crossed products associated to Exel systems. Integral

Equations Operator Theory 72 (2012), 537–561.

[19] M. Ionescu, P. Muhly and V. Vega. Markov operators and C∗-algebras. Houston J.

Math. (3) 38 (2012), 775–798.

[20] Ja. A. Jeong and Gi Hyun Park. Topological entropy for the canonical completely positive

maps on graphs C∗-algebras. Bull. Austral. Math. Soc. 70 (2004), 101–116.

[21] T. Kajiwara, C. Pinzari and Y. Watatani. Ideal structure and simplicity of the C∗-

algebras generated by Hilbert bimodules. J. Funct. Anal. 159 (1998), 295–322.

[22] T. Katsura. A construction of C∗-algebras from C∗-correspondences. Contemp. Math.

vol. 335, pp. 173-182, Amer. Math. Soc., Providence (2003)

[23] T. Katsura. On C∗-algebras associated with C∗-correspondences. J. Funct. Anal. (2) 217

(2004), 366–401.



58 BARTOSZ KOSMA KWAŚNIEWSKI
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