
Journal of Functional Analysis 270 (2016) 2268–2335
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Crossed products by endomorphisms
of C0(X)-algebras

B.K. Kwaśniewski a,b,∗

a Department of Mathematics and Computer Science, The University of Southern 
Denmark, Campusvej 55, DK-5230 Odense M, Denmark
b Institute of Mathematics, University of Bialystok, ul. K. Ciolkowskiego 1M, 
15-245 Bialystok, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 December 2014
Accepted 14 January 2016
Available online 4 February 2016
Communicated by Stefaan Vaes

MSC:
primary 46L05
secondary 46L35

Keywords:
Crossed product
C0(X)-algebra
K-theory
Ideal structure

In the first part of the paper, we develop a theory of crossed 
products of a C∗-algebra A by an arbitrary (not necessarily 
extendible) endomorphism α : A → A. We consider relative 
crossed products C∗(A, α; J) where J is an ideal in A, and 
describe up to Morita–Rieffel equivalence all gauge-invariant 
ideals in C∗(A, α; J) and give six term exact sequences 
determining their K-theory. We also obtain certain criteria 
implying that all ideals in C∗(A, α; J) are gauge-invariant, 
and that C∗(A, α; J) is purely infinite.
In the second part, we consider a situation where A is a 
C0(X)-algebra and α is such that α(fa) = Φ(f)α(a), a ∈
A, f ∈ C0(X) where Φ is an endomorphism of C0(X). 
Pictorially speaking, α is a mixture of a topological dynamical 
system (X, ϕ) dual to (C0(X), Φ) and a continuous field of 
homomorphisms αx between the fibers A(x), x ∈ X, of the 
corresponding C∗-bundle.
For systems described above, we establish efficient conditions 
for the uniqueness property, gauge-invariance of all ideals, 
and pure infiniteness of C∗(A, α; J). We apply these results 
to the case when X = Prim(A) is a Hausdorff space. In 
particular, if the associated C∗-bundle is trivial, we obtain 
formulas for K-groups of all ideals in C∗(A, α; J). In this way, 
we constitute a large class of crossed products whose ideal 
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structure and K-theory is completely described in terms of 
(X, ϕ, {αx}x∈X ; Y ) where Y is a closed subset of X.

© 2016 Elsevier Inc. All rights reserved.

0. Introduction

Crossed products by endomorphisms proved to be one of the major model examples 
in classification of simple C∗-algebras. The first instances of such crossed products, in-
formally introduced in [9], were Cuntz algebras On. Rørdam [49] and Rørdam and Elliot 
[12] established the range of K-theoretical invariant for all Kirchberg algebras by showing 
that crossed products by endomorphisms of AT-algebras of real rank zero contain classi-
fiable Kirchberg algebras with arbitrary K-theory. In particular, by Kirchberg–Phillips 
classification, every Kirchberg algebra is isomorphic to such a crossed product. Signif-
icantly, Elliott’s classification of (not necessarily simple) AT-algebras of real rank zero 
[11] implies that all unital simple AT-algebras of real rank zero with K1 equal to integers 
are modeled by crossed products associated to Cantor systems, studied by Putnam [48], 
see also [17]. Another milestone in the classification of non-simple C∗-algebras is Kirch-
berg’s classification of strongly purely infinite, nuclear, separable C∗-algebras via ideal 
related KK-theory [26]. Nevertheless, this invariant is fairly complicated and there is 
still a lot of effort put into classifying certain non-simple purely infinite C∗-algebras by 
means of apparently less elaborated invariants, cf. [41,7,50]. Accordingly, it is of interest 
to establish non-trivial but still accessible examples of C∗-algebras whose ideal structure 
and K-theory of all ideals and quotients can be controlled. An overall aim of the present 
paper is to develop tools to construct and analyze a large class of crossed products by 
endomorphisms that fulfill these requirements. Another source of motivation comes from 
potential applications to spectral analysis of certain non-local operators [4,22,5].

In section 3, we introduce and study C0(X)-dynamical systems. A C0(X)-dynamical 
system is a pair (A, α) where A is a C0(X)-algebra and α : A → A is an endomorphism 
compatible with the C0(X)-structure (we give several characterization of this notion). 
Such a system can be viewed as a convenient combination of topological and noncom-
mutative dynamics; encoded in a pair (ϕ, {αx}x∈Δ) where ϕ : Δ → X is a continuous 
proper mapping defined on an open set Δ ⊆ X, and αx : A(ϕ(x)) → A(x), x ∈ Δ, is a 
homomorphism between the corresponding fibers of the C0(X)-algebra A, so that

α(a)(x) = αx(a(ϕ(x))), a ∈ A, x ∈ Δ.

We refer to the pair (ϕ, {αx}x∈Δ) as to a morphism of the corresponding C∗-bundle 
A := �

x∈X
A(x) (Definition 3.1). In particular, if every fiber A(x) is trivial (equal to C) we 

get a topological dynamical system. In the case when X is trivial (a singleton), α : A → A

is just an endomorphism of A, and we call (A, α) simply a C∗-dynamical system. An 
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important non-trivial example arises when A is a unital C∗-algebra, C ⊆ Z(A) is a 
non-degenerate C∗-subalgebra of the center of A and α ‘almost preserves’ C, that is 
α(C) ⊆ Cα(1). Then (A, α) is naturally a C0(X)-dynamical system with C0(X) ∼= C. 
Analysis of crossed products associated to such C0(X)-dynamical systems, in the case 
α is an automorphism, played an important role in the study of non-local operators, 
cf. [22], such as (abstract) weighted shift operators [4], or singular integral operators 
with shifts [5]. If C = Z(A) and the primitive ideal space Prim(A) of A is a Hausdorff 
space, then X ∼= Prim(A), and this will be our model example.

We associate to any C∗-dynamical system (A, α) and an ideal J in A the relative 
crossed product C∗(A, α; J) introduced (for an arbitrary completely positive map) in [36]. 
As explained in detail in [36, Section 3.4], these crossed products include as special 
cases those studied in [44,54,40,37,34]. In the present paper, we consider only the case 
when A embeds into C∗(A, α; J), equivalently when J is contained in the annihilator 
(kerα)⊥ of the kernel of α (the general case may be covered by passing to a quo-
tient C∗-dynamical system, cf. Remark 2.8 below). The unrelative crossed product is 
C∗(A, α) := C∗(A, α; (kerα)⊥). If (A, α) is a C0(X)-dynamical system with the related 
morphism (ϕ, {αx}x∈Δ), then among our main results we list the following:

• Isomorphism theorem. We show that for certain continuous C0(X)-algebras, if the 
map ϕ is topologically free outside a set Y related to the ideal J , then every injective 
representation of (A, α) whose ideal of covariance is maximal possible, give rise to a 
faithful representation of C∗(A, α; J) (see Theorem 4.11).

• Description of the ideal structure. We prove that, if ϕ is free, then we have a bi-
jective correspondence between ideals I in C∗(A, α; J) and certain pairs (I, I ′) of ideals 
in A, called J-pairs for (A, α) (see Theorem 4.12 and Definition 2.17). Moreover, the 
quotient of C∗(A, α; J) by I is naturally isomorphic a crossed product associated to the 
quotient of (A, α), and the ideal I is Morita–Rieffel (strongly Morita) equivalent either 
to the crossed product associated to the restricted endomorphism α|I or to an endomor-
phism constructed from (I, I ′) and α (see Theorem 2.19 and Proposition 2.25). In the 
case A has a Hausdorff primitive ideal space and X = Prim(A), we describe ideals in 
C∗(A, α; J) in terms of pairs (V, V ′) of closed subsets of X, called Y -pairs for (X, ϕ)
(see Proposition 5.6 and Definition 5.1). Hence the ideal structure of C∗(A, α; J) is com-
pletely described in terms of the topological dynamical system (X, ϕ). In particular, in 
this case we characterize simplicity of crossed products (Proposition 5.9).

• Pure infiniteness. It seems that amongst the existing technics of showing pure in-
finiteness of crossed products there are two types of approaches. In the first one the 
corresponding crossed product is simple [39,19,20]. In the second one the initial algebra 
A is assumed to have the ideal property [52,16,43,46,38]. We cover these two lines of 
research in our context by showing that if ϕ is free, then

A is purely infinite and
has the ideal property

=⇒ the same is true for C∗(A,α, J),

and



B.K. Kwaśniewski / Journal of Functional Analysis 270 (2016) 2268–2335 2271
A is purely infinite and there are
finitely many J-pairs for (A,α)

=⇒ C∗(A,α, J) is purely infinite and
has finitely many ideals

(see Theorem 4.12). If X = Prim(A) and A is purely infinite, this leads us to necessary 
and sufficient conditions for C∗(A, α) to be a Kirchberg algebra (Corollary 5.10). We 
recall that in the presence of the ideal property, pure infiniteness is equivalent to strong 
pure infiniteness. We also point out that using conditions introduced recently in [38], 
the aforementioned results could be potentially generalized to the case when A is not 
necessarily purely infinite. Moreover, in recent papers [28,29] Sierakowski and Kirchberg 
introduced a new machinery that gives strong pure infiniteness criteria for crossed prod-
ucts by discrete group actions, without passing (explicitly) through pure infiniteness. It 
seems plausible that combining their technics with tools of the present paper one could 
also obtain permanence results for strong pure infiniteness of C∗(A, α, J). Nevertheless, 
we do not pursue these issues here.

• K-theory. In the case when the corresponding C∗-bundle is trivial, that is when A =
C0(X, D) for a C∗-algebra D, and under the assumptions that X is totally disconnected, 
K0(D) is torsion free and K1(D) = 0, we give formulas for K-groups of C∗(A, α, J)
formulated in terms of (X, ϕ, {αx}x∈Δ; Y ) (Proposition 5.13). These formulas can be 
viewed as a far reaching generalization of those given by Putnam in [48]. If additionally 
D is simple and ϕ is free we get formulas for K-groups of all ideals in C∗(A, α, J)
(Theorem 5.15). We show by concrete examples that not only the dynamical system 
(X, ϕ) (which determines the ideal structure of C∗(A, α, J)) but also endomorphisms 
αx, x ∈ Δ, contribute to K-theory, thus giving us a lot of flexibility in constructing 
interesting algebras.

The aforementioned results are based on general facts for crossed products C∗(A, α; J), 
which we develop in section 2. One of the main tools is a description of a re-
versible J-extension (B, β) of (A, α), introduced in [34]: we show that if (A, α) is a 
C0(X)-dynamical system, then (B, β) is a C0(X̃)-dynamical system induced by a mor-
phism (ϕ̃, {βx}x∈Δ̃) where (X, ϕ̃) is a reversible Y -extension of (X, ϕ) introduced in [30]
(see Theorem 4.9).

It has to be emphasized that so far, cf. [44,54,40,37,34], crossed products by endo-
morphisms where studied either in the case A is unital or under the assumption that 
the endomorphism α : A → A is extendible [2], i.e. that it extends to an endomorphism 
of the multiplier algebra M(A) of A. However, these assumptions exclude a number of 
important applications. For instance, a restriction of an extendible endomorphism to an 
invariant ideal in general is not extendible. Thus, we are forced to develop a large part 
of theory of crossed products by not necessarily extendible endomorphisms. We do it in 
section 2. The established results are interesting in their own right.

More specifically, we generalize one of the main results of [34] and describe the 
gauge-invariant ideals I in C∗(A, α; J) by J-pairs (I, I ′) of ideals in A. Additionally, 
we show that I is Morita–Rieffel equivalent either to the crossed product associated to 
the restricted endomorphism α|I or to an endomorphism constructed from (I, I ′) and α
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(Theorem 2.19 and Proposition 2.25). We generalize the classic Pimsner–Voiculescu se-
quence so that it applies to the crossed product C∗(A, α; J) (Proposition 2.26). As a 
consequence we get six-term exact sequences for K-groups of all gauge-invariant ideals 
in C∗(A, α; J) (Theorem 2.27). We extend the terminology of [34] and say that (A, α)
is a reversible C∗-dynamical systems if α has a complemented kernel and a hereditary 
range. For an arbitrary C∗-dynamical system (A, α) we generalize the construction of a 
reversible J-extension (B, β) introduced in [34], see also [35]. We show that

C∗(A,α; J) ∼= C∗(B, β)

(Theorem 2.29). This is a powerful tool because for reversible systems (A, α) the crossed 
product C∗(A, α) has an accessible structure, very similar to that of classical crossed 
product by an automorphism. In particular, for such systems we have natural criteria 
for uniqueness property, gauge-invariance of all ideals, and pure infiniteness of C∗(A, α)
(see Propositions 2.35 and 2.46).

We note that, in contrast to [34] where more direct methods where used, in the present 
paper we base our more general analysis on certain results for relative Cuntz–Pimsner 
algebras and an identification of C∗(A, α; J) as such an algebra. We present the relevant 
facts in Appendix A.

The content is organized as follows: We recall the relevant notions and facts concern-
ing C0(X)-algebras in section 1. General crossed products are studied in section 2. In 
section 3 we introduce and analyze C0(X)-dynamical systems. Section 4 contains general 
main results for C0(X)-dynamical systems. We apply them to C0(X)-dynamical systems 
with X = Prim(A) in section 5, where our results attain a particularly nice form. We 
finish the paper with Appendix A, which contains relevant facts from the theory of 
C∗-correspondences and relative Cuntz–Pimsner algebras, as well as a discussion of a 
particular case of the C∗-correspondence Eα associated to (A, α).

0.1. Notation and conventions

The set of natural numbers N starts from zero. All ideals in C∗-algebras are assumed 
to be closed and two-sided. All homomorphisms between C∗-algebras are by definition 
∗-preserving. For actions γ : A ×B → C such as multiplications, inner products, etc., we 
use the notation:

γ(A,B) = span{γ(a, b) : a ∈ A, b ∈ B}.

If A is a C∗-algebra 1 denotes the unit in the multiplier C∗-algebra M(A). The enveloping 
von Neumann algebra of A is denoted by A∗∗. We recall, see [27, Theorem 4.16], that 
a C∗-algebra A is purely infinite if and only if every a ∈ A+ \ {0} is properly infinite, 
e.g. a ⊕ a � a ⊕ 0 in M2(A), where � Cuntz comparison of positive elements. We recall 
that for a, b ∈ A+, a � b in A if and only if for every ε > 0 there is x ∈ A+ such 
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that ‖a − xbx‖ < ε. A C∗-algebra A has the ideal property [47,45], if every ideal in A is 
generated (as an ideal) by its projections.

1. Preliminaries on C0(X)-algebras and C∗-bundles

In this section, we gather certain facts concerning C0(X)-algebras. We find it beneficial 
to use two equivalent pictures of such objects: as C∗-algebras with a C0(X)-module 
structure and as C∗-algebras of sections of C∗-bundles. Thus we implement both of 
these viewpoints. As a general reference we use [55, Section C], but cf. also, for instance, 
[18,6].

1.1. C∗-bundles and section C∗-algebras

Let X be a locally compact Hausdorff space. An upper semicontinuous C∗-bundle 
over X is a topological space A = �

x∈X
A(x) such that the natural surjection p : A → X

is open continuous, each fiber A(x) is a C∗-algebra, the mapping A � a → ‖a‖ ∈ R is 
upper semicontinuous, and the ∗-algebraic operations in each of the fibers are continuous 
in A, for details see [55, Definition C.16]. If additionally, the mapping A � a → ‖a‖ ∈ R
is continuous, A is called a continuous C∗-bundle over X. For each x ∈ X, we denote by 
0x the zero element in the fiber C∗-algebra A(x), and by 1x the unit in the multiplier 
algebra M(A(x)) of A(x). A C∗-bundle A is trivial if there is a C∗-algebra D and 
homeomorphism from A = �

x∈X
A(x) onto X×D which intertwines p with the projection 

onto the first coordinate.
We denote by Γ(A) := {a ∈ C(X, A) : p(a(x)) = x} the set of continuous sections 

of the upper semicontinuous C∗-bundle A. It is a ∗-algebra with respect to natural 
pointwise operations. Moreover, the set of continuous sections that vanish at infinity

Γ0(A) := {a ∈ Γ(A) : ∀ε>0 {x ∈ X : ‖a(x)‖ � ε} is compact}

is a C∗-algebra with the norm ‖a‖ := supx∈X ‖a(x)‖. We call Γ0(A) the section 
C∗-algebra of A. The section algebra Γ0(A) determines the topology of the C∗-bundle A. 
In particular, we have the following lemma (see, for instance, the proof of [55, Theo-
rem C.25]).

Lemma 1.1. A net {bi} converges to b in the C∗-bundle A if and only if p(bi) → p(b) and 
for each ε > 0 there is a ∈ Γ0(A) such that ‖a(p(b)) − b‖ < ε and we eventually have 
‖a(p(bi)) − bi‖ < ε.

The algebra Γ0(A) is naturally equipped with the structure of C0(X)-algebra given 
by (f · a)(x) := f(x)a(x) for f ∈ C0(X) and a ∈ Γ0(A).
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1.2. C0(X)-algebras

A C0(X)-algebra is a C∗-algebra A endowed with a nondegenerate homomorphism 
μA from C0(X) into the center Z(M(A)) of the multiplier algebra M(A) of A. When 
X is compact A is also called a C(X)-algebra. The C0(X)-algebra A is viewed as a 
C0(X)-module where

f · a := μA(f)a, f ∈ C0(X), a ∈ A.

Accordingly, the structure map μA : C0(X) → Z(M(A)) is often suppressed. Using the 
Dauns–Hofmann isomorphism we may identify Z(M(A)) with Cb(PrimA), and then μA

becomes the operator of composition with a continuous map σA : PrimA → X. This 
map, called the base map, is determined by the equivalence:

C0(X \ {x}) ·A ⊆ P ⇐⇒ σA(P ) = x, P ∈ Prim(A). (1)

Let us fix a C0(X)-algebra A and consider a bundle A := �
x∈X

A(x) where

A(x) := A/
(
C0(X \ {x}) ·A

)
, x ∈ X.

It can be shown that there is a unique topology on A := �
x∈X

A(x) such that A becomes 

an upper semicontinuous C∗-bundle and the C0(X)-algebra A can be identified with 
Γ0(A) by writing a(x) for the image of a ∈ A in the quotient algebra A(x). Moreover, 
A is a continuous C∗-bundle if and only if σA : PrimA → X is an open map. In the 
latter case, A is called a continuous C0(X)-algebra. In other words, we have the following 
statement, see [55, Theorem C.26].

Theorem 1.2. A C∗-algebra A is a C0(X)-algebra if and only if A ∼= Γ0(A) where A is 
an upper semicontinuous C∗-bundle. Moreover, A is a continuous C0(X)-algebra if and 
only if A is a continuous C∗-bundle.

Convention 1.3. In the sequel we will freely pass (often without a warning) between the 
above equivalent descriptions. Thus for any C0(X)-algebra A we will write A = Γ0(A)
where A is the associated C∗-bundle.

Remark 1.4. Let A be a C0(X)-algebra. In view of (1), we have 
⋂

P∈σ−1
A (x) P =

C0(X \ {x}) · A whenever x ∈ σA(PrimA), and A(x) = {0} if and only if x /∈
σA(PrimA). Thus if σA(Prim(A)) is locally compact (which is always the case when 
A is unital, or when A is a continuous C0(X)-algebra), then we may treat A as a 
C0

(
σA(Prim(A))

)
-algebra; in other words, we may assume that σA is surjective, or equiv-

alently that all fibers A(x) are non-trivial.
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1.3. Multiplier algebra of a C0(X)-algebra

We say that a C0(X)-algebra A has local units if all fibers A(x), x ∈ X, are unital, 
and for any x ∈ X there is a ∈ A such that a(y) = 1y is the unit in A(y) for all y in a 
neighborhood of x.

Lemma 1.5. A C0(X)-algebra A is unital if and only if A has local units and the range 
of σA is compact.

Proof. If 1 is the unit in A then σA(Prim(A)) = {x ∈ X : ‖1(x)‖ � 1/2} is compact, 
because 1 ∈ Γ0(A), and clearly the (global) unit 1 is a local unit for any point in X. 
Conversely, suppose that σA(Prim(A)) is compact and A has local units. Consider the 
function 1 : X → A = �

x∈X
A(x) where for each x ∈ A we let 1(x) := 1x to be the 

unit in A(x). Using Lemma 1.1 and local units one readily sees that 1 is a continuous 
section of A. For any ε the set {x ∈ X : ‖1(x)‖ � ε} is compact, as a closed subset of 
σA(Prim(A)). Thus 1 ∈ Γ0(A) = A. �

We have the following natural description of the multiplier algebra M(A) of a 
C0(X)-algebra A as sections of the set M(A) := �

x∈X
M(A(x)), see [55, Lemma C.11]. 

We emphasize however, that in general (even when X is compact) M(A) can not be 
equipped with a topology making it an upper semicontinuous C∗-bundle such that 
M(A) ⊆ Γ(M(A)), see [55, Example C.13].

Proposition 1.6. Suppose that A is a C0(X)-algebra. The multiplier algebra M(A) can 
be naturally identified with the set of all functions m on X such that m(x) ∈ M(A(x)), 
for all x ∈ X, and the functions x �→ m(x)a(x), x �→ a(x)m(x) are in A = Γ0(A) for 
any a ∈ A. Then the C∗-algebraic structure of M(A) is given by the pointwise operations 
and the supremum norm ‖m‖ = supx∈X ‖m(x)‖.

1.4. Ideals and quotients of a C0(X)-algebra

Fix a C0(X)-algebra A and let I be an ideal in A. Assuming the standard identifi-
cations Prim I = {P ∈ PrimA : I � P} and Prim(A/I) = {P ∈ PrimA : I ⊆ P}, 
we see that both I and A/I are C0(X)-algebras with base maps σA : Prim(I) → X

and σA : Prim(A/I) → X respectively. Moreover, we have natural isomorphisms 
(A/I)(x) ∼= A(x)/I(x) where I(x) = {a(x) : a ∈ I ⊆ A}, x ∈ X.

Suppose that A is a continuous C0(X)-algebra. Then the ideal I is naturally a contin-
uous C0(Y )-algebra for any locally compact set Y containing the open set σA(Prim(I)), 
because a restriction of an open map to an open set is open (independently of the 
codomain). The situation is quite different when dealing with a restriction to a closed 
set, and thus the case of the quotient A/I is more delicate. Nevertheless, the set 
Y = σA(Prim(A/I)) is locally compact, and the mapping σA : Prim(A/I) → Y is 
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open for instance when I is complemented or σA is injective. Translating this to the 
language of C∗-bundles we get the following lemma.

Lemma 1.7. Suppose that I is an ideal in a C∗-algebra A = Γ0(A) of continuous sections 
of an upper semicontinuous C∗-bundle A = �

x∈X
A(x). The ideal I and the quotient 

algebra A/I can be naturally treated as algebras of continuous sections of I = �
x∈X

I(x)

and A/I = �
x∈X

A(x)/I(x) (equipped with unique topologies), respectively. Moreover, we 

have

{x ∈ X : I(x) �= {0}} = σA(Prim(I)), (2)

{x ∈ X : I(x) �= A(x)} = σA(Prim(A/I)). (3)

If A is a continuous bundle, then I is continuous over the set (2) and A/I is continuous 
over the set (3) whenever I is complemented or σA is injective.

Proof. In view of the above discussion we only need to show (2) and (3). The equivalences

I(x) �= {0} ⇐⇒ I �
⋂

P∈σ−1
A (x)

P ⇐⇒ ∃P∈σ−1
A (x)I � P ⇐⇒ x ∈ σA(Prim(I))

prove (2). To see (3) notice that using (1) we get

I(x) �= A(x) ⇐⇒
(
I +

⋂
P∈σ−1

A (x)

P
)
�= A ⇐⇒ ∃P0∈Prim(A)

(
I +

⋂
P∈σ−1

A (x)

P
)
⊆ P0

⇐⇒ ∃P0∈Prim(A) I ⊆ P0 and
⋂

P∈σ−1
A (x)

P ⊆ P0

⇐⇒ x ∈ σA(Prim(A/I)). �
Let I be an ideal in the C0(X)-algebra A. The annihilator I⊥ = {a ∈ A : aI =

0} of I is also a C0(X)-algebra with the base map σA : Prim(I⊥) → X. Moreover, 
since I⊥ is the biggest ideal in A with the property that I ∩ I⊥ = {0} it follows that 
Prim(I⊥) = Int(Prim(A/I)). If A is a continuous C0(X)-algebra then I⊥ is a continuous 
C0(U)-algebra where U = σA(Int(Prim(A/I))). In terms of C∗-bundles, I⊥ can be viewed 
as the algebra of continuous sections of the C∗-bundle I⊥ := �

x∈X
I(x)⊥ where I(x)⊥ is 

contained in the annihilator of I(x) in A(x). In particular, I(x)⊥ = {0} if and only if 
x /∈ U .

2. General crossed products by endomorphisms

In this section, we define crossed products C∗(A, α; J) for an arbitrary (not neces-
sarily extendible) endomorphism α : A → A. We establish basic results concerning 
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the structure of these C∗-algebras, including description of all gauge-invariant ideals 
and ‘Pimsner Voiculescu sequences’ determining their K-theory. We also construct a 
reversible J-extension (B, β) of (A, α), discuss the notion of topological freeness for sys-
tems which are reversible or commutative, and give a general pure infiniteness criteria 
for reversible systems.

2.1. C∗-dynamical systems and their crossed products

A C∗-dynamical system is a pair (A, α) where A is a C∗-algebra and α : A → A is an 
endomorphism. We say that α, or that the system (A, α), is extendible [2] if α extends 
to a strictly continuous endomorphism α : M(A) → M(A). It is known to hold exactly 
when for some (and hence any) approximate unit {μλ} in A the net {α(μλ)} converges 
strictly in M(A). In contrast to [34], in the present paper in general we do not assume 
that (A, α) is extendible.

Definition 2.1. (See Definition 2.4 in [34].) A C∗-dynamical system (A, α) is called re-
versible if kerα is a complemented ideal in A and α(A) is a hereditary subalgebra of A
(briefly, α has a complemented kernel and a hereditary range).

Remark 2.2. An extendible endomorphism α : A → A has a hereditary range if and 
only if it is a corner endomorphism, that is if α(A) is a corner in A (we then necessarily 
have α(1)Aα(1) = α(A)). In particular, an extendible C∗-dynamical system (A, α) is 
reversible if and only if α is a corner endomorphism with complemented kernel.

Suppose that (A, α) is a reversible C∗-dynamical system. Then α : (kerα)⊥ �→
α(A)Aα(A) is an isomorphism and we denote its inverse by α−1. If (A, α) is extendible, 
then α(A)Aα(A) = α(1)Aα(1) and α−1 extends to a completely positive map α∗ : A → A

given by the formula

α∗(a) = α−1(α(1)aα(1)), a ∈ A. (4)

The map α∗ is a transfer operator for (A, α) in the sense of Exel [13], that is we have 
α∗(α(a)b) = aα∗(b), for all a, b ∈ A. Moreover, α∗ is regular, which means that α ◦ α∗ is 
a conditional expectation onto α(A). In fact, α∗ is a unique regular transfer operator for 
(A, α), see [36, Proposition 4.15]. Transfer operators satisfying (4) appear in a natural 
way in a number of papers, see for instance [13,3,33,34].

Example 2.3. If A = C0(X) where X is a locally compact Hausdorff space, then every 
endomorphism α : A → A is of the form

α(a)(x) =
{
a(ϕ(x)), x ∈ Δ,

0, x /∈ Δ,
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where ϕ : Δ → X is a continuous proper mapping defined on an open subset Δ ⊆ X. 
Note that, properness of ϕ implies that ϕ(Δ) is closed in X. We call the pair (X, ϕ) a 
partial dynamical system dual to (A, α). The endomorphism α is extendible if and only 
if Δ is closed. The kernel of α is a complemented ideal in A if and only if ϕ(Δ) is open. 
The pair (A, α) is a reversible C∗-dynamical system if and only if both Δ and ϕ(Δ) are 
open in X and ϕ : Δ → ϕ(Δ) is a homeomorphism. If the latter conditions are satisfied 
we say that (X, ϕ) is a reversible partial dynamical system.

Now, we turn to the definition of crossed products. For more details, in the case A is 
unital or α is extendible, see [37] and [34].

Definition 2.4. A representation (π, U) of a C∗-dynamical system (A, α) on a Hilbert 
space H consists of a non-degenerate representation π : A → B(H) and an operator 
U ∈ B(H) such that

Uπ(a)U∗ = π(α(a)), for all a ∈ A. (5)

We will occasionally deal with representations of (A, α) in a C∗-algebra B by which 
mean a pair (π, U) where π : A → B is a non-degenerate homomorphism and U ∈ B∗∗

(an element of the enveloping von Neumann algebra of B) satisfies (5). If π is injective 
then we say (π, U) is injective.

Let (π, U) be a representation of (A, α) in a C∗-algebra B. Then U is necessarily a 
partial isometry. Indeed, if {μλ} is an approximate unit in A then by non-degeneracy of π, 
{π(μλ)} converges σ-weakly to the unit in B∗∗ and therefore {π(α(μλ))} = {Uπ(μλ)U∗}
converges σ-weakly to UU∗. Hence, using multiplicativity of α, we get that

(UU∗)2 = σ- lim
λ

σ- lim
λ′

π(α(μλ))π(α(μλ′)) = σ- lim
λ

π(α(μλ)) = U∗U

is a projection, cf. [36, Proposition 3.21]. Moreover, see [36, Proposition 3.21] or the proof 
of [37, Lemma 1.2], multiplicativity of α implies that the initial projection U∗U of U
commutes with the elements of π(A). In particular,

I(π,U) := {a ∈ A : U∗Uπ(a) = π(a)}

is an ideal in A. If an ideal J in A is contained in I(π,U) we say that the representation 
(π, U) is J-covariant. If (π, U) is (kerα)⊥-covariant, that is if

a ∈ (kerα)⊥ =⇒ π(a) = U∗Uπ(a)

we say that (π, U) is a covariant representation. Note that if α is injective, then the 
representation (π, U) is covariant if and only if U is an isometry. Thus if α is injective 
and non-degenerate then the representation (π, U) is covariant if and only if U is a 
unitary. The special role of (kerα)⊥ is also indicated in the following fact.
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Lemma 2.5. Suppose that (π, U) is an injective representation of (A, α). Then I(π,U) ⊆
(kerα)⊥. In particular, I(π,U) = (kerα)⊥ if and only if (π, U) is a covariant representa-
tion.

Proof. Let a ∈ I(π,U) and b ∈ kerα. Then ab ∈ I(π,U) and

π(ab) = U∗Uπ(ab)U∗U = U∗π(α(ab))U = U∗π(α(a))π(α(b))U = 0.

Hence ab = 0 because π is injective. Accordingly, I(π,U) ⊆ (kerα)⊥. �
Combining the above lemma and the following proposition one can see that (A, α)

admits an injective J-covariant representation if and only if J ⊆ (kerα)⊥.

Proposition 2.6. For any C∗-dynamical system (A, α) and any ideal J in (kerα)⊥ there 
exists a C∗-algebra C∗(A, α; J) containing A as a non-degenerate C∗-algebra and an 
operator u ∈ C∗(A, α; J)∗∗ such that

a) C∗(A, α; J) is generated (as a C∗-algebra) by A ∪ uA,

α(a) = uau∗ for each a ∈ A and J = {a ∈ A : u∗ua = a},

b) for every J-covariant representation (π, U) of (A, α) there is a representation π�U

of C∗(A, α; J) determined by relations (π�U)(a) = π(a), a ∈ A, and (π�U)(u) = U .

Moreover, if α is extendible, then u ∈ M(C∗(A, α; J)) and C∗(A, α; J) = C∗(A ∪Au).

Proof. Existence of C∗(A, α; J) with the prescribed properties can be deduced from 
Propositions A.8 and A.1. It also follows from [36, Proposition 3.26] which in essence 
states that C∗(A, α; J) is a special case of the crossed product defined in [36, Defini-
tion 3.5] (note that the identification of the aforementioned algebras goes thorough the 
equality s = u∗). In particular, [36, Remark 3.11] implies that u ∈ C∗(A, α; J)∗∗ and 
when α is extendible then u ∈ M(C∗(A, α; J)). If α is extendible then C∗(A, α; J) =
C∗(A ∪Au) by [36, Lemma 3.23]. �

Universal properties of the C∗-algebra C∗(A, α; J) imply that, up to a natural iso-
morphism, it is uniquely determined by the triple (A, α, J).

Definition 2.7. We define the relative crossed product associated to a C∗-dynamical sys-
tem (A, α) and an ideal J in (kerα)⊥ to be the C∗-algebra described in Proposition 2.6. 
We also write C∗(A, α) := C∗(A, α, (kerα)⊥) and call it the (unrelative) crossed product 
of A by α.

Remark 2.8. In the case A is unital or α is extendible, the C∗-algebra C∗(A, α; J) was 
studied respectively in [37] and [34]. In general, the crossed product C∗(A, α; J) is a 
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special case of the one defined in [36, Definition 3.5] where α is treated as a completely 
positive map, or the one introduced in [31, Definition 4.9] where α is treated as a partial 
morphism of A. In particular, one could consider the crossed product C∗(A, α; J) for an 
arbitrary ideal J in A, not necessarily contained in (kerα)⊥, cf. [36], or [31]. However, if 
J � (kerα)⊥ the algebra A does not embed into C∗(A, α; J). Moreover, as described in 
[37, Section 5.3], see also [31, Example 6.24], or [34, Remark 4.4], by passing to a quotient 
C∗-dynamical system, one can always reduce this seemingly more general situation to 
that of Definition 2.7.

By universal property of the crossed product C∗(A, α; J), there is a circle action 
T = {z ∈ C : |z| = 1} � z �−→ γz ∈ Aut(C∗(A, α; J)) determined by relations γz(a) =
a, γz(u) = zu, a ∈ A, z ∈ T. We call γ = {γz}z∈T the gauge action on C∗(A, α; J). 
We say that a representation (π, U) of (A, α) admits a gauge action if the relations 
γz(π(a)) = π(a), γz(U) = zU , a ∈ A, z ∈ T, determine a circle action on the C∗-algebra 
generated by π(A) ∪ Uπ(A). We have the following version of the gauge-uniqueness 
theorem.

Proposition 2.9. For any injective J-covariant representation (π, U) the homomorphism 
π � U of C∗(A, α; J) is injective if and only if I(π,U) = J and (π, U) admits a gauge 
action.

In particular, if (π, U) is a covariant representation of (A, α) then the homomorphism 
π�U of C∗(A, α) is injective if and only if π is injective and (π, U) and admits a gauge 
action.

Proof. The first part of the assertion follows from Propositions A.2 and A.8. For the 
second part apply Lemma 2.5. �

We list certain general permanence properties for the crossed products C∗(A, α; J).

Proposition 2.10. Let (A, α) be a C∗-dynamical system and let ideal J be an ideal in 
(kerα)⊥.

(i) A is exact ⇐⇒ C∗(A, α; J) is exact.
(ii) A is nuclear =⇒ C∗(A, α; J) is nuclear.
(iii) If A is separable, nuclear, and both A and J satisfy the UCT, then C∗(A, α; J)

satisfies the UCT.

Proof. By Proposition A.8, we have C∗(A, α; J) ∼= O(J, Eα). Since O(J, Eα) is the quo-
tient of the Toeplitz algebra TEα

= C({0}, Eα), item (i) follows from [24, Theorem 7.1]. 
Similarly, [24, Theorem 7.2] implies (ii). The argument leading to [24, Proposition 8.8]
gives (iii). �
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2.2. Algebraic structure of crossed products

The ∗-algebraic structure underlying the crossed product C∗(A, α; J), that could ac-
tually be used to construct C∗(A, α; J), cf. [31, Example 2.20 and Definition 4.9], is 
described in the following proposition.

Proposition 2.11. For any C∗-dynamical system (A, α) and any ideal J in (kerα)⊥ the 
universal operator u ∈ C∗(A, α; J)∗∗ is a power partial isometry, that is {un∗un}n∈N and 
{unun∗}n∈N are decreasing sequences of mutually commuting projections. Moreover,

una = αn(a)un, for all a ∈ A,n ∈ N, (6)

so the projections u∗nun commute with elements of A. The elements

a =
N∑

n,m=1
u∗nan,mum, an,m ∈ αn(A)Aαm(A), n,m = 1, . . . , N, N ∈ N, (7)

form a dense ∗-subalgebra of C∗(A, α; J) and their products are determined by the for-
mula

(u∗nan,mum)
(
u∗m+kam+k,lu

l
)

= u∗n+kαk(an,m)am+k,lu
l, n,m, k, l ∈ N. (8)

Proof. The first part of the assertion follows from [36, Proposition 3.21] and the fact 
that if (π, U) is a representation of (A, α), then (π, Un) is a representation of (A, αn), 
n ∈ N. Let us show (8). Since an,m ∈ Aαm(A) we have an,mumu∗m = an,m and by (6)
we get an,mu∗k = u∗kαk(an,m). Thus

(u∗nan,mum )
(
u∗m+kam+k,l u

l
)

= u∗nan,mu∗kam+k,lu
l = u∗n+kαk(an,m)am+k,lu

l.

Now, using (8), one readily sees that elements (7) form a ∗-algebra generated by A and 
uA = α(A)u. �
Corollary 2.12. The initial projection u∗u of the universal partial isometry u ∈
C∗(A, α; J)∗∗ belongs to the multiplier algebra M(C∗(A, α; J)) of C∗(A, α; J).

Proof. Let an,m ∈ αn(A)Aαm(A), n, m ∈ N. If n > 0, then (u∗u)u∗nan,mum =
u∗nan,mum ∈ C∗(A, α; J). If n = 0 then

(u∗u)u∗nan,mum = (u∗u)a0,mum = u∗α(a0,m)um+1 ∈ C∗(A,α; J).

By Proposition 2.11 we get (u∗u)C∗(A, α; J) ⊆ C∗(A, α; J) and consequently (since u∗u

is self-adjoint) u∗u ∈ M(C∗(A, α; J)). �
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If the kernel of α is complemented then the initial projection u∗u of the universal 
partial isometry u ∈ C∗(A, α)∗∗ can also be treated as a multiplier of A:

Lemma 2.13. Suppose that (A, α) is a C∗-dynamical system such that the kernel of α is 
a complemented ideal in A. Let u ∈ C∗(A, α)∗∗ be the universal partial isometry. Then

u∗uA = (kerα)⊥ and u∗α(a)u = u∗ua, a ∈ A.

If (A, α) is a reversible C∗-dynamical system then for every n ∈ N the system (A, αn) is 
also reversible and

un∗unA = (kerαn)⊥ and un∗αn(a)un = un∗una, a ∈ A. (9)

Proof. We have (kerα)⊥ = {a ∈ A : u∗ua = a} ⊆ u∗uA and u(·)u∗ maps both of the 
C∗-algebras (kerα)⊥ and u∗uA isomorphically onto α(A) = uAu∗. This implies that 
(kerα)⊥ = u∗uA. In particular, u∗ua = u∗uau∗u = u∗α(a)u for every a ∈ A.

Now assume that (A, α) is reversible. Note that a composition of two homomorphisms 
f : A → B and g : B → C with hereditary ranges have a hereditary range. The latter 
holds because

g(f(A))Cg(f(A)) = g(f(A))g(B)Cg(B)g(f(A)) = g(f(A))g(B)g(f(A))

= g(f(A)Bf(A)) = g(f(A)).

Thus for every n ∈ N the range of αn is a hereditary subalgebra of A. We prove that kerαn

is complemented and that (9) holds by induction on n. For n = 1 we have already seen it. 
Assume that the assertion holds for some n ∈ N. Let θ be the inverse to the isomorphism 
αn : (kerαn)⊥ → αn(A). Then clearly θ(αn(A) ∩ (kerα)⊥) ⊆ (kerαn+1)⊥. However, 
since αn(A) is hereditary in A we have αn(A) ∩ (kerα)⊥ = αn(A)(kerα)⊥αn(A). Hence 
αn+1 maps θ(αn(A) ∩ (kerα)⊥) onto αn+1(A). Since αn+1(kerαn+1)⊥ → αn+1(A) is 
isometric it follows that it is actually an isomorphism and we have θ(αn(A) ∩(kerα)⊥) =
(kerαn+1)⊥. For any element αn(a) in (kerα)⊥ = u∗uA, by the induction hypothesis, 
we have

θ(αn(a)) = u∗nαn(a)un = u∗n(u∗u)αn(a)un = u∗n+1un+1au∗nun = u∗n+1un+1a.

Hence (kerαn+1)⊥ ⊆ u∗n+1un+1A, and the argument we used to show that (kerα)⊥ =
u∗uA implies that we actually have (kerαn+1)⊥ = u∗n+1un+1A. Thus u∗n+1un+1 ∈
M(A) is the projection onto (kerαn+1)⊥. �

Integration over the Haar measure on T gives the (faithful) conditional expectation

E(a) =
∫

γz(a)dμ, a ∈ C∗(A,α; J), (10)

T
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from C∗(A, α; J) onto the fixed point C∗-algebra B for the gauge action. We refer to the 
C∗-algebra B as the core C∗-subalgebra of C∗(A, α; J). In view of Proposition 2.11, we 
have

B = span{u∗naun : a ∈ αn(A)Aαn(A), n ∈ N}.

If the C∗-dynamical system (A, α) is reversible, then the core of C∗(A, α) coincides 
with A and C∗(A, α) has a similar structure to that of classical crossed product by an 
automorphism.

Proposition 2.14. Suppose that (A, α) is a reversible C∗-dynamical system. The crossed 
product C∗(A, α) is the closure of a dense ∗-algebra consisting of the elements of the 
form

a =
n∑

k=1

u∗ka∗−k + a0 +
n∑

k=1

aku
k, ak ∈ Aαk(A), k = 0,±1, . . . ,±n. (11)

The coefficients ak ∈ Aαk(A) in (11) are uniquely determined by a.

Proof. To see that any element (7) can be presented in the form (11) let us consider 
an element u∗nan,mum where an,m ∈ αn(A)Aαm(A) and put k := m − n. Suppose that 
k � 0. Then αn(A)Aαn+k(A) = αn(A)Aαn(A)αn+k(A) = αn(A)αn+k(A) = αn(αk(A)). 
Thus there is ak ∈ αk(A) ∩ (kerαk)⊥ such that an,m = αn(ak). Hence, by Lemma 2.13, 
we get

u∗nan,mum = u∗nαn(ak)unuk = aku
k.

If k < 0 by passing to adjoints we get u∗nan,mum = u−∗kak. In view of Proposition 2.11, 
this proves the first part of the assertion. For the last part notice that if a is of the 
form (11), then for k � 0 we have E(uka) = a∗−k and E(au∗k) = ak. Hence the coefficients 
a±k are uniquely determined by a. �
2.3. Gauge-invariant ideals

Let (A, α) be a fixed C∗-dynamical system and let J be an ideal in (kerα)⊥. Ideals 
in C∗(A, α; J) that are invariant under the gauge action are called gauge-invariant. In 
this subsection we describe these ideals in terms of pairs of ideals in A.

Definition 2.15. (See Definitions 3.2 and 3.3 in [34].) We say that an ideal I in A is a 
positively invariant ideal in (A, α) if α(I) ⊆ I. We say that I is J-negatively invariant
ideal in (A, α) if J ∩ α−1(I) ⊆ I. If I is both positively invariant and J-negatively 
invariant we say that I is J-invariant, and if J = (kerα)⊥ we drop the prefix ‘J-’.
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Let I be a positively invariant ideal in (A, α). It induces two C∗-dynamical sys-
tems: the restricted C∗-dynamical system (I, α|I) and the quotient C∗-dynamical system
(A/I, αI) where αI(a +I) := α(a) +I for all a ∈ A. Note that if (A, α) is extendible then 
so is the quotient (A/I, αI), but (I, α|I) in general fails to be extendible. For instance, 
if A = C0(R), α(a)(x) = a(x − 1) and I = C0(0, ∞) then α is extendible but α|I is not, 
see also [2].

Lemma 2.16. Let I be an invariant ideal in (A, α).

(i) If the kernel of α is a complemented ideal in A then αI and α|I have complemented 
kernels in A/I and I respectively, and

(kerαI)⊥ = qI((kerα)⊥), (kerα|I)⊥ = (kerα)⊥ ∩ I.

(ii) If (A, α) is reversible then (A/I, αI) and (I, α|I) are reversible.

Proof. (i). Since (kerα)⊥ ∩ α−1(I) ⊆ I we get kerαI = qI(α−1(I)) = qI((kerα)⊥ ∩
α−1(I) + kerα) = qI(kerα). Thus qI((kerα)⊥) = (kerαI)⊥ and qI(kerα) is a comple-
mented ideal in A/I. Since kerα|I = kerα∩ I we see that (kerα|I)⊥ = (kerα)⊥ ∩ I and 
therefore these ideals are complementary in I.

(ii). In view of part (i) it suffices to note that both αI and α|I have hereditary ranges. 
The former is straightforward and the latter follows from the following relations

α(I)Iα(I) = α(IA)Iα(AI) = α(I)α(A)Iα(A)α(I) ⊆ α(I)α(A)α(I) = α(I). �
Definition 2.17. Let I, I ′, J be ideals in A where J ⊆ (kerα)⊥. We say that (I, I ′) is a 
J-pair for a C∗-dynamical system (A, α) if

I is positively invariant, J ⊆ I ′ and I ′ ∩ α−1(I) = I.

The set of J-pairs for (A, α) is equipped with a natural partial order induced by inclusion: 
(I1, I ′1) ⊆ (I2, I ′2) 

def⇐⇒ I1 ⊆ I2 and I ′1 ⊆ I ′2.

Lemma 2.18. If (π, U) is a J-covariant representation then (kerπ, I(π,U)) is a J-pair.

Proof. It is clear that kerπ is positively invariant, J ⊆ I(π,U) and kerπ ⊆ I(π,U). In 
particular, kerπ ⊆ I(π,U) ∩ α−1(kerπ). For the reverse inclusion, note that for any a ∈
I(π,U) ∩ α−1(kerπ) we have π(a) = U∗Uπ(a) = U∗Uπ(a)U∗U = U∗π(α(a))U = 0. �

Clearly, if (I, I ′) is a J-pair, then I is J-invariant and I + J ⊆ I ′. Note that then 
(I, I+J) is also a J-pair, but in general I+J �= I ′, cf. [34, Remark 3.2 and Example 3.1]. 
We have the following relationship between gauge-invariant ideals and J-pairs for (A, α).
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Theorem 2.19. Let (A, α) be a C∗-dynamical system and let J an ideal in (kerα)⊥. The 
relations

I = A ∩ I, I ′ = {a ∈ A : (1 − u∗u)a ∈ I} (12)

establish an order preserving bijective correspondence between J-pairs (I, I ′) for (A, α)
and gauge-invariant ideals I in C∗(A, α; J). Moreover, for objects satisfying (12) we have 
a natural isomorphism

C∗(A,α; J)/I ∼= C∗(A/I, αI ; qI(I ′))

and if I ′ = I + J (equivalently I is generated by its intersection with A), then I is 
Morita–Rieffel equivalent to C∗(I, α|I ; I ∩ J).

Proof. We use Proposition A.8 to identify C∗(A, α; J) with O(J, Eα). By Theorem A.4
and Proposition A.10 the relations I = A ∩ I and I ′ = A ∩ (I + EαE

∗
α) establish a 

bijective correspondence between J-pairs (I, I ′) for (A, α) and gauge-invariant ideals 
I in C∗(A, α; J). Note that EαE

∗
α = u∗α(A)Aα(A)u and recall that (1 − u∗u) is a 

multiplier of C∗(A, α; J) by Corollary 2.12. Thus a ∈ I ′ implies that (1 − u∗u)a ∈ I. 
Conversely, if a ∈ A is such that (1 − u∗u)a ∈ I then, since (1 − u∗u)a = a − u∗α(a)u, 
we have a ∈ I + EαE

∗
α. Hence I ′ = {a ∈ A : (1 − u∗u)a ∈ I}. Since EαI

∼= EI we get 
C∗(A, α; J)/I ∼= C∗(A/I, αI ; qI(I ′)), see Theorem A.4 and Proposition A.10.

Clearly, the bijective correspondence (I, I ′) ←→ I preserves order. Thus I is generated 
by I if and only if I ′ = I + J . In this case we see that I is Morita–Rieffel equivalent to 
C∗(I, α|I ; I ∩ J) by Theorem A.4, because Eα|I

∼= IEα. �
Remark 2.20. The pairs ({0}, J) and ({0}, (kerα)⊥) are always J-pairs. Thus Theo-
rem 2.19 implies that C∗(A, α; J) is never simple unless J = (kerα)⊥, that is unless 
C∗(A, α; J) = C∗(A, α). More detailed necessary conditions and certain sufficient condi-
tions for C∗(A, α) to be simple can be found in [34, Theorem 4.2]. The only simplicity 
result we explicitly state in this paper is Proposition 5.9 below.

Corollary 2.21. If the kernel of α is a complemented ideal in A then the relations

I = A ∩ I, I is generated by I (13)

establish a bijective correspondence between invariant ideals I for (A, α) and gauge-
invariant ideals I in C∗(A, α), under which we have C∗(A, α)/I ∼= C∗(A/I, αI) and 
I is Morita–Rieffel equivalent to C∗(I, α|I).

Proof. Let (I, I ′) be a (kerα)⊥-pair and let I be the corresponding gauge-invariant ideal 
in C∗(A, α). Using (12) and Lemma 2.13 for any such pair we get
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I ′ = {a ∈ A : (1 − u∗u)a ∈ I} = {a⊕ b ∈ kerα⊕ (kerα)⊥ : a ∈ I}

= (kerα ∩ I) ⊕ (kerα)⊥.

Hence I ′ = I + (kerα)⊥, that is I is generated by I. By Lemma 2.16, kerαI = qI(kerα)
and (kerα)⊥ ∩ I = (kerα|I)⊥. In particular, we get qI(I ′) = qI((kerα)⊥) = (kerαI)⊥. 
Now the assertion follows from Theorem 2.19. �

For crossed products of reversible C∗-dynamical systems we can actually identify 
gauge-invariant ideals up to isomorphism.

Proposition 2.22. If (A, α) is a reversible C∗-dynamical system and I is a gauge-invariant 
ideal in C∗(A, α), then I ∼= C∗(I, α|I) where I = A ∩ I.

Proof. In view of Propositions A.8 and A.11 it suffices to apply the general result for 
Hilbert bimodules [25, Theorem 10.6.]. Alternatively, the assertion can be proved directly 
using Lemma 2.16 and Propositions 2.14 and 2.9. �
2.4. Extensions with complemented kernel

We can use Corollary 2.21 to describe up to Morita–Rieffel equivalence all gauge-
invariant ideals in an arbitrary crossed product C∗(A, α; J). More specifically, there is 
a canonical construction of a C∗-dynamical system (AJ , αJ ) such that C∗(A, α; J) ∼=
C∗(AJ , αJ ) and the kernel of αJ is complemented. The system (AJ , αJ ) was considered 
in [37, Subsection 6.1], in the case A is unital, but the construction works also in our 
general context.

Definition 2.23. For every C∗-dynamical system (A, α) and an ideal J in (kerα)⊥ we 
put

AJ :=
(
A/ kerα

)
⊕
(
A/J

)
and define an endomorphism αJ : AJ → AJ by the formula

AJ � (a + kerα) ⊕ (b + J) αJ

−→ (α(a) + kerα) ⊕ (α(a) + J) ∈ AJ .

The system (AJ , αJ) extends (A, α), in the sense that the map

A � a
ιJ�−→

(
a + kerα

)
⊕

(
a + J

)
∈ AJ

is an injective homomorphism that intertwines α and αJ . Moreover, the kernel of αJ

coincides with the direct summand A/J in AJ . Hence (kerαJ )⊥ corresponds to the 
A/ kerα summand. We also note that ιJ : A → AJ is an isomorphism if and only if kerα
is a complemented ideal in A and J = (kerα)⊥.
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Lemma 2.24. If (I, I ′) is a J-pair for (A, α) then

(I, I ′)J := qker α(I) ⊕ qJ (I ′) � AJ (14)

is an invariant ideal in (AJ , αJ ) such that

I = ι−1
J ((I, I ′)J). (15)

Proof. Let us prove (15) first. Since I ⊆ I ′ we have I ⊆ ι−1
J ((I, I ′)J). If a ∈ ι−1

J ((I, I ′)J), 
then a = i + k for some i ∈ I, k ∈ kerα, and a ∈ I ′. This implies that k ∈ I ′ ∩ kerα ⊆
I ′ ∩ α−1(I) = I. Hence a ∈ I and (15) holds.

Now using (15) and the equality αJ(AJ) = ιJ(α(A)) we get

αJ (AJ) ∩ (I, I ′)J ⊆ ιJ(I) ⊆ αJ ((I, I ′)J).

On the other hand, since α(I) ⊆ I ⊆ I ′ we have αJ ((I, I ′)J) ⊆ (I, I ′)J . Therefore 
αJ ((I, I ′)J) = αJ (AJ) ∩(I, I ′). It follows that αJ : (I, I ′)J∩(kerαJ)⊥ → αJ (AJ) ∩(I, I ′)
is an isomorphism and this implies that (I, I ′)J is invariant in C∗(AJ , αJ ). �
Proposition 2.25. Let (A, α) be a C∗-dynamical system and let J be an ideal in (kerα)⊥. 
The embedding ιJ extends to a gauge-invariant isomorphism

C∗(A,α; J) ∼= C∗(AJ , αJ ).

If I is a gauge-invariant ideal in C∗(A, α; J) corresponding to a J-pair (I, I ′) for (A, α), 
then I is mapped by the above isomorphism onto a gauge-invariant ideal in C∗(AJ , αJ )
which is generated by the ideal (I, I ′)J given by (14). In particular, I is Morita–Rieffel 
equivalent to C∗((I, I ′)J , αJ |(I,I′)J ).

Proof. Let us denote by u and v the universal partial isometries in C∗(A, α; J) and 
C∗(AJ , αJ ) respectively. It is clear that (ιJ , v) is an injective representation of (A, α)
in C∗(AJ , αJ) that admits a gauge action. Using Lemma 2.13 we get that {a ∈ A :
(v∗v)ιJ(a) = ιJ(a)} = J . By virtue of Proposition 2.9 we see that ιJ � v : C∗(A, α; J) →
C∗(AJ , αJ ) is a gauge-invariant isomorphism. Note, again using Lemma 2.13, that for 
any a, b ∈ A we have

(1 − v∗v)
(
(a + kerα) ⊕ (b + J)

)
= 0 ⊕ (b + J) = (1 − v∗v)ιJ(b)

and

(v∗v)
(
(a + kerα) ⊕ (b + J)

)
= (a + kerα) ⊕ 0 = (v∗v)ιJ(a).
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Let us now fix a J-pair (I, I ′) in (A, α) and let (I, I ′)J be the corresponding invariant 
ideal in (AJ , αJ) given by (14). In view of the above equalities, we have

(I, I ′)J = (v∗v)ιJ(I) + (1 − v∗v)ιJ(I ′). (16)

Let IJ be the ideal in C∗(AJ , αJ) generated by (I, I ′)J and let I := (ιJ � v)−1(IJ). 
Then

{a ∈ A : (1 − u∗u)a ∈ I} = {a ∈ A : (1 − v∗v)ιJ(a) ∈ IJ}

= {a ∈ A : (1 − v∗v)ιJ(a) ∈ (I, I ′)J} = I ′.

This, together with (15), shows that I is the gauge-invariant ideal corresponding to 
the J-pair (I, I ′). Hence I is Morita–Rieffel equivalent to C∗((I, I ′)J , αJ |(I,I′)J ), by 
Corollary 2.21. �
2.5. K-theory of gauge-invariant ideals

We have the following generalization of the classical Pimsner–Voiculescu sequence.

Proposition 2.26. For an ideal J in (kerα)⊥ we have the following exact sequence

K0(J)
K0(ι)−K0(α|J )

K0(A)
K0(ι)

K0(C∗(A,α; J))

K1(C∗(A,α; J)) K1(A)
K1(ι)

K1(J)
K1(ι)−K1(α|J )

,

where ι stands for inclusion.

Proof. Using Lemma A.13 we see that in the sequence (48) we may replace the maps 
Ki(ι22)−1◦Ki(ι11◦φ|J ) with Ki(α|J ), i = 0, 1. This results with the desired sequence. �

One can combine results from previous subsections with Proposition 2.26 to get exact 
six-term sequences for K-theory of all gauge-invariant ideals and relevant quotients in the 
crossed product C∗(A, α; J). We state explicitly only results for gauge-invariant ideals.

Theorem 2.27. Let I be a gauge-invariant ideal in C∗(A, α; J) where (A, α) is a 
C∗-dynamical system and J is an ideal in (kerα)⊥. Let (I, I ′) be the J-pair for (A, α)
given by (12). We have

K∗(I) ∼= K∗
(
C∗((I, I ′)J , αJ |(I,I′)J )

)
,

where (I, I ′)J is given by (14), and in particular if K1((I, I ′)J ) = 0 then
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K0(I) ∼= coker
(
K0(ι) −K0(αJ |qker α(I))

)
, K1(I) ∼= ker

(
K0(ι) −K0(αJ |qker α(I))

)
,

(17)

where αJ |qker α(I) : qker α(I) ⊕ {0} → (I, I ′)J is the restriction of αJ and ι : qker α(I) →
(I, I ′)J is the inclusion. If I is generated by I, that is if I ′ = I + J , then

K∗(I) ∼= K∗ (C∗(I, α|I ; I ∩ J)) ,

and if additionally K1(I) = K1(I ∩ J) = 0, then

K0(I) = coker(K0(ι) −K0(α|I∩J )), K1(I) = ker(K0(ι) −K0(α|I∩J ))

where α|I∩J : I ∩ J → I is the restriction of α and ι : I ∩ J → I is the inclusion.

Proof. By the last part of Proposition 2.25, I is Morita–Rieffel equivalent to the crossed 
product C∗((I, I ′)J , αJ |(I,I′)J ). Hence the corresponding K-groups are isomorphic by [24, 
Proposition B.5], see also [24, Remark B.6]. If K1((I, I ′)J ) = 0 then also (αJ |(I,I′)J )⊥ =
qker α(I) ⊕{0} has K1-group equal to zero. Thus applying Proposition 2.26 to the system 
((I, I ′)J , αJ |(I,I′)J ) and the ideal (kerαJ |(I,I′)J )⊥ we get the second part of the assertion 
and (17). In view of the second part of Theorem 2.19, the above argument proves also 
the first part of the assertion. �
Corollary 2.28. If kerα is a complemented ideal in A then for every gauge-invariant ideal 
I in C∗(A, α) we have

K∗(I) ∼= K∗ (C∗(I, α|I)) , where I := I ∩A.

If additionally K1(I) = 0, then

K0(I) = coker(K0(ι) −K0(α|I∩(ker α)⊥)), K1(I) = ker(K1(ι) −K1(α|I∩(ker α)⊥))

where α|I∩(ker α)⊥ : I ∩ (kerα)⊥ → I is restriction of α and ι : I ∩ (kerα)⊥ → I is the 
inclusion.

Proof. It suffices to combine the second parts of Theorem 2.27 and Corollary 2.21. �
2.6. Reversible extensions

We fix a C∗-dynamical system (A, α) and an ideal J in (kerα)⊥. We generalize a con-
struction of a reversible C∗-dynamical system (B, β) associated to the triple (A, α; J)
in [34, Subsection 3.1], see also [35, Section 4], to the case when α is not necessar-
ily extendible. The system (B, β) can be viewed as a direct limit of approximating 
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C∗-dynamical systems (Bn, βn), n ∈ N. We denote by q : A → A/J the quotient map 
and for each n ∈ N we put

An := αn(A)Aαn(A).

The C∗-algebra Bn, n ∈ N, is a direct sum of the form

Bn = q(A0) ⊕ q(A1) ⊕ . . .⊕ q(An−1) ⊕An,

and the endomorphism βn : Bn → Bn is given by the formula

βn(a0 ⊕ a1 ⊕ . . .⊕ an) = a1 ⊕ a2 ⊕ . . .⊕ q(an) ⊕ α(an),

where ak ∈ q(Ak), k = 0, . . . , n − 1, and an ∈ An, n > 0. Thus we get a sequence 
(Bn, βn), n ∈ N, of C∗-dynamical systems where (B0, β0) = (A, α). We consider bonding 
homomorphisms αn : Bn → Bn+1, n ∈ N, whose action is presented by the diagram

Bn

αn

= q(A0)

id

⊕ . . . ⊕ q(An−1)

id

⊕ An

q
α

Bn+1 = q(A0) ⊕ . . . ⊕ q(An−1) ⊕ q(An) ⊕ An+1.

In other words, αn is given by the formula

αn(a0 ⊕ . . .⊕ an−1 ⊕ an) = a0 ⊕ . . .⊕ an−1 ⊕ q(an) ⊕ α(an),

where ak ∈ q(Ak), k = 0, . . . , n − 1, and an ∈ An. Plainly, the homomorphisms αn are 
injective and we have

αn ◦ βn = βn+1 ◦ αn, n ∈ N.

Accordingly, we get the direct sequence of C∗-dynamical systems:

(B0, β0)
α0−→ (B1, β1)

α1−→ (B2, β2)
α2−→ . . . .

We denote by (B, β) a direct limit of the above direct sequence. More precisely, 
B = lim−−→{Bn, αn} is the C∗-algebraic direct limit, and β is determined by the formula 
β(φn(a)) = φn(βn(a)) where φn : Bn → B is the natural (injective) homomorphism, 
a ∈ Bn and n ∈ N. That is we have

β(φn(a0 ⊕ a1 ⊕ . . .⊕ an)) = φn−1(a1 ⊕ a2 ⊕ . . .⊕ an). (18)

We now extend the main parts of [34, Theorem 3.1 and Proposition 4.7], see also [34, 
Remark 3.3].
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Theorem 2.29. The C∗-dynamical system (B, β) described above is reversible and we may 
assume a natural identification

C∗(A,α; J) = C∗(B, β)

under which we have

B = span{u∗kauk : a ∈ αk(A)Aαk(A), k ∈ N} and β(b) = ubu∗, b ∈ B.

In particular, the relation π̃(
∑n

k=0 u
∗kaku

k) =
∑n

k=0 U
∗kπ(ak)Uk, ak ∈ αk(A)Aαk(A), 

establishes a one-to-one correspondence between J-covariant representations (π, U) of 
(A, α) and covariant representations (π̃, U) of (B, β).

Proof. Let us prove first that (B, β) is reversible. To this end, take a = a0⊕a1⊕. . .⊕an ∈
Bn and b = b0 ⊕ b1 ⊕ . . .⊕ bn ∈ Bn−1 for n > 1. Then, in view of (18), we get

β(φn(a))φn−1(b)β(φn(a)) = β(φn(0 ⊕ a1b0a1 ⊕ . . .⊕ anbn−1an)).

This implies that β(B)Bβ(B) = β(B). Hence β(B) is a hereditary C∗-subalgebra in B. 
The ideal kerβ is complemented in B as Bn ∩kerβ = {φn(a0 ⊕ 0 ⊕ . . .⊕ 0) : a0 ∈ q(A0)}
is complemented in Bn for every n > 0. Thus (B, β) is reversible.

Now, for each n ∈ N, we define Cn := {
∑n

k=0 u
∗kakuk : ak ∈ αk(A)Aαk(A), k =

0, . . . , n} ⊆ C∗(A, α; J). We also put C :=
⋃

n∈N
Cn. It follows from (8) that Cn, 

n ∈ N, and C are C∗-algebras. Recall, see Proposition 2.11, that {u∗kuk}k∈N is a de-
creasing sequence of orthogonal projections that commute with elements of A. Hence 
they commute with elements of C. Exactly as in the proof of [35, Statement 1], one 
checks that if a =

∑n
k=0 u

∗kbku
k ∈ Cn, bk ∈ αk(A)Aαk(A), k = 0, . . . , n, then putting 

ak =
∑k

i=0 α
k−i(bi) we get that

a =
n−1∑
k=0

u∗k(1 − u∗u)akuk + u∗nanu
n, (19)

where 1 is the unit in M(C∗(A, α; J)). Hence (19) is a general form of an element in Cn. 
In particular, since u∗k(1 − u∗u)uk = (u∗kuk − u∗k+1uk+1), k = 0, . . . , n − 1, and u∗nun

are mutually orthogonal projections commuting with elements of Cn, we see that Cn

admits the following direct sum decomposition

Cn =
n−1⊕
k=0

(u∗kuk − u∗k+1uk+1)Cn ⊕ u∗nunCn

Since uk is a partial isometry it follows that

αk(A)Cαk(A) = ukAu∗kCukAu∗k � a → u∗kauk ∈ C, k = 1, . . . , n,
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is a ∗-homomorphic isometry. Since J = u∗uA ∩ A we also see, cf. for instance [21, 
Lemma 10.1.6], that

(1 − u∗u)A � a → q(a) ∈ q(A)

is an isomorphism of C∗-algebras. Combining these facts we get that the formula

Φn (q(a0) ⊕ q(a1) ⊕ . . .⊕ q(an−1) ⊕ an) =
n−1∑
k=0

u∗k(1 − u∗u)akuk + u∗nanu
n,

defines an isomorphism Φn : Bn → Cn. If a ∈ Cn is given by (19), then using equality 
u∗n+1α(an)un+1 = u∗n(u∗u)anun we get

a =
n∑

k=0

u∗k(1 − u∗u)akuk + u∗n+1α(an)un+1.

Therefore Φn+1 ◦ αn = Φn, n ∈ N. Hence the isomorphisms Φn induce the isomorphism 
Φ : B → C between the inductive limit C∗-algebras B and C.

We claim that Φ(β(b)) = ubu∗, for b ∈ C. Indeed, let a ∈ Cn is given by (19). Notice 
that for k > 0 we have uu∗k = (uu∗)u∗k−1 = u∗k−1uk−1(uu∗)u∗k−1 = u∗k−1uku∗k. 
Therefore, since uku∗kak = ak, we get

u
(
u∗k(1 − u∗u)akuk

)
u∗ = u∗k−1(1 − u∗u)akuk−1.

Clearly, u(1 −u∗u)a0u
∗ = ua0u

∗−ua0u
∗ = 0. Accordingly, Φ(β(φn(a))) = uΦ(φn(a))u∗, 

which proves our claim.
It readily follows from the definition of Φn that

u∗uΦn(Bn) = {φn(0 ⊕ a1 ⊕ . . .⊕ an) : 0 ⊕ a1 ⊕ . . .⊕ an ∈ Bn} = Bn ∩ (kerβ)⊥.

This implies that (kerβ)⊥ = {b ∈ B : u∗uΦ(b) = Φ(b)}.
Concluding the pair (Φ, u) is an injective covariant representation of (B, β) in 

C∗(A, α; J) that admits gauge-action. Thus, by Proposition 2.9, Φ � u : C∗(B, β) →
C∗(A, α; J) is an isomorphism which we may use to assumed the described identifica-
tion. The last part of the assertion follows from the universal properties of the crossed 
products. �
Definition 2.30. (See Definition 3.1 in [34].) Suppose that (A, α) is a C∗-dynamical system 
and J is an ideal in (kerα)⊥. We call the C∗-dynamical system (B, β) constructed above 
the natural reversible J-extension of (A, α).

Let (B, β) be a natural reversible J-extension of (A, α) and suppose that A = C0(X)
is commutative. Then, in view of our construction, B is also commutative and thus we 
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may identify it with C0(X̃) where X̃ is a locally compact Hausdorff space. With this 
identification, β is given by the formula

β(b)(x̃) =
{
b(ϕ̃(x̃)), x̃ ∈ Δ̃,

0 x̃ /∈ Δ̃,

where ϕ̃ : Δ̃ → ϕ̃(Δ̃) is a homeomorphism, Δ̃ ⊆ X̃ is open and ϕ̃(Δ̃) ⊆ X̃ is clopen. The 
pair (X̃, ϕ̃) is uniquely determined by (X, ϕ) and the closed set

Y = {x ∈ X : a(x) = 0 for all a ∈ J}, (20)

which necessarily contains X \ ϕ(Δ). Similarly as in [34, Proposition 4.7], cf. also [30, 
Theorem 3.5], using the above construction of (B, β) one can deduce the following de-
scription of (X̃, ϕ̃).

Proposition 2.31. Up to conjugacy with a homeomorphism, the above partial dynamical 
system (X̃, ϕ̃) can be described as follows:

X̃ =
∞⋃

N=0
XN ∪X∞

where

XN = {(x0, x1, . . . , xN , 0, . . .) : xn ∈ Δ, ϕ(xn) = xn−1, n = 1, . . . , N, xN ∈ Y },

X∞ = {(x0, x1, . . .) : xn ∈ Δ, ϕ(xn) = xn−1, n � 1}.

The topology on X̃ is the product one inherited from 
∏

n∈N
(X ∪ {0}) where {0} is a 

clopen singleton and Y is given by (20). The homeomorphism ϕ̃ : Δ̃ → ϕ̃(Δ̃) is given by 
the formula

ϕ̃(x0, x1, . . .) = (ϕ(x0), x0, x1, . . .), Δ̃ = {(x0, x1, . . .) ∈ X̃ : x0 ∈ Δ}.

Proof. We omit the proof as the assertion will follow from a much more general result 
we prove below, see Theorem 4.9. �
Definition 2.32. (Cf. Definition 3.5 [30].) Let Y be a closed subset of X that contains X \
ϕ(Δ). We call the dynamical system (X̃, ϕ̃) described in the assertion of Proposition 2.31
the natural reversible Y -extension of (X, ϕ).

Note that for the natural reversible Y -extension (X̃, ϕ̃) of (X, ϕ), the map Φ : X̃ → X

given by Φ(x̃) = x0 is surjective and intertwines ϕ̃ and ϕ. This justifies the name.
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2.7. Topological freeness and freeness

We turn to a discussion of certain conditions implying uniqueness property and gauge-
invariance of all ideals in the crossed products. For reversible and extendible systems the 
relevant statements in [34, Subsection 4.5] were deduced from [33, Theorem 2.20]. We will 
extend them by applying general results from [32] and facts presented in Appendix A.

Definition 2.33. Let ϕ be a partial homeomorphism of a topological (not necessarily 
Hausdorff) space X with domain being an open set Δ ⊆ X. We say that ϕ is topologically 
free if the set of its periodic points of any given period n > 0 has empty interior. A set 
V ⊆ X is invariant if ϕ(V ∩ Δ) = V ∩ ϕ(Δ). We say that ϕ is (essentially) free, if it is 
topologically free when restricted to any closed invariant set.

Definition 2.34. Let (A, α) be a reversible C∗-dynamical system. Since (kerα)⊥ is an 
ideal in A and α(A) = α(A)Aα(A) is a hereditary subalgebra of A we have the natural 
identifications:

̂(kerα)⊥ = {π ∈ Â : π((kerα)⊥) �= 0}, α̂(A) = {π ∈ Â : π(α(A)) �= 0}.

Thus we treat α̂(A) and ̂(kerα)⊥ as open subsets of Â. With these identifications the 

homeomorphism α̂ : α̂(A) → ̂(kerα)⊥ dual to the isomorphism α : (kerα)⊥ → α(A)
becomes a partial homeomorphism of the spectrum of Â, cf. [34]. We refer to α̂ as to the 
partial homeomorphism dual to (A, α).

Proposition 2.35. Let (A, α) be a reversible C∗-dynamical system.

(i) If α̂ is topologically free, then every injective covariant representation (π, U) of (A, α)
give rise to a faithful representation of C∗(A, α).

(ii) If α̂ is free, then all ideals in C∗(A, α) are gauge-invariant; hence they are in one-
to-one correspondence with invariant ideals in (A, α), cf. Corollary 2.21.

Proof. By Proposition A.8 and Lemma A.12, Theorem A.6 translates to the desired 
assertion. �

One can apply the above proposition to an arbitrary crossed product C∗(A, α; J) using 
the identification C∗(A, α; J) = C∗(B, β) from Theorem 2.29, and the following lemma.

Lemma 2.36. Let (A, α) be a C∗-dynamical system, J an ideal in (kerα)⊥, and (B, β)
the natural reversible J-extension of (A, α).

(i) For any injective J-covariant representation (π, U) of (A, α) the corresponding co-
variant representation (π̃, U) of (B, β) is injective if and only if J = {a ∈ A :
U∗Uπ(a) = π(a)}.
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(ii) Relations (12) establish a bijective correspondence between with J-pairs (I, I ′) in 
(A, α) and invariant ideals in (B, β).

Proof. (ii). Since C∗(A, α; J) = C∗(B, β) we get the assertion by applying Theorem 2.19
to C∗(A, α; J) and Corollary 2.21 to C∗(B, β).

(i). It follows from item (ii) and Lemma 2.18. �
In practice, in order to use Proposition 2.35 and Lemma 2.36, one has to determine 

topological freeness and freeness of β̂ in terms of (A, α) and J . This can be readily 
achieved if A is commutative.

Definition 2.37. (See Definition 4.8 in [34].) Let ϕ be a partial mapping of a locally 
compact Hausdorff space X defined on an open set Δ ⊆ X. We say that a periodic 
orbit O = {x, ϕ(x), . . . , ϕn−1(x)} of a periodic point x = ϕn(x) has an entrance y ∈ Δ
if y /∈ O and ϕ(y) ∈ O. We say ϕ is topologically free outside a set Y ⊆ X if the set 
of periodic points whose orbits do not intersect Y and have no entrances have empty 
interior.

Lemma 2.38. Let (X̃, ϕ̃) be the Y -extension of a partial dynamical system (X, ϕ) where 
Y is a closed set containing X \ ϕ(Δ), see Definition 2.32. Then

(i) ϕ̃ is topologically free if and only if ϕ is topologically free outside Y ,
(ii) ϕ̃ is free if and only if ϕ is free (has no periodic points).

Proof. Item (i) can be proved exactly as [34, Lemma 4.2]. Item (ii) is straightforward. �
One of the aims of the present paper is to obtain effective conditions implying the 

properties of crossed products described in Proposition 2.35 for a class of C∗-dynamical 
systems on C0(X)-algebras. This is achieved in Theorems 4.11 and 4.12 below.

2.8. Pure infinite crossed products for reversible C∗-dynamical systems

In this subsection, we fix a reversible C∗-dynamical system (A, α). The property that 
we are about to introduce appears (without a name) in a number of proofs of pure 
infiniteness for crossed products. As we explain in more detail below, in the context of 
crossed products, this property is formally weaker than spectral freeness [46], topological 
freeness, proper outerness [10] and aperiodicity [38], but the general relationship between 
these notions is not completely clear.

Definition 2.39. Let A be a C∗-subalgebra of a C∗-algebra B. We say that A+ supports 
elements of B+ if for every b ∈ B+ \ {0} there exists a ∈ A+ such that a � b. We say 
that A+ residually supports elements of B+ if for every ideal I of B, qI(A)+ supports 
elements of qI(B).
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Remark 2.40. If A+ is a filling family for B in the sense of [28, Definition 4.2] then 
A+ residually supports elements of B+ (it is not clear whether the converse implication 
holds). Thus, if A is commutative or separable and α : A → A is a residually properly 
outer automorphism, then [29, Theorem 3.8] implies that A+ residually supports ele-
ments of C∗(A, α)+. In [46, Proposition 3.9] it is shown that A+ supports elements of 
B+ if and only if for every b ∈ B+ \ {0} there is z ∈ B such that zaz∗ is a non-zero ele-
ment of A. In particular, [46, Lemma 3.2] implies that if α : A → A is an automorphism 
and the corresponding Z-action is spectrally free in the sense of [46, Definition 1.3], then 
A+ residually supports elements of C∗(A, α)+.

In connection with Remark 2.40 we show that the notion of residual aperiodicity 
introduced in [38, Definition 8.19], for (a semigroup version of) extendible reversible 
systems, implies that A+ residually supports elements of C∗(A, α)+.

Definition 2.41. We say that an extendible reversible C∗-dynamical system (A, α) is 
aperiodic if for each n > 0, each a ∈ A and every hereditary subalgebra D of A

inf{‖daαn(d)‖ : d ∈ D+, ‖d‖ = 1} = 0.

We say that (A, α) is residually aperiodic if the quotient system (A/I, αI) is aperiodic 
for every invariant ideal I in (A, α).

Proposition 2.42. If (A, α) is residually aperiodic then A+ residually supports elements 
of C∗(A, α)+.

Proof. By [38, Lemmas 8.18], [38, Corollary 4.7] every ideal in C∗(A, α) is generated 
by it intersection with A. Let I be an ideal in C∗(A, α). By Corollary 2.21, we have 
the isomorphism C∗(A, α)/I ∼= C∗(A/I, αI) where I := A ∩ I is an invariant ideal in 
(A, α). The system (A/I, αI) is reversible by Lemma 2.16(ii). Fix a positive element b in 
C∗(A, α)/I. We may assume that ‖b‖ = 1. Applying to (A/I, αI) [38, Lemmas 4.2 and 
8.18], we may find a positive contraction h ∈ A/I such that

‖hE(b)h− hbh‖ ≤ 1/4, ‖hE(b)h‖ � ‖E(b)‖ − 1/4 = 3/4 (21)

where E is the conditional expectation from C∗(A/I, αI) onto A/I. Putting a :=
(hE(b)h − 1/2)+ ∈ A/I we have that a �= 0 because ‖hE(b)h‖ > 1/2. Moreover, by 
[27, Proposition 2.2], relations ‖hE(b)h‖ > 1/2 and ‖hE(b)h − hbh‖ ≤ 1/4 imply that 
a � hbh relative to C∗(A/I, αI) ∼= C∗(A, α)/I. �

Before we prove the main result of this subsection we need two lemmas.

Lemma 2.43. If A+ residually supports elements of C∗(A, α)+ then every ideal in 
C∗(A, α) is gauge-invariant.
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Proof. Let I be an ideal in C∗(A, α) and let 〈I〉 be the smallest ideal in C∗(A, α)
containing I := I∩A. By Corollary 2.21, we may identify C∗(A, α)/〈I〉 with C∗(A/I, αI). 
We have a natural epimorphism Φ : C∗(A, α)/〈I〉 → C∗(A, α)/I which is injective on 
A/I. For any non-zero positive element b in C∗(A, α)/〈I〉 there is a non-zero positive 
element a in A/I such that a � b. Since 0 �= Φ(a) � Φ(b), we conclude that Φ(b) �= 0. 
Thus kerΦ = {0} and therefore I = 〈I〉 is gauge-invariant. �

Lemma 2.44. Let A ⊆ B be C∗-algebras and let A be of real rank zero. The following 
conditions are equivalent

(i) Every non-zero positive element in A is properly infinite in B.
(ii) Every non-zero projection in A is properly infinite in B.

Proof. Implication (i) ⇒ (ii) is trivial. Assume that (ii) holds and let a ∈ A be a non-zero 
positive element. By [8, Theorem 2.6] there is an approximate unit {pλ : λ ∈ Λ} in aAa

consisting of projections. Thus, by [27, Proposition 2.7(i)], pλ � a for all λ, in A and 
all the more in B. Applying [27, Lemma 3.17(ii)] we see that {pλ : λ ∈ Λ} ⊆ J(a) :=
{x ∈ B : a ⊕ |x| � a}. Thus B{pλ : λ ∈ Λ}B ⊆ J(a) because J(a) is an ideal, see 
[27, Lemma 3.12(i)]. On the other hand J(a) ⊆ BaB by [27, Lemma 3.12(iii)] and 
since we clearly have BaB ⊆ B{pλ : λ ∈ Λ}B it follows that J(a) = BaB. Hence [27, 
Lemma 3.12(iv)] tells us that a is properly infinite in B. �

Remark 2.45. The equivalence of (i) and (ii) in Lemma 2.44 answers the question posed 
in the proof of [16, Theorem 4.4]: it shows that [16, Theorem 4.4] can be deduced from 
[16, Theorem 4.2].

Proposition 2.46 (Pure infiniteness criterion). Let (A, α) be a reversible C∗-dynamical 
system such that A+ residually supports elements of C∗(A, α)+. Suppose also that either 
A has the ideal property or that A is separable and there finitely many invariant ideals 
in (A, α). The following statements are equivalent:

(i) Every non-zero positive element in A is properly infinite in C∗(A, α).
(ii) C∗(A, α) is purely infinite.
(iii) C∗(A, α) is purely infinite and has the ideal property.
(iv) Every non-zero hereditary C∗-subalgebra in any quotient C∗(A, α) contains an in-

finite projection.

If A is of real rank zero, then each of the above conditions is equivalent to

(i′) Every non-zero projection in A is properly infinite in C∗(A, α).
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In particular, if A is purely infinite then C∗(A, α) is purely infinite and has the ideal 
property.

Proof. Implications (iv) ⇔ (iii) ⇒ (ii) ⇒ (i) are general facts, see respectively [47, 
Proposition 2.11], [27, Proposition 4.7] and [27, Theorem 4.16]. If A is if real rank zero 
the equivalence (i) ⇔ (i′) is ensured by Lemma 2.44. Thus it suffices to show that (i) 
implies (iii) or (iv). Let us then assume that every element in A+\{0} is properly infinite 
in C∗(A, α).

Suppose first that A has the ideal property. We will show (iv). Let I be an ideal in 
C∗(A, α) and let B be a non-zero hereditary C∗-subalgebra in the quotient C∗(A, α)/I. 
Fix a non-zero positive element b in B. Since A+ residually supports elements of 
C∗(A, α)+ is non-zero positive element a in qI(A) such that a � b. Note that a is 
properly infinite in C∗(A, α)/I by [27, Proposition 3.14]. Since A has the ideal property 
we can find a projection q ∈ A that belongs to the ideal in A generated by the preimage 
of a in A but not to I := A ∩ I. Then q+I belongs to the ideal in C∗(A, α)/I generated 
by a, whence q + I � a � b, by [27, Proposition 3.5(ii)]. From the comment after [27, 
Proposition 2.6] we can find z ∈ C∗(A, α)/I such that q + I = z∗bz. With v := b

1
2 z

it follows that v∗v = q + I, whence p := vv∗ = b
1
2 zz∗b

1
2 is a projection in B, which is 

equivalent to q + I. By our assumption q + I and hence also p is properly infinite.
Suppose now that A is separable and there are finitely many, say n, invariant ideals 

in (A, α). By Lemma 2.43 and Corollary 2.21 they are in one-to-one correspondence 
with ideals in C∗(A, α). Hence by [27, Proposition 2.11], the conditions (ii) and (iii) are 
equivalent. We will prove (ii). The proof goes by induction on n.

Assume first that n = 2 so that C∗(A, α) is simple. For any b ∈ C∗(A, α)+ \ {0} take 
a ∈ A+ \ {0} such that a � b. Then b ∈ C∗(A, α)aC∗(A, α) = C∗(A, α) and as a is 
properly infinite we get b � a by [27, Proposition 3.5]. Hence b is properly infinite as it 
is Cuntz equivalent to a. Thus C∗(A, α) purely infinite.

Now suppose that our claim holds for any k < n. Let I be any non-trivial ideal in 
C∗(A, α) and put I = I∩A. By Lemma 2.16(ii), the systems (A/I, αI) and (I, α|I) are re-
versible, and by Corollary 2.21 and Proposition 2.22 we have C∗(A/I, αI) ∼= C∗(A, α)/I
and C∗(I, α|I) ∼= I. Clearly, the system (A/I, αI) satisfies the assumptions of the 
assertion (a non-zero image of properly infinite element is properly infinite by [27, Propo-
sition 3.14]) and there are less than n invariant ideals in (A/I, αI). Hence C∗(A/I, αI)
is purely infinite. Similar, argument works for C∗(I, α|I); in particular note that if a � b

for b ∈ I+ \ {0} and a ∈ A+ \ {0}, then a ∈ I. Also if a ∈ I+ \ {0} is properly infinite in 
C∗(A, α), then it is properly infinite in I, cf. [27, Proposition 3.3]. Concluding, both I
and C∗(A, α)/I are purely infinite, and since pure infiniteness is closed under extensions 
[27, Theorem 4.19] we get that C∗(A, α) is purely infinite. �
Remark 2.47. We recall, see [47, Propositions 2.11, 2.14], that in the presence of the 
ideal property pure infiniteness of a C∗-algebra is equivalent to strong pure infiniteness, 
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weak pure infiniteness, and many other notions of infiniteness appearing in the literature. 
Thus the list of equivalent conditions in Proposition 2.46 can be considerably extended.

Remark 2.48. In the case when there are finitely many invariant ideals in (A, α), we used 
separability of A in the proof Proposition 2.46 only to get the equivalence (ii) ⇔ (iii). 
Accordingly, in this case, the conditions (i) and (ii) are equivalent even for non-separable 
C∗-algebras.

Remark 2.49. Certain properties that imply condition (i) in Proposition 2.46 were 
introduced in [38]. In particular, Proposition 2.46 can be readily used to obtain a gen-
eralization of [38, Theorem 8.22] so that it covers not necessarily extendible systems on 
C∗-algebras not necessarily possessing the ideal property.

3. Category of C0(X)-algebras and C0(X)-dynamical systems

In this section, we introduce morphisms of upper semicontinuous C∗-bundles which 
induce certain homomorphisms of C0(X)-algebras. We give several characterizations of 
such homomorphisms, and study basic properties of C∗-dynamical systems (A, α) where 
A is a C0(X)-algebra and α is induced by a morphism. We show that the arising category 
of C0(X)-algebras has direct limits, and in some cases such limits exist in the subcategory 
of continuous C0(X)-algebras.

3.1. Morphism of C∗-bundles and C0(X)-dynamical systems

Let A = �
x∈X

A(x) and B = �
y∈Y

B(y) be upper semicontinuous C∗-bundles. We wish to 

view morphism between C∗-bundles as a common generalization of proper mappings and 
C∗-homomorphisms. Mimicking the definition of morphisms of vector bundles, one can 
imagine such a morphism as a pair of continuous mappings α : B → A and ϕ : X → Y

such that the following diagram

B
p

α A
p

Y X
ϕ

commutes and for each x ∈ X, α : B(ϕ(x)) → A(x) is a homomorphism. Since some of 
these homomorphisms might be zero we will allow ϕ to be defined on an open subset Δ
of X.

Definition 3.1. A morphism (of upper semicontinuous C∗-bundles) from B to A is a pair 
(ϕ, {αx}x∈Δ) consisting of



2300 B.K. Kwaśniewski / Journal of Functional Analysis 270 (2016) 2268–2335
1) a continuous proper map ϕ : Δ → Y defined on an open set Δ ⊆ X, and
2) a continuous bundle of homomorphisms {αx}x∈Δ between the corresponding fibers, 

i.e.:
a) for each x ∈ Δ, αx : B(ϕ(x)) → A(x) is a homomorphism;
b) if {xi}i∈Λ ⊆ Δ and {bi}i∈Λ ⊆ B are nets such that xi → x ∈ Δ, bi → b and 

p(bi) = ϕ(xi), for i ∈ Λ, then αxi
(bi) → αx(b).

The above definition is born to work well with section algebras.

Proposition 3.2. Let ϕ : Δ → Y be a proper continuous mapping where Δ ⊆ X is an 
open set. For each x ∈ Δ let αx : B(ϕ(x)) → A(x) be a homomorphism. The pair 
(ϕ, {αx}x∈Δ) is a morphism from B to A if and only if the formula

α(b)(x) =
{
αx(b(ϕ(x)), x ∈ Δ,

0x x /∈ Δ,
b ∈ Γ0(B), x ∈ X, (22)

yields a well defined homomorphism α : Γ0(B) → Γ0(A) between the section C∗-algebras.

Proof. Suppose that (ϕ, {αx}x∈Δ) is a morphism. Clearly, it suffices to show that the 
map (22) is well defined, equivalently, that for any b ∈ Γ0(B) the mapping

X � x �−→ α(b)(x) ∈ A(x) ⊆ A (23)

is in Γ0(A). Condition 2b) from Definition 3.1 readily implies that the map Δ � x �−→
α(b)(x) ∈ A(x) ⊆ A is continuous (consider elements bi := b(ϕ(xi))). In particular, 
Δ � x �−→ ‖α(b)(x)‖ ∈ R is upper semicontinuous. Thus for any ε > 0 the set {x ∈ X :
‖α(b)(x)‖ � ε} = {x ∈ Δ : ‖α(b)(x)‖ � ε} is closed. Actually it is compact because

{x ∈ X : ‖α(b)(x)‖ � ε} ⊆ {x ∈ Δ : ‖b(ϕ(x))‖ � ε}

and the latter set is compact as ϕ is proper and b vanishes at infinity. Thus the map 
(23) is vanishing at infinity. To conclude that α(b) ∈ Γ0(A) we need to show that α(b) is 
continuous on the boundary ∂Δ of Δ. But if {xi}i∈Λ ⊆ X is a net convergent to x0 ∈ ∂Δ, 
then for every ε > 0 the point x0 belongs to the open set {x ∈ X : ‖α(b)(x)‖ < ε} and 
hence α(b)(xi) converges to 0 by Lemma 1.1 (consider bi = α(b)(xi) and a ≡ 0).

Conversely, assume that α : Γ0(B) → Γ0(A) is a homomorphism satisfying (22). We 
need to show condition 2b) in Definition 3.1. Let {xi}i∈Λ ⊆ Δ and {bi}i∈Λ ⊆ B be nets 
such that xi → x ∈ Δ, bi → b and p(bi) = ϕ(xi). Take arbitrary ε > 0. By Lemma 1.1
there is a ∈ Γ0(A) such that ‖a(p(b)) −b‖ < ε and we eventually have ‖a(ϕ(xi)) −bi‖ < ε. 
This implies that ‖α(a)(x) −αx(b)‖ < ε and we eventually have ‖α(a)(xi) −αxi

(bi)‖ < ε. 
Since α(a) ∈ Γ0(A) we have αxi

(bi) → αx(b) by Lemma 1.1. �
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Definition 3.3. To indicate that a homomorphism α : Γ0(B) → Γ0(A) is given by (22) for 
a certain morphism (ϕ, {αx}x∈Δ) of upper semicontinuous C∗-bundles we will say that 
α is induced by a morphism.

Let A = Γ0(A) and B = Γ0(B). Note that for an induced homomorphism α : B → A

the underlying mapping ϕ : Δ → Y is uniquely determined by α on the set

Δ0 := {x ∈ X : αx �= 0} ⊆ Δ, (24)

which coincides with Δ when all endomorphisms αx, x ∈ Δ, are non-zero. Sometimes 
we can assume that Δ = Δ0 using the following lemma.

Lemma 3.4. Let α : B → A be a homomorphism induced by a morphism (ϕ, {αx}x∈Δ)
from a continuous C0(Y )-algebra B to a continuous C0(X)-algebra A and let Δ0 be given 
by (24). Suppose also that B(ϕ(x)) �= {0}, for x ∈ Δ, and that every αx, x ∈ Δ0, is 
injective. Then Δ0 is a clopen in Δ and in particular (ϕ|Δ0 , {αx}x∈Δ0) is a morphism 
that induces α.

Proof. Since Δ0 =
⋃

b∈B{x ∈ X : ‖α(b)(x)‖ > 0} and A is a continuous C0(X)-algebra, 
we see that set Δ0 is open. Suppose that x0 is a point in the boundary of Δ0 in Δ. Take 
a net {xi}i ⊆ Δ0 converging to x0 and an element b ∈ B such that ‖b(ϕ(x0))‖ = 1. Since 
the homomorphism αxi

are isometric, and the mappings Δ � x �→ ‖αx(b(ϕ(x)))‖ and 
Δ � x �→ ‖b(ϕ(x))‖ are continuous, we get

‖αx0(b(ϕ(x0)))‖ = lim
i

‖αxi
(b(ϕ(xi)))‖ = lim

i
‖b(ϕ(xi))‖ = 1.

Hence αx0 �= 0, that is x0 ∈ Δ0. Thus Δ0 is closed in Δ and therefore ϕ|Δ0 : Δ0 → X is 
a proper map. Clearly, α satisfies (22) with Δ0 in place of Δ. Accordingly, α is induced 
by the morphism (ϕ|Δ0 , {αx}x∈Δ0) by Proposition 3.2. �

We have the following characterizations of homomorphism induced by morphisms 
phrased in terms of C0(X)-algebras.

Proposition 3.5. Let A be C0(X)-algebra and B a C0(Y )-algebra. For any homomorphism 
α : B → A the following conditions are equivalent:

(i) α is induced by a morphism from B = �
y∈Y

B(y) to A = �
x∈X

A(x),

(ii) there is a homomorphism Φ : C0(Y ) → C0(X) such that

α(f · b) = Φ(f) · α(b), f ∈ C0(Y ), b ∈ B.

If additionally B is unital and A is a continuous C0(X)-algebra then the above conditions 
are equivalent to the following one:
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(iii) α maps C0(Y ) ‘almost into’ C0(X), that is

α(C0(Y ) · 1) ⊆ C0(X) · α(1).

If the additional assumptions and condition (iii) are satisfied, then the corresponding 
morphism (ϕ, {αx}x∈Δ) can be chosen so that Δ is compact and each αx, x ∈ Δ, is 
non-zero.

Proof. (i) ⇒ (ii). It suffices to put Φ(a) := a ◦ ϕ for a ∈ C0(Y ).
(ii) ⇒ (i). Note that Φ : C0(Y ) → C0(X) is given by the formula

Φ(b)(x) =
{
b(ϕ(x)), x ∈ Δ,

0 x /∈ Δ,
b ∈ C0(Y ) (25)

where ϕ : Δ → Y is a continuous proper mapping defined on an open set Δ ⊆ X. 
Let x ∈ Δ. We define a homomorphism αx : B(ϕ(x)) → A(x) as follows. For any 
b0 ∈ B(ϕ(x)) there is b ∈ B such that b(ϕ(x)) = b0, and we claim that the element

αx(b0) := α(b)(x) (26)

is well defined (does not depend on the choice of b). Indeed, let b̃, b ∈ B be such that 
b̃(ϕ(x)) = b(ϕ(x)) = b0. Then b(ϕ(x)) − b̃(ϕ(x)) = 0. Upper semicontinuity of the 
C∗-bundle B = �

y∈Y
B(y) imply that for every ε > 0 there is an open neighborhood U of 

ϕ(x) such that

‖b(y) − b̃(y)‖ < ε, for all y ∈ U.

Let us choose a function h ∈ C0(Y ) such that h(ϕ(x)) = 1, 0 ≤ h ≤ 1 and h(y) = 0
outside U . We get

‖α(b)(x) − α(̃b)(x)‖ = ‖
(
Φ(h)α(b) − Φ(h)α(̃b)

)
(x)‖ = ‖α(hb− hb̃)(x)‖

≤ ‖α(hb− hb̃)‖ ≤ ‖hb− hb̃‖ ≤ ε.

This proves our claim. Now it is straightforward to see that (26) gives the desired ho-
momorphism αx : B(ϕ(x)) → A(x). Moreover, for the above defined pair (ϕ, {αx}x∈Δ)
the formula (22) holds. Hence in view of Proposition 3.2, α is induced by a morphism.

Let us now assume that B is a unital and A is a continuous C0(X)-algebra.
(ii) ⇒ (iii). It is obvious.
(iii) ⇒ (ii). Since α(C0(Y ) · 1) ⊆ C0(X) · α(1), for every f ∈ C0(Y ) there exists 

g ∈ C0(X) such that

α(f · 1)(x) = g(x)α(1)(x), x ∈ X.
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Clearly, the function g is uniquely determined by f on the set Δ := {x ∈ X :
α(B)(x) �= 0} = {x ∈ X : α(1)(x) �= 0}. Since the mapping X � x → ‖α(1)(x)‖ ∈ {0, 1}
is continuous and vanishing at infinity, Δ is open and compact. Now it is straightfor-
ward to see that the formula Φ(f) = g|Δ defines a homomorphism Φ : C0(Y ) → C(Δ) ⊆
C0(X) satisfying condition (ii). �
Example 3.6. Suppose that qI : A → A/I is a quotient map and A is a C0(X)-algebra. 
We may treat A/I as a C0(V )-algebra for any closed set V containing σA(Prim(A/I)), 
cf. Lemma 1.7. Then we have

qI(f · a) = f |V · qI(a), f ∈ C0(X), a ∈ A.

Hence condition (ii) in Proposition 3.5 is satisfied. In particular, qI is induced by the 
morphism (id, {qI,x}x∈V ) where qI,x : A(x) → A(x)/I(x), x ∈ V , are the quotient maps.

Let us consider a category of C0(X)-algebras with morphisms being homomorphisms 
satisfying the equivalent conditions in Proposition 3.5. In this paper, we are interested in 
properties of systems (A, α) where A is an object and α is a morphism in this category.

Definition 3.7. We say that a C∗-dynamical system (A, α) is a C0(X)-dynamical system, 
if A is a C0(X)-algebra and α is induced by a morphism. If additionally A is a continuous 
C0(X)-algebra, we say that (A, α) is a continuous C0(X)-dynamical system.

In section 5, we will study crossed products associated to continuous C0(X)-dynamical 
systems introduced in the following example.

Example 3.8 (Endomorphisms of C∗-algebras with Hausdorff primitive ideal space). If 
A is a C∗-algebra and its primitive ideal space X := Prim(A) is Hausdorff, then using 
Dauns–Hofmann isomorphism we may naturally treat A as a continuous C0(X)-algebra 
where the structure map σA is identity, cf. [6, 2.2.2]. In particular, for x ∈ X = Prim(A)
the fiber A(x) = A/x is a simple (non-zero) C∗-algebra. Thus if α : A → A is an 
endomorphism induced by a morphism (ϕ, {αx}x∈Δ), then Lemma 3.4 applies and we 
may assume that each αx, x ∈ Δ, is injective. Moreover, if A is unital then we may 
identify C(X) with Z(A) and by Proposition 3.5 an endomorphism α : A → A is induced 
by a morphism if and only if α(Z(A)) ⊆ Z(A)α(1).

For trivial C∗-bundles we have the following description of endomorphisms induced 
by morphisms. We equip the set End(D) of all endomorphisms of a C∗-algebra D with 
the topology of point-wise convergence.

Proposition 3.9. Let ϕ : Δ → X be a proper continuous mapping defined on an open set 
Δ ⊆ X and let a continuous mapping Δ � x −→ αx ∈ End(D) where D is a C∗-algebra. 
We treat A := C0(X, D) as a C0(X)-algebra in an obvious way. The formula
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α(a)(x) :=
{
αx(a(ϕ(x)), x ∈ Δ,

0 x /∈ Δ,
a ∈ C0(X,D), x ∈ X, (27)

defines an endomorphism of A induced by a morphism. Every endomorphism of A in-
duced by a morphism arises in this way. If D is simple, or if A is unital, then we can 
choose the corresponding morphism in such a way that each αx, x ∈ Δ, is non-zero.

Proof. The corresponding C∗-bundle A = �
x∈X

D can be identified with the product 

X×D, together with its product topology. In this case condition 2b) from Definition 3.1
translates to the following: If {xi}i∈Λ ⊆ Δ and {bi}i∈Λ ⊆ D are nets such that xi →
x ∈ Δ and bi → b ∈ D, then αxi

(bi) → αx(b). The latter condition is equivalent to the 
continuity of the map Δ � x −→ αx ∈ End(D), which can be readily deduced from the 
inequality:

‖αxi
(bi) − αx(b)‖ ≤ ‖bi − b‖ + ‖αxi

(b) − αx(b)‖.

Thus the assertion follows by Proposition 3.2. The last remark follows by Lemma 3.4
and the last part of Proposition 3.2. �
3.2. Quotients and restrictions of C0(X)-dynamical systems

Restrictions and quotients of C0(X)-dynamical systems can be treated as C0(X)-dyna-
mical systems in the following sense.

Proposition 3.10. Suppose that α : A → A is an endomorphism induced by a morphism 
(ϕ, {αx}x∈Δ). Let I be a positively invariant ideal in (A, α). Then (I, α|I) and (A/I, αI)
are naturally C0(X)-dynamical systems where α|I is induced by (ϕ, {αx|I(ϕ(x))}x∈Δ) and 
αI is induced by (ϕ, {αI,x}x∈Δ) where

αI,x

(
a + I(ϕ(x))

)
:= αx(a) + I(x), a ∈ A(ϕ(x)), x ∈ Δ. (28)

Proof. Note that positive invariance of I implies that αx(I(ϕ(x))) ⊆ I(x), x ∈ Δ. In 
particular, (28) gives a well defined homomorphism αI,x. Now, Proposition 3.2 readily 
implies that (ϕ, {αx|I(ϕ(x))}x∈Δ) is a morphism that induces α|I and that (ϕ, {αI,x}x∈Δ)
is a morphism that induces αI (cf. the description of the quotient C∗-bundle in 
Lemma 1.7). �

We note that even when the structure map μA : C0(X) → Z(M(A)) is injective, the 
structure maps for I and A/I treated as C0(X)-algebras as in the above proposition, 
will hardly ever be injective. Moreover, A/I might not be a continuous C0(X)-algebra, 
even if A is, cf. Lemma 1.7. In certain situations, these problems can be circumvented 
by using the following proposition.
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Proposition 3.11. Suppose that α : A → A is an endomorphism induced by a morphism 
(ϕ, {αx}x∈Δ) and I is positively invariant ideal in (A, α). Put

V := σA(Prim(A/I)), U := σA(Prim(I))

and treat A/I as a C0(V )-algebra and I as a C0(U)-algebra.

(i) If ϕ(V ∩ Δ) ⊆ V , which is automatic when for each x ∈ Δ the range of αx is a full 
subalgebra of A(x), then the quotient endomorphism αI : A/I → A/I is induced by 
the morphism (ϕ|V ∩Δ, {αI,x}x∈V ∩Δ), cf. (28).

(ii) If U is open and ϕ−1(U) ⊆ U , which is automatic when A is a continuous C0(X)-
algebra and each αx, x ∈ Δ, is injective, then the restricted C∗-dynamical system 
(I, α|I) is a naturally induced by a morphism (ϕ|ϕ−1(U), {αx|I(ϕ(x))}x∈ϕ−1(U)).

Proof. (i). Suppose that ϕ(V ∩ Δ) ⊆ V . Then the restriction ϕ|V : V ∩ Δ → V

is a proper map and A can be naturally treated as a C0(V )-algebra by Lemma 1.7. 
Hence the morphism (ϕ, {αI,x}x∈Δ) from Proposition 3.10 restricts to a morphism 
(ϕ|V ∩Δ, {αI,x}x∈V ∩Δ) that induces αI .

Now, we show that ϕ(V ∩ Δ) ⊆ V , if for each x ∈ Δ the range of αx is a full 
subalgebra of A(x). To this end, let V0 = σA(Prim(A/I)) and recall that x ∈ V0 if 
and only if I(x) �= A(x), see (3). Let x ∈ Δ ∩ V0. We claim that ϕ(x) ∈ V0. Indeed, 
assume on the contrary that I(ϕ(x)) = A(ϕ(x)). Then by positive invariance of I we 
have αx(A(ϕ(x))) = αx(I(ϕ(x)) ⊆ I(x). Since αx(A(ϕ(x)) is full in A(x) we get

I(x) = A(x)I(x)A(x) ⊇ A(x)αx(A(ϕ(x)))A(x) = A(x).

This contradicts the fact that x ∈ Y0, cf. (3). Accordingly, ϕ(V0∩Δ) ⊆ V0. By continuity 
of ϕ we get ϕ(V ∩ Δ) ⊆ V .

(ii). If U is open and ϕ−1(U) ⊆ U , then ϕ|ϕ−1(U) : ϕ−1(U) → U is a proper map 
and I is naturally a C0(U)-algebra. Since U = {x ∈ X : I(x) �= {0}} by (2), for any 
a ∈ I and x /∈ ϕ−1(U) we have α(a)(x) = 0. Thus (ϕ|ϕ−1(U), {αx|I(ϕ(x))}x∈ϕ−1(U)) is a 
morphism that induces (I, α|I), by Proposition 3.5.

Now, suppose that A is a continuous C0(X)-algebra and each αx, x ∈ Δ, is injective. 
Then U is open. By (2), for each x ∈ ϕ−1(U) we may find an element a ∈ I such that 
a(ϕ(x)) �= 0. Since αx is injective, we have α(a)(x) = αx(a(ϕ(x))) �= 0, and thus x ∈ U , 
again by (2). Hence ϕ−1(U) ⊆ U . �

The above proposition implies that the quotient and the restriction of continuous 
C0(X)-dynamical systems described in Example 3.8 are naturally C∗-dynamical systems 
of the same type, see Lemma 5.3 below.
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3.3. Extendible morphisms and reversible C0(X)-dynamical systems

In the foregoing lemma we use the description of multiplier algebras given in Propo-
sition 1.6.

Lemma 3.12. Suppose that A is a C0(X)-algebra, B is a C0(Y )-algebra, and α : B →
A is an extendible homomorphism induced by a morphism (ϕ, {αx}x∈Δ). Each αx :
B(ϕ(x)) → A(x), x ∈ Δ, is extendible and α : M(B) → M(A) is given by

α(m)(x) =
{
αx

(
m(ϕ(x))

)
, x ∈ Δ,

0x, x /∈ Δ,
m ∈ M(B), x ∈ X. (29)

If additionally either A has local units or A is locally trivial then the set Δ0 defined in 
(24) is closed in X.

Proof. Let {μλ} be an approximate unit in B and let x ∈ Δ. Then {μλ(ϕ(x))} is an 
approximate unit in B(ϕ(x)) and αx(μλ(ϕ(x))) = α(μλ)(x) converges strictly in A(x). 
Hence the homomorphisms αx, x ∈ Δ, are extendible. Recall that α is determined by 
the formula α(m)a = limλ α(mμλ)a where a ∈ A, m ∈ M(B). It follows that for any 
x ∈ Δ we have

(α(m)a)(x) = lim
λ

α(mμλ)(x)a(x) = lim
λ

αx

(
(mμλ)(ϕ(x))

)
a(x)

= lim
λ

αx

(
m(ϕ(x))μλ(ϕ(x))

)
a(x) = αx

(
m(ϕ(x))

)
a(x).

Thus we get (29).
Now suppose that x0 is a point in the boundary of the set Δ0 = {x ∈ X : α(B)(x) �=

0}, but x0 /∈ Δ0. If A has local units, or if A is locally trivial, then we may choose a ∈ A, 
such that ‖a(x)‖ = 1 for every x in an open neighborhood U of x0. Then the compact 
set {x ∈ X : ‖(α(1)a)(x)‖ � 1/2} contains Δ0 ∩ U but does not contain x0. This leads 
to a contradiction, since x0 is in the closure of Δ0 ∩ U . �

Suppose now that (A, α) is a reversible C∗-dynamical system where A is a 
C0(X)-algebra and α is induced by a morphism (ϕ, {αx}x∈Δ). In general all we can 
say about the kernel of α and its annihilator is that

kerα = {a ∈ A : a(y) ∈
⋂

x∈ϕ−1(y)

kerαx for all y ∈ ϕ(Δ)}

and (kerα)⊥ is contained in

{a ∈ A : a|X\ϕ(Δ) = 0 and a(y) ∈
( ⋂

−1

kerαx

)⊥
for y ∈ ϕ(Δ)}. (30)
x∈ϕ (y)
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Nevertheless, we have the following statement.

Proposition 3.13. Suppose that (A, α) is a reversible C∗-dynamical system where A is a 
C0(X)-algebra and α is induced by a morphism (ϕ, {αx}x∈Δ).

(i) If all of the endomorphisms αx, x ∈ Δ, are injective then ϕ is injective.
(ii) If ϕ is injective and (A, α) is extendible then the unique regular transfer operator 

for (A, α) is determined by the formula

α∗(a)(x) =
{
α∗,x

(
a(ϕ−1(x))

)
, x ∈ ϕ(Δ),

0x, x /∈ ϕ(Δ),
a ∈ A, x ∈ X, (31)

where for each x ∈ ϕ(Δ), α∗,x : A(ϕ−1(x)) → A(x) is a completely positive gen-
eralized inverse to αϕ−1(x) : A(x) → A(ϕ−1(x)). The mappings α∗,x have strictly 
continuous extensions α∗,x and the strictly continuous extension α∗ of α∗ is given 
by the formula

α∗(a)(x) =
{
α∗,x(a(ϕ−1(x))), x ∈ ϕ(Δ),
0x, x /∈ ϕ(Δ),

a ∈ M(A), x ∈ X,

where we use the description of multipliers given in Proposition 1.6.

Proof. (i). Injectivity of αx’s imply that kerα = {a ∈ A : a(x) = 0 for all x ∈ ϕ(Δ)} and 
therefore (kerα)⊥ ⊆ {a ∈ A : a(x) = 0 for all x /∈ ϕ(Δ)}. Let x, y ∈ Δ be two different 
points. Take any b ∈ α(A) such that b(x) �= 0 and any h ∈ C0(X) such that h(x) = 1
and h(y) = 0. Since α(A) = α(A)Aα(A) we see that c := hb is in α(A). Obviously, 
c(x) �= 0 and c(y) = 0. Thus for any a ∈ A with α(a) = c we have αx(a(ϕ(x)) �= 0 and 
αy(a(ϕ(y)) = 0. Injectivity of αx and αy implies that ϕ(x) �= ϕ(y). Hence ϕ is injective.

(ii). Fix x ∈ Δ and b0 ∈ αx(1ϕ(x))A(x)αx(1ϕ(x)) (we use the notation of Lemma 3.12). 
Take b ∈ α(A) = α(1)Aα(1) such that b(x) = b0. Let a ∈ (kerα)⊥ be the unique element 
such that α(a) = b. Accordingly, b0 = b(x) = αx(a(ϕ(x))) where a(ϕ(x)) ∈ (kerαx)⊥
(here we use injectivity of ϕ and that (kerα)⊥ is contained in the set (30)). It follows 
that the range of αx : A(ϕ(x)) → A(x) is the corner αx(1ϕ(x))A(x)αx(1ϕ(x)) and αx :
(kerαx)⊥ → αx(A(ϕ(x))) is an isomorphism. The latter fact implies that kerαx is a 
complemented ideal in A(ϕ(x)). We define the map

α∗,ϕ(x)(a) := α−1
x

(
αx(1ϕ(x))aαx(1ϕ(x))

)
, a ∈ A(x), (32)

where α−1
x is the inverse to the isomorphism αx : (kerαx)⊥ → αx(1ϕ(x))A(x)αx(1ϕ(x)). 

The maps α∗,x have strictly continuous extensions which are given by (32) with α−1
x

replaced by the inverse to the strictly continuous isomorphism αx : M((kerαx)⊥) →
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αx(1ϕ(x))M(A(x))αx(1ϕ(x)), cf. Lemma 3.12. Now it is immediate to see that the homo-
morphisms α∗,x and α∗,x, x ∈ ϕ(Δ), fulfill the requirements of the assertion. �

Injectivity of the map ϕ in the second part of the above proposition is essential.

Example 3.14. Consider a reversible C∗-dynamical system (A, α) where A = C3 and 
α(a) = (a2, 0, a3) for a = (a1, a2, a3) ∈ A. Then the regular transfer operator α∗(a) =
(0, a1, a3) for (A, α) is actually an endomorphism. Treating A as a C({1, 2})-algebra 
where a(1) = a1 ∈ C and a(2) = (a2, a3) ∈ C2, for a ∈ A, the endomorphism α is 
induced by the morphism (ϕ, {α1, α2}) where

ϕ(1) = ϕ(2) = 2, α1(a2, a3) = a2, α2(a2, a3) = (0, a3).

But α∗ is not induced by a morphism because the fiber α∗(a)(2) = (a1, a3) of α∗(a)
depends on two fibers of a.

3.4. Direct limits

In this subsection, we show that a direct limit of C0(Xn)-algebras is naturally a 
C0(X̃)-algebra, and in certain cases a continuous C0(X̃)-algebra. We will use this result, 
in subsection 4.2, to show that a reversible extension of a C0(X)-dynamical system is a 
C0(X̃)-dynamical system.

Let us consider a direct sequence B0
α0−→ B1

α1−→ . . . , where for each n ∈ N, Bn is 
a C0(Xn)-algebra and αn : Bn → Bn+1 is a homomorphism induced by a morphism 
(ϕn, {αx}x∈Xn+1) (we may assume that the sets Xn are disjoint, so a homomorphism αx

is uniquely determined by the point x ∈ Xn+1). We show that the C∗-algebraic direct 
limit B := lim−−→{Bn, αn} is naturally a C0(X̃)-algebra over the topological inverse limit 
space

X̃ := lim←−−{Xn+1, ϕn}.

To this end, we attach to each x̃ = (x0, x1, . . .) ∈ X̃ the direct limit C∗-algebra

B(x̃) := lim−−→{Bn(xn), αxn+1}

of the direct sequence B0(x0) 
αx1−→ B1(x1) 

αx2−→ B2(x2) 
αx3−→ . . . . We let φx̃,n : Bn(xn) →

B(x̃) and φn : Bn → B be the natural homomorphisms:

φn(bn) = [0, . . . , 0︸ ︷︷ ︸
n

, bn, αn+1(bn), . . .)],

φx̃,n(bn) = [0, . . . , 0︸ ︷︷ ︸, bn(xn), αxn+1(bn(xn)), . . .)]

n
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where bn ∈ Bn and x̃ ∈ X̃. The following statement can be viewed as a generalization 
of [18, Proposition 1.7] to the non-unital case. In contrast to [18] we prove it using the 
C∗-bundle approach.

Proposition 3.15. Retain the above notation and suppose additionally that the mappings 
ϕn are surjective, n ∈ N. There is a unique topology on B = �x̃∈X̃

B(x̃) making it an 

upper semicontinuous C∗-bundle over X̃ such that

B � φn(bn) −→ φn(bn)(x̃) := φx̃,n(bn(xn)), x̃ ∈ X̃, bn ∈ Bn, (33)

establishes the natural isomorphism from B = lim−−→{Bn, αn} onto Γ0(B).
If additionally, all the algebras Bn are continuous C0(Xn)-algebras and all the endo-

morphisms αx, x ∈ Xn+1, n ∈ N, are injective, then the C∗-bundle B = �x̃∈X̃
B(x̃) is 

continuous.

Proof. For x̃ ∈ X̃ and m > n we put

αx̃,[n,m] := αxm
◦ . . . ◦ αxn+2 ◦ αxn+1 and α[n,m] := αm−1 ◦ . . . ◦ αn+1 ◦ αn.

These are the bonding homomorphisms from B(xn) to B(xm) and from Bn to Bm, 
respectively. Let x̃ ∈ X̃, bn ∈ Bn. To check that the map (33) is well defined assume that 
φn(bn) = 0. Then for any ε > 0 and sufficiently large m we have ‖α[n,m](bn)‖ < ε, and all 
the more ‖αx̃,[n,m](bn(xn))‖ = ‖α[m,n](bn)(xm)‖ < ε. This implies that φx̃,n(bn(xn)) = 0. 
Hence (33) is well defined and clearly it yields a surjective homomorphism from B onto 
B(x̃).

We show that for a fixed φn(bn) ∈ B, the mapping

X̃ � x̃ �→ ‖φn(bn)(x̃)‖ ∈ C (34)

is upper semicontinuous. Suppose that x̃ ∈ X̃ is such that ‖φn(bn)(x̃)‖ < K. Then there 
is m > n such that ‖αx̃,[n,m](bn(xn))‖ < K. Since α[m,n](bn)(xm) = αx̃,[n,m](bn(xn)) and 
Xm � x → ‖α[m,n](bn)(x)‖ is upper semicontinuous, there is an open neighborhood U
of xm such that ‖α[m,n](bn)(x)‖ < K for all x ∈ U . It follows that the set

Ũ := {ỹ = (y0, y1, . . .) ∈ X̃ : ym ∈ U}

is an open neighborhood of x̃ such that for ỹ ∈ Ũ we have

‖φn(bn)(y)‖ ≤ ‖αỹ,[n,m](bn(yn))‖ < K.

This proves the upper semicontinuity of (34).
We wish to show that (34) vanishes at infinity. Let ε > 0. By upper semicontinuity 

of (34) the set {x̃ ∈ X̃ : ‖φn(bn)(x̃)‖ � ε} is closed, and clearly, it is a subset of 
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{x̃ ∈ X̃ : ‖bn(xn)‖ � ε}. However, the latter set is compact because the map X̃ �
x̃ → xn ∈ Xn is proper and Xn � x → ‖bn(x)‖ is vanishing at the infinity. Hence 
{x̃ ∈ X̃ : ‖φn(bn)(x̃)‖ � ε} is compact as well.

Now, by Fell’s theorem, see [55, Theorem C.25], there is a unique topology on B such 
that (33) defines a surjective homomorphism from B onto Γ0(B). We still need to show 
that this homomorphism is injective.

To this end, assume that φn(bn) is non-zero. Then there exists ε > 0 such that 
‖α[m,n](bn)‖ > ε for all m > n. Thus, for each m > n, the set

Dm := {x ∈ Xm : ‖α[m,n](bn)(x)‖ � ε}

is nonempty, and it is compact because Xm � x → ‖α[m,n](bn)(x)‖ vanishes at infinity. 
Note that ϕm(Dm+1) ⊆ Dm. Thus the sets

D̃m := {x̃ ∈ X̃ : xm ∈ Dm}

form a decreasing sequence of compact nonempty sets (non-emptiness follows from sur-
jectivity of the mappings ϕm). Hence there is x̃0 ∈

⋂
m>n D̃m and plainly

‖φn(bn)(x̃0)‖ � ε > 0.

This finishes the proof of the first part of the assertion.
Assume now that for each n ∈ N, Bn is a continuous C0(Xn)-algebra and all of the 

endomorphisms αx, x ∈ Xn, are injective. Then ‖φn(bn)(x̃)‖ = ‖bn(xn)‖ for all x̃ ∈ X̃, 
bn ∈ Bn, n ∈ N. Hence mapping (34), as a composition of two continuous mappings 
X̃ � x̃ → xn ∈ Xn and Xn � xn → ‖bn(xn)‖, is continuous. �

Injectivity of the endomorphisms αx, x ∈ Xn+1, in the second part of Proposition 3.15
is essential.

Example 3.16. Consider the stationary inductive limit given by the continuous C0(N)-al-
gebra A := C0(N, C2) and the endomorphism α : A → A induced by the morphism 
(ϕ, {αn}n∈N) where

φ(0) = 0, α0 = id, and φ(n) = n− 1, αn(a, b) = (a, 0), for n > 0.

The resulting direct limit B = lim−−→{A, α} can be viewed as a C0({−∞} ∪ Z)-algebra 
with the obvious topology on {−∞} ∪Z and fibers B−∞ = C2 and Bn = C, n ∈ Z. The 
image of the constant function N � n → (a, b) ∈ C2 (treated as an element of A) in the 
algebra B corresponds to the section f with f(−∞) = (a, b) and f(n) = a for n ∈ Z. If 
|a| < |b|, the function {−∞} ∪ Z � x → ‖f(x)‖ is not lower semicontinuous at −∞.
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4. Crossed products of C0(X)-dynamical systems

In this section, we fix a C0(X)-dynamical system (A, α) and denote by (ϕ, {αx}x∈Δ)
a morphism that induces α. We also fix an ideal J in (kerα)⊥ and make the following 
standing assumption:

• σA : Prim(A) → X is surjective, equivalently A(x) �= {0} for all x ∈ X.

The above assumption allows us to treat C0(X) as a subalgebra of M(Z(A)). We will 
study crossed products C∗(A, α; J) using the following tactic. Firstly, we consider re-
versible systems. Then we show that the natural reversible J-extension (B, β) of (A, α)
is induced by a morphism, which will immediately lead us to general results.

4.1. The case of a reversible system

In this subsection, we assume that (A, α) is a reversible C∗-dynamical system. The 

dual partial homeomorphism α̂ : α̂(A) → ̂(kerα)⊥, cf. Definition 2.34, factors through to 
the partial homeomorphism of the primitive ideal space Prim(A). We denote the latter 
mapping by α̂ : Prim(α(A)) → Prim((kerα)⊥). Thus we have α̂(kerπ) = ker(π ◦ α)
for π ∈ α̂(A). With the identifications Prim(α(A)) = {P ∈ Prim(A) : α(A) � P} and 
Prim((kerα)⊥) = {P ∈ Prim(A) : (kerα)⊥ � P} we have

α̂(P ) = α−1(P ), P ∈ Prim(α(A)). (35)

Lemma 4.1. With the above notation, the following diagram

Prim(α(A))

σA

α̂ Prim((kerα)⊥)

σA

Δ
ϕ

ϕ(Δ)

commutes. In particular, if ϕ is free then α̂ is free, and if A is a continuous C0(X)-algebra 
and ϕ is topologically free, then α̂ is also topologically free.

Proof. Using, among other things, (2) and (30) we see that

σA(Prim(α(A))) = σA(Prim(Aα(A)A)) = {x ∈ X :
(
Aα(A)A

)
(x) �= 0}

= {x ∈ X : α(A)(x) �= 0} ⊆ Δ,

σA(Prim((kerα)⊥)) = {x ∈ (kerα)⊥(x) �= 0} ⊆ ϕ(Δ).

Now let P ∈ Prim(α(A)). Then x := σA(P ) is in Δ. By (1), C0(Δ \ {x}) · A ⊆ P . 
Applying to this inclusion α−1 we get C0

(
ϕ(Δ) \ {ϕ(x)}

)
· α−1(A) ⊆ α−1(P ). This 



2312 B.K. Kwaśniewski / Journal of Functional Analysis 270 (2016) 2268–2335
in view of (35) and (1) means that σA(α̂(P )) = ϕ(x) = σA(P ). The last part of the 
assertion is straightforward. �

Clearly, (topological) freeness of α̂ implies (topological) freeness of α̂. Hence 
Lemma 4.1 and Proposition 2.35 give us the following results.

Corollary 4.2. Suppose that A is a continuous C0(X)-algebra and ϕ is topologically free. 
A representation of the crossed product C∗(A, α) is faithful if and only if it is faithful 
on A.

Corollary 4.3. If ϕ is free then every ideal in C∗(A, α) is gauge-invariant.

In order to use our pure infiniteness criterion – Proposition 2.46, we need to show that 
freeness of ϕ implies that A+ residually supports elements of C∗(A, α). To this end we 
use a technical device introduced in the following lemma, which will allow us to adapt 
the arguments of [14] to our setting. Recall that any C∗-algebra B is a M(B)-bimodule 
where (m · b) := mb and (b ·m) := (m∗b∗)∗, for m ∈ M(B), b ∈ B.

Lemma 4.4. The action of h ∈ C0(X) on A as a multiplier of A extends to the action on 
C∗(A, α) as a multiplier of C∗(A, α) which is uniquely determined by the formulas

h · (aun) := (h · a)un, (aαn(b)un) · h := aun(b · h) = aαn(b · h)un, (36)

where a, b ∈ A, n ∈ N.

Proof. Recall that A is a non-degenerate subalgebra of C∗(A, α). In other words, 
multiplication from the left defines a non-degenerate homomorphism from A into 
M(C∗(A, α)). This homomorphisms extends uniquely to the homomorphism from M(A)
into M(C∗(A, α)). Composing the latter with μA : C0(X) → Z(M(A)) we get a multi-
plier action of C0(X) on C∗(A, α) that clearly satisfies (36). In view of Proposition 2.14
formulas (36) determine this action uniquely. �

In the following statements we use the C0(X)-bimodule structure on C∗(A, α) de-
scribed in the previous lemma (to increase readability we will suppress the symbol ‘·’).

Lemma 4.5. (Cf. Lemma 2.3 in [14].) Let k > 0 and a ∈ Aαk(A). Suppose that x0 ∈ X

is not fixed by ϕk. For every ε > 0 there is h ∈ C0(X) such that 0 ≤ h ≤ 1, h(x0) = 1
and ‖h(auk)h‖ ≤ ε.

Proof. The proof of [14, Lemma 2.3] is readily adapted to our case; it suffices to replace 
the partial crossed product convolution formula with (36). �
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Proposition 4.6. (Cf. Proposition 2.4 in [14].) Suppose that either ϕ is topologically free 
and A is a continuous C0(X)-algebra, or that ϕ is free. Then for every a ∈ C∗(A, α) and 
every ε > 0 there is h ∈ C0(X) such that

(i) ‖hE(a)h‖ � ‖E(a)‖ − ε,
(ii) ‖hE(a)h − hah‖ ≤ ε,
(iii) h � 0 and ‖h‖ = 1,

where E is the conditional expectation (10).

Proof. We adapt the proof of [14, Proposition 2.4]. A simple approximation argument 
implies that we may assume that a is of the form (11). Then E(a) = a0. Let us consider 
the non-empty set V = {x ∈ X : ‖a0(x)‖ > ‖a0‖ − ε} and notice that there exists 
x0 ∈ V such that x0 is not a fixed point for ϕk for all k = 1, . . . , n. Indeed, if ϕ is free, 
existence of such x0 is obvious. If A is a continuous C0(X)-algebra then V is open and 
the existence of x0 is guaranteed by topological freeness of ϕ. Applying Lemma 4.5 we 
see that for each k = ±1, . . . , ±n there exists hk ∈ C0(X) such that

hk(x0) = 1, ‖hk(aku|k|)hk‖ ≤ ε

2n, and 0 ≤ hk ≤ 1.

Let h :=
∏

k=±1,...,±n hk. Then (iii) is immediate, and (i) holds because ‖ha0h‖ �
‖a0(x0)‖ > ‖a0‖ − ε. For (ii), we have

‖ha0h− hah‖ ≤
∑

k=±1,...,±n

‖h(aku|k|)h‖ ≤
∑

k=±1,...,±n

‖hk(aku|k|)hk‖ < ε. �

Proposition 4.7. If ϕ is free then A+ residually supports elements of C∗(A, α)+.

Proof. Let I be an ideal in C∗(A, α). By Corollaries 4.3 and 2.21, we have the isomor-
phism C∗(A, α)/I ∼= C∗(A/I, αI) where I := A ∩ I is an invariant ideal in (A, α). The 
system (A/I, αI) is reversible by Lemma 2.16(ii). By Proposition 3.10, (A/I, αI) is in-
duced by the morphism (ϕ, {αI,x}x∈Δ). Fix a positive element b in C∗(A, α)/I. Without 
loss of generality we may assume that ‖b‖ = 1. Applying Proposition 4.6 to (A/I, αI), 
we may find a positive contraction h ∈ M(A/I) such that (21) holds. Now the last part 
of the proof of Proposition 2.42 shows that a := (hE(b)h − 1/2)+ ∈ A/I is non-zero 
element such that a � b relative to C∗(A, α)/I ∼= C∗(A/I, αI). �
Corollary 4.8. Suppose that ϕ is free.

(i) If A is has the ideal property and is purely infinite, then the same holds C∗(A, α).
(ii) If there are finitely many invariant ideals in (A, α) and A is purely infinite, then 

C∗(A, α) is purely infinite.
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Proof. The assertion follows from Proposition 4.7 and Proposition 2.46 modulo Re-
mark 2.48. �
4.2. Reversible extension of a C∗-dynamical system induced by a morphism

Let us now get back to the case of a not necessarily reversible C0(X)-dynamical system 
(A, α). Let (B, β) denote the reversible J-extension of (A, α), cf. Definition 2.30. We put

Y = σA(Prim(A/J)).

In view of our standing assumption, equality (3) and the fact that J is contained in 
the set (30) we see that Y contains X \ ϕ(Δ). We denote by (X̃, ϕ̃) the reversible 
Y -extension of the partial dynamical system (X, ϕ), see Definition 2.32. Our aim is 
to use Proposition 3.15 to describe B as a C0(X̃)-algebra and β as an endomorphism 
induced by a morphism (ϕ̃, {βx̃}x̃∈Δ) for a certain field of homomorphisms βx̃, x̃ ∈ Δ.

We start by fixing indispensable notation. Let Δn := ϕ−n(Δ) be the domain of ϕn, 
n ∈ N. For x ∈ Δn we put

α(x,n) := αx ◦ αϕ(x) ◦ . . . ◦ αϕn−1(x), n > 0,

and α(x,0) := id. To each n ∈ N and x ∈ X belonging to the domain of ϕn, we associate 
the hereditary subalgebra in A(x) generated by the range of α(x,n):

An(x) := α(x,n)(A(ϕn(x)))A(x)α(x,n)(A(ϕn(x))). (37)

We construct fiber C∗-algebras B(x̃) as follows. If x̃ = (x0, x1, . . .) ∈ X∞, we let

B(x̃) := lim−−→{An(xn), αxn+1}

to be the inductive limit of the sequence A0(x0) 
αx1−→ A1(x1) 

αx2−→ A2(x3) 
αx3−→ . . . . If 

x̃ = (x0, x1, . . . , xN , 0, . . .) ∈ XN , we simply put

B(x̃) = AN (xN )/J(xN ).

In other words, B(x̃) = qxN
(AN (xN )) where (id, {qx}x∈Y ) is the morphism that induces 

the quotient map q : A → A/J , see Example 3.6.
We will represent the dense ∗-subalgebra 

⋃
n∈N

Bn of B as an algebra of sections of 
B = �x̃∈X̃

B(x̃). For every a = (a0 + J) ⊕ . . . ⊕ (an−1 + J) ⊕ an ∈ Bn we define the 
section π(φn(a)) of B by the formula
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π(φn(a))(x̃)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aN (xN ) + J(xN ), x̃ ∈ XN , N ≤ n,

α(xN ,N−n)(an(xn)) + J(xN ), x̃ ∈ XN , N > n,

[0, . . . , 0︸ ︷︷ ︸
n

, an(xn), αxn+1(an(xn)), α(xn+2,2)(a(xn)), . . .], x̃ ∈ X∞.

We define endomorphisms βx̃ : B(ϕ̃(x̃)) → B(x̃), x̃ ∈ Δ̃, as follows. We put

βx̃[a0, a1, a2, . . .] := [a1, a2, . . .], if x̃ ∈ X∞ ∩ Δ̃,

and if x̃ ∈ XN ∩ Δ̃ we let βx̃ be the inclusion map corresponding to the inclusion 
B(ϕ̃(x̃)) = qxN

(AN+1(xN )) ⊆ B(x̃) = qxN
(AN (xN )).

If the system (A, α) happens to be extendible, then by Lemma 3.12 the homomor-
phisms αx, and hence also α(x,n), are extendible. In this case we put

p(x,0) := 1x, x ∈ X, and p(x,n) := α(x,n)(1ϕn(x)) for n > 0, x ∈ ϕ−n(Δ).

With this notation the algebras An(x) are corners p(x,n)A(x)p(x,n). We define positive 

linear maps β∗,ϕ̃(x̃) : B(x̃) → B(ϕ̃(x̃)), x̃ ∈ Δ̃, as follows. For X∞ ∩ Δ̃ we set

β∗,ϕ̃(x̃)[a0, a1, a2, . . .] := [0, p(x0,1) a0 p(x0,1), p(x1,2) a1 p(x1,2), . . .].

If x̃ ∈ XN ∩ Δ̃, we put β∗,ϕ̃(x̃)(qxN
(a)) := qxN

(p(xN ,N+1) a p(xN ,N+1)).

Theorem 4.9. Retain the above notation. There is a unique topology on B = �x̃∈X̃
B(x̃)

making it into an upper semicontinuous C∗-bundle over X̃ such that π establishes the 
isomorphism B ∼= Γ0(B). Identifying B with the algebra of continuous sections of B we 
have

β(a)(x̃) =
{
βx̃

(
a
(
ϕ̃(x̃)

))
, x̃ ∈ Δ̃,

0, x̃ /∈ Δ̃,

and if (A, α) is extendible, then (B, β) is extendible and

β∗(a)(x̃) =
{
β∗,x̃

(
a
(
ϕ̃−1(x̃)

))
, x̃ ∈ ϕ̃(Δ̃),

0, x̃ /∈ ϕ̃(Δ̃),

where β∗ is the unique regular transfer operator for (B, β). Moreover, if A is a continuous 
C0(X)-algebra and either

(i) J is a complemented ideal, every ideal J(x) is trivial (i.e. either {0} or A(x)), and 
every homomorphism αx is injective, or
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(ii) σA is injective, i.e. X ∼= Prim(A), cf. Example 3.8,

then B = �x̃∈X̃
B(x̃) is a continuous C∗-bundle.

Proof. Notice that Bn, n ∈ N, is naturally a C0(Yn)-algebra with

Yn := Y � Y ∩ Δ1 � . . . � Y ∩ Δn−1 � Δn

where � denotes the disjoint sum of topological spaces. Moreover, the bonding ho-
momorphism αn : Bn → Bn+1 is induced by a morphism. Indeed, consider the map 
ϕn : Yn+1 → Yn given by the diagram

Yn = Y � ... � Y ∩ Δn−1 � Δn

Yn+1

ϕn

= Y

id

� ... � Y ∩ Δn−1

id

� Y ∩ Δn

id

� Δn+1.

ϕ

Let y ∈ Yn+1. Define αx,n : Bn(ϕn(y)) → Bn+1(y) to be identity if y ∈ Y ∩ Δk belongs 
to the k-th summand of Xn+1, k ≤ n − 1, to be qy if y ∈ Y ∩ Δn belongs to the n-th 
summand of Xn+1, and to be αy if y ∈ Δn+1 belongs to the last summand of Yn+1. Then 
αn : Bn → Bn+1 is induced by (ϕn, {αx,n}x∈Yn+1).

Since ϕ(Δ) ∪ Y = X, the mappings ϕn : Yn+1 → Yn are surjective and we may 
apply Proposition 3.15 to the inductive system {Bn, αn}n∈N. The arising direct limit 
C∗-bundle can be identified with the one described above. Indeed, we have a natural 
homeomorphism Φ : X̃ → lim←−−{Yn+1, ϕn}. Namely, for x̃ = (x0, x1, x2, . . .) ∈ X∞ we 
define Φ(x̃) = (x0, x1, x2, . . .) ∈ lim←−−{Yn+1, ϕn} where in the latter we treat xn ∈ Δn as 
the point in last direct summand of Yn for all n ∈ N. For x̃ = (x0, x1, . . . , xN , 0, 0, . . .) ∈
XN we define Φ(x̃) = (x0, x1, . . . , xN , xN , xN , . . .) ∈ lim←−−{Yn+1, ϕn} where in the latter 
we treat xn ∈ Δn as the point in the last direct summand of Yn, for n ≤ N , and 
xN ∈ Y ∩ ΔN as the point in N -the direct summand in Yn for n � N . For x̃ ∈ X∞, the 
algebras B(x̃) and B(Φ(x̃)) are naturally isomorphic because they arise as direct limits 
of direct sequences that can be naturally identified. For x̃ = (x0, x1, . . . , xN , 0, 0, . . .) ∈
XN , B(Φ(x̃)) is naturally isomorphic to BN (xN ) where xN ∈ YN lies in the last direct 
summand of Y . Thus B(Φ(x̃)) is naturally isomorphic to AN (xN )/J(xN ). Hence we may 
identify the corresponding fibers of bundles. Then we get π(φn(a))(x̃) = φn(a)(Φ(x̃)) for 
any a ∈ Bn and x̃ ∈ X̃. This proves the first part of the assertion.

Let a = a0 + J ⊕ . . .⊕ an−1 + J ⊕ an ∈ Bn and x̃ ∈ X̃. Note that π(φn(βn(a)))(x̃) is 
equal to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

aN+1(xN ) + J(xN ), x̃ ∈ XN , N + 1 ≤ n,

α(xN ,N+1−n)(an(xn−1)) + J(xN ), x̃ ∈ XN , N + 1 > n,

[0, . . . , 0︸ ︷︷ ︸, αxn
(an(xn−1)), α(xn+1,1)(a(xn−1)), . . .], x̃ ∈ X∞.
n
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Suppose first that x̃ = (x0, . . . , xn, . . .) /∈ Δ̃. Since x0 ∈ X \Δ we either have xN ∈ ΔN \
ΔN+1, when x̃ ∈ XN for N < n, or xn ∈ Δn \ Δn+1, otherwise. Thus π(βn(a))(x̃) = 0
because for any x /∈ Δk, using that ak ∈ αk(A)Aαk(A), we get ak(x) = 0. On the other 
hand, for x̃ ∈ Δ̃ one sees that

π(φn(βn(a)))(x̃) = βx̃(π(φn(a))(ϕ̃(x̃))).

Hence, in view of Proposition 3.2, β : B → B is induced by the morphism (ϕ̃, {βx̃}x̃∈Δ̃).
If (A, α) is extendible then (B, β) is extendible by [34, Proposition 2.4]. Moreover, 

invoking Proposition 3.13 and formula (32) one concludes that the corresponding transfer 
operator β∗ satisfies the formula described in the assertion with the mappings

β∗,ϕ̃(x̃)(b) := β−1
x̃

(
βx̃(1ϕ̃(x̃))aβx̃(1ϕ̃(x̃))

)
, b ∈ B(x̃), x̃ ∈ Δ̃,

where β−1
x̃ is the inverse to the isomorphism βx̃ : (kerβx̃)⊥ → βx̃(1ϕ̃(x̃))B(x̃)βx̃(1ϕ̃(x̃)). 

We leave it to the reader to check that these maps coincide with the maps we have 
previously described. This proves the second part of the assertion.

For the last part of the assertion it suffices to apply the second part of Proposition 3.15. 
Indeed, if all ideals J(x) are trivial and all homomorphisms αx are injective, then all 
homomorphisms αx,n are injective. Moreover, if J is complemented or σA is injective, 
then Bn, n ∈ N, is a continuous C0(Yn)-algebra by the last part of Lemma 1.7. �
Remark 4.10. The morphism (ϕ̃, {βx̃}x̃∈Δ) constructed above can be considered canon-
ical. In particular, ϕ̃ is always a partial homeomorphism and all the homomorphisms 
βx̃ are injective. Thus even when the initial system (A, α) is already reversible and 
J = (kerα)⊥, so that we have (A, α) = (B, β), the morphism (ϕ, {αx}x∈Δ) may differ 
from (ϕ̃, {βx̃}x̃∈Δ). For instance, for the reversible dynamical system (A, α) described 
in Example 3.14 we obtain (omitting zero fibers) that B = A = C3 is naturally a 
C0({1, 2, 3})-algebra and β = α is induced by the morphism (ϕ, {α1, α3}) where ϕ(1) = 2, 
ϕ(3) = 3, α1 = α3 = id.

4.3. General results

Now, we put together the results of the previous subsections. For the first statement 
recall Definition 2.37.

Theorem 4.11. Let (A, α) be a continuous C0(X)-dynamical system. Suppose that ϕ is 
topologically free outside the set Y = σA(Prim(A/J)) and either (i) or (ii) in Theo-
rem 4.9 holds. Every injective representation (π, U) of (A, α) such that J = {a ∈ A :
U∗Uπ(a) = π(a)} give rise to a faithful representation π � U of C∗(A, α; J).

Proof. By Theorem 4.9 the reversible J-extension (B, β) of (A, α) is induced by a mor-
phism based on the reversible Y -extension (X̃, ϕ̃) of (X, ϕ). Moreover, B is a continuous 
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C0(X̃)-algebra and ϕ̃ is topologically free by Lemma 2.38. Hence the assertion follows 
from Corollary 4.2 applied to (B, β). �

The first part of the following result also implies the uniqueness property described 
in Theorem 4.11. It does not require continuity of the C0(X)-algebra A, still it requires 
freeness of ϕ which is a much stronger condition than topological freeness.

Theorem 4.12. Suppose that ϕ is free. Then all ideals in C∗(A, α; J) are gauge-invariant 
and, in particular, they are in one-to-one correspondence with J-pairs for (A, α). More-
over,

(i) If A has the ideal property and is purely infinite, then the same holds C∗(A, α; J).
(ii) If there are finitely many J-pairs for (A, α) and A is purely infinite, then C∗(A, α; J)

has finitely many ideals and is purely infinite.

Proof. Let (B, β) be the natural J-extension of (A, α). We show that (B, β) satisfies the 
assumptions of Corollary 4.8, when treated us induced by the morphism (ϕ̃, {βx̃}x̃∈Δ̃)
described in Theorem 4.9. Plainly, ϕ̃ is free, cf. Lemma 2.38. Hence the first part of the 
assertion follows by Corollary 4.3, applied to (B, β).

Suppose that A is purely infinite. Since pure infiniteness is preserved under taking 
direct sums, quotients, hereditary subalgebras and direct limits, see [27, Propositions 4.3, 
4.17 and 4.18], we conclude that B is purely infinite.

(i). It is easy to see that the ideal property is preserved under taking direct sums 
and quotients. It is also preserved when passing to direct limits [45, Proposition 2.2]
and in the presence of pure infiniteness it also passes to hereditary subalgebras, see [47, 
Proposition 2.10]. Thus B is purely infinite and has the ideal property. Accordingly, 
Corollary 4.8 (i) applies.

(ii). By Lemma 2.36 (ii) there are finitely many invariant ideals in (B, β). Hence 
Corollary 4.8 (ii) applies to (B, β). �
5. Crossed products of C∗-algebras with Hausdorff primitive ideal space

In this section, we fix a C∗-algebra with a Hausdorff primitive ideal space X =
Prim(A) and consider a C0(X)-dynamical system (A, α) described in Example 3.8. Let 
(ϕ, {αx}x∈Δ) be the morphism determining α. By Lemma 3.4, without loss of gener-
ality we may assume that every αx, x ∈ Δ, is nonzero (and thus injective), so that 
(ϕ, {αx}x∈Δ) is uniquely determined by α. Thus, we make the following standing as-
sumptions:

• X = Prim(A) is a Hausdorff space, σA = id, and every αx, x ∈ Δ, is non-zero.

In particular, we have a bijective correspondence
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X ⊇ V �−→ IV := {a ∈ A : a(x) = 0 for all x ∈ V } � A (38)

between closed subsets of X and ideals in A. We use it to describe ideal structure of the 
crossed product C∗(A, α; J) in terms of the dynamical system (X, ϕ). We also give some 
criteria for C∗(A, α; J) to be purely infinite or a Kirchberg algebra. We finish this section 
by describing the K-theory of all ideals and quotients in C∗(A, α; J) when A = C0(X, D)
with D a simple C∗-algebra.

5.1. Ideal structure of C∗(A, α; J)

In this subsection, we generalize results proved in the commutative case (i.e., when 
D = C) in [34, Subsection 4.6]. Let us fix an ideal J in (kerα)⊥. Since (kerα)⊥ = IX\ϕ(Δ)
we have

J = IY where Y is a closed subset of X such that Y ∪ ϕ(Δ) = X.

We have the following dual version of Definitions 2.15 and 2.17.

Definition 5.1. (See Definition 4.9 in [34].) A closed set V ⊆ X is positively invariant
under ϕ if ϕ(V ∩ Δ) ⊆ V , and V is Y -negatively invariant if V ⊆ Y ∪ ϕ(V ∩ Δ). If V
is both positively and Y -negatively invariant, we call it Y -invariant. We say that V is 
invariant if it is X \ ϕ(Δ)-invariant. A pair (V, V ′) of closed subsets of X satisfying

V is positively ϕ-invariant, V ′ ⊆ Y and V ′ ∪ ϕ(V ∩ Δ) = V

is called a Y -pair for (X, ϕ).

Lemma 5.2. An ideal IV in A is positively (resp. J-)invariant if and only if V is positively 
(resp. Y -)invariant. A pair (IV , IV ′) of ideals in A is a J-pair for (A, α) if and only if 
(V, V ′) is a Y -pair for (X, ϕ).

Proof. We recall that ϕ : Δ → X is necessarily a closed map. In particular, if V is 
closed then ϕ(V ∩ Δ) is also closed. Since the endomorphisms αx, x ∈ Δ, are injective, 
one readily sees that α−1(IV ) = Iϕ(V ∩Δ). Using this observation we get the following 
equivalences

α(IV ) ⊆ IV ⇐⇒ IV ⊆ α−1(IV ) ⇐⇒ ϕ(V ∩ Δ) ⊆ V,

J ∩ α−1(IV ) ⊆ IV ⇐⇒ IY ∪ϕ(V ∩Δ) ⊆ IV ⇐⇒ V ⊆ Y ∪ ϕ(V ∩ Δ).

This proves the initial part of the assertion. Similarly as above, we get

IV ′ ∩ α−1(IV ) = IV ⇐⇒ V ′ ∪ ϕ(V ∩ Δ) = V.

Since IV ′ ⊆ J if and only if V ′ ⊆ Y , this completes the proof. �
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We note that the class C∗-dynamical systems satisfying our standing assumptions is 
closed under taking quotients and restrictions.

Lemma 5.3. If V is a positively invariant closed set, then the quotient endomor-
phism αIV is induced by the morphism (ϕ|Δ∩V , {αx}x∈Δ∩V ) where we treat A/IV as 
a C0(V )-algebra, and the restricted endomorphism α|IV is induced by the morphism 
(ϕ|Δ\ϕ−1(V ), {αx}x∈Δ\ϕ−1(V )) where we treat IV as a C0(X \ V )-algebra.

Proof. It readily follows from Proposition 3.11. �
Now we describe the dual topological version of the system introduced in Defini-

tion 2.23, it’s action is schematically presented in [30, Figure 1].

Definition 5.4. We define a partial dynamical system (XY , ϕY ) by putting

XY := ϕ(Δ) � Y, ΔY := (ϕ(Δ) ∩ Δ) � (Y ∩ Δ) ⊆ XY

and letting ϕY : ΔY → XY to map a point x from ΔY to the point ϕ(x) lying in the 
first disjoint summand ϕ(Δ) of XY .

Lemma 5.5. Let (AJ , αJ) be the C∗-dynamical system described in Definition 2.23. We 
may assume the identification Prim(AJ) = XY , and treating AJ as a C0(XY )-algebra 
the endomorphism αJ is induced by the morphism (ϕY , {αx}x∈ΔY ). Moreover, if (V, V ′)
is Y -pair for (X, ϕ), then

(V, V ′)Y := (ϕ(Δ) ∩ V ) � V ′ ⊆ XY (39)

is a closed invariant set in (XY , ϕY ) that corresponds to a positively invariant ideal in 
(AJ , αJ ) given by

I(V,V ′)Y = {a ∈ AJ : a(x) = 0 for x ∈ (V, V ′)Y }. (40)

Proof. In particular, assuming the identification Prim(AJ) = XY , cf. Lemma 5.5, for 
the corresponding Y -pair (V, V ′) we have (IV , IV ′)J = qker α(IV ) ⊕ qJ(IV ′). Thus the 
assertion follows by Proposition 2.25. �

The following proposition generalizes [34, Proposition 4.9] (proved in the commu-
tative case) and in addition it describes up to Morita–Rieffel equivalence all ideals in 
C∗(A, α; J).

Proposition 5.6. If ϕ is free then all ideals in C∗(A, α; J) are gauge-invariant. In general, 
we have a bijective correspondence between gauge-invariant ideals I in C∗(A, α; J) and 
Y -pairs (V, V ′) for (X, ϕ) established by relations

IV = A ∩ I, IV ′ = {a ∈ A : (1 − u∗u)a ∈ I}.
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Moreover, for the corresponding objects we have an isomorphism

C∗(A,α; J)/I ∼= C∗(A/IV , αIV ; qI′
V
(I ′V )), (41)

and if V ′ = V ∩ Y (equivalently if I is generated by IV ), then I is Morita–Rieffel 
equivalent to C∗(IV , α|IV ; IV ∪Y ). In general, I is Morita–Rieffel equivalent to

C∗(I(V,V ′)Y , α
J |I(V,V ′)Y ,D))

where I(V,V ′)Y is given by (40) and αJ : AJ → AJ is induced by the morphism 
(ϕY , {αx}x∈ΔY ).

Proof. By Theorem 4.12 every ideal in C∗(A, α; J) is gauge-invariant. Hence the assertion 
follows from Theorem 2.19 and Lemmas 5.2 and 5.5. �
Corollary 5.7. Suppose that ϕ is free and that ϕ(Δ) is open in X (equivalently kerα
is a complemented ideal in A). We have a bijective correspondence between ideals I in 
C∗(A, α) and invariant sets V for (X, ϕ) established by the relation IV = A ∩I. Moreover, 
for every ideal I and the corresponding invariant set V we have an isomorphism

C∗(A,α)/I ∼= C∗(A/IV , αIV )

and I is Morita–Rieffel equivalent to C∗(IV , α|IV ).

Proof. In the proof of Proposition 5.6, instead of Theorem 2.19 we may apply Corol-
lary 2.21. �
5.2. Pure infiniteness and simplicity

For separable C∗-algebras we have the following result concerning permanence of pure 
infiniteness and the ideal property.

Proposition 5.8. Suppose that A is separable and purely infinite and assume that ϕ is 
free. If either X is totally disconnected or there are finitely many Y -pairs for (X, ϕ), 
then C∗(A, α; J) is purely infinite and has the ideal property.

Proof. If X is totally disconnected, then A has the ideal property by [27, Proposi-
tion 2.11]. Thus C∗(A, α; J) is purely infinite and has the ideal property by Theo-
rem 4.12 (i). If there are finitely many Y -pairs for (X, ϕ), then C∗(A, α; J) is purely 
infinite and has finitely many ideals by Theorem 4.12 (ii). Hence [27, Proposition 2.11]
implies that C∗(A, α; J) has the ideal property. �

The following characterization of simplicity of C∗(A, α), cf. Remark 2.20, is a far 
reaching generalization of [34, Theorem 4.4], proved in the case A is commutative.
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Proposition 5.9. The crossed product C∗(A, α) is simple if and only one of the two possible 
cases hold:

(i) X is discrete and (X, ϕ) is (up to conjugacy) either a truncated shift on {1, . . . , n}, 
one sided shift on N, or a two-sided shift on Z,

(ii) X is not discrete and ϕ : X → X is a surjection such that there are no non-trivial 
closed subsets V of X satisfying ϕ(V ) = V .

Proof. If (i) or (ii) holds then there are no non-trivial closed invariant set V in (X, ϕ)
and ϕ is free. Hence C∗(A, α) is simple by Corollary 5.7.

Conversely, suppose that C∗(A, α) is simple. By Proposition 5.6 there are no non-
trivial closed invariant sets in (X, ϕ). The argument in the proof of [34, Theorem 4.4]
shows that either (i) or (ii) holds. In particular, if ϕ : X → X is a surjection then a 
closed set V is invariant in (X, ϕ) if and only if ϕ(V ) = V . �
Corollary 5.10. Suppose that A is purely infinite, nuclear and separable. The crossed 
product C∗(A, α) is a Kirchberg C∗-algebra if and only if one of the conditions (i) or (ii) 
in Proposition 5.9 is satisfied.

If C∗(A, α) is a Kirchberg C∗-algebra, and A satisfies the UCT then C∗(A, α) satisfies 
the UCT.

Proof. Plainly, C∗(A, α; J) is separable, and it is nuclear by Proposition 2.10 (ii). 
Proposition 5.8 implies that C∗(A, α; J) is purely infinite if one of the conditions in 
Proposition 5.9 holds. Hence the assertion follows from Proposition 5.9.

Now suppose that C∗(A, α) is a Kirchberg C∗-algebra and A satisfies the UCT. If ϕ
is surjective then (kerα)⊥ = A and if ϕ is not surjective then X \ {ϕ(Δ)} = {x0}, cf. 
Proposition 5.9 (i), and A = (kerα)⊥ ⊕A(x0). In both cases (kerα)⊥ satisfies the UCT 
and thus C∗(A, α) satisfies the UCT by Proposition 2.10 (iii). �
5.3. K-theory in the case of a trivial bundle

In this subsection, we assume that the associated C∗-bundle A is trivial. In other 
words, we assume that A = C0(X, D) where D is a simple C∗-algebra. By Proposition 3.9, 
α is given by the formula (27) where ϕ : Δ → X is proper continuous map defined on an 
open subset Δ ⊆ X, and Δ � x −→ αx ∈ End(D) \ {0} is a continuous map. Actually, 
we make the following standing assumptions:

• A = C0(X, D) where D is a simple C∗-algebra,
• X is totally disconnected, G := K0(D) is torsion free and K1(D) = {0}.

We treat G as a discrete group and denote by C0(X, G) the set of continuous functions 
f : X → G such that f−1(G \ {0}) is compact. In other words, any f ∈ C0(X, G) is of 
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the form f =
∑n

i=1 χXi
τi where Xi’s are compact and open subsets of X and τi ∈ G. 

We consider C0(X, G) an abelian group with the group operation defined pointwise. We 
also put C0(∅, G) := {0}.

Lemma 5.11. For each τ ∈ G, the function Δ � x �→ K0(αx)(τ) ∈ G is continuous.

Proof. For any projection p in Mn(D), the function x �→ αx(p) ∈ Mn(D) is continuous. 
Hence the function x �→ [αx(p)]0 ∈ G is locally constant. This implies the assertion. �
Definition 5.12. Let δα be a group homomorphism δα : C0(X, G) → C0(X, G) given by

δα(f)(x) =
{
f(x) −K0(αx)(f(ϕ(x))), x ∈ Δ
0 x /∈ Δ.

Note that δα is well defined by Lemma 5.11. We define δYα : C0(X \ Y, G) → C0(X, G)
to be the restriction of δα. We put

K0(X,ϕ, {αx}x∈Δ;Y ) := coker(δYα ), K1(X,ϕ, {αx}x∈Δ;Y ) := ker(δYα ).

If Y = X \ ϕ(Δ) then we write Ki(X, ϕ, {αx}x∈Δ) := Ki(X, ϕ, {αx}x∈Δ; Y ), i = 0, 1.

Proposition 5.13. We have the following isomorphism

K∗(C∗(C0(X,D), α; J)) ∼= K∗(X,ϕ, {αx}x∈Δ;Y ). (42)

Proof. Since G = K0(D) is torsion free, K1(C0(X)) = 0 and K1(D) = 0, by Künneth 
formulas, see for instance [53, Proposition 2.11], we get

K0(C0(X,D)) ∼= K0(C0(X)) ⊗G, K0(C0(X,D)) = {0},

where the isomorphism Ψ : K0(C0(X, D)) → K0(C0(X)) ⊗K0(D) is determined by the 
natural identifications

Mr(C0(X) ⊗D) = C0(X) ⊗Mr(D), r ∈ N.

It is well known, that the maps Proj(Mr(C0(X))) � p �→ Tr ◦ p ∈ C0(X, Z) determine 
the isomorphism K0(C0(X)) ∼= C0(X, Z), cf. [51, Exercise 3.4]. The formula

C0(X,Z) ⊗G � f ⊗ τ �−→ fτ ∈ C0(X,G), where fτ (x) := f(x)τ, x ∈ X,

determines an isomorphism Φ : C0(X, Z) ⊗G → C0(X, G), and to see it is enough to note 
that any element in C0(X, Z) ⊗G can be presented as a sum of the form 

∑n
i=1 χXi

⊗ τi
where Xi’s are compact-open and pairwise disjoint subsets of X and τi ∈ G.
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Composing the aforementioned isomorphisms we conclude that we have the isomor-
phism

K0(C0(X,D)) ∼= C0(X,G)

whose inverse sends a function f =
∑n

i=1 χXi
[pi]0 ∈ C0(X, G), with Xi compact-open 

and disjoint, and pi ∈ Proj(⊗Mr(D)), to the element [
∑n

i=1 χXi
pi]0 ∈ K0(C0(X, D)). 

We recall that A = C0(X) ⊗D and J = C0(X \ Y ) ⊗D. The above analysis shows that 
the following diagram

K0(J)
K0(ι)−K0(α|J )

K0(A)

K0(C0(X \ Y,D))
δα

K0(C0(X,D)),

where the vertical arrows are isomorphisms, commutes. Since K1(A) = K1(J) = 0, by 
Proposition 2.26, we get

K0(C∗(A,α; J)) ∼= coker (K0(ι) −K0(α|J )) ∼= K0(X,ϕ, {αx}x∈Δ;Y ),

K1(C∗(A,α; J)) ∼= ker(K0(ι) −K0(α|J )) ∼= K1(X,ϕ, {αx}x∈Δ;Y ). �
Remark 5.14. We note that neither Definition 5.12 nor the proof of Theorem 5.13 makes 
use of the assumption that D is simple.

We are ready to give formulas for K-theory of all gauge-invariant ideals and corre-
sponding quotients in C∗(C0(X, D), α; J).

Theorem 5.15. If ϕ is free then all ideals in C∗(C0(X, D), α; J) are gauge-invariant. In 
general, if I is a gauge-invariant ideal in C∗(C0(X, D), α; J) and (V, V ′) is the corre-
sponding Y -pair for (X, ϕ), as described in Proposition 5.6, then

K∗(C∗(C0(X,D), α; J)/I) ∼= K∗(V, ϕ|Δ∩V , {αx}x∈Δ∩V ;V ′) (43)

and

K∗(I) ∼= K∗(U,ϕY |Δ\(ϕY )−1(U)}, {αx}x∈ΔY \(ϕY )−1(U)), (44)

where (XY , ϕY ) is the system described in Definition 5.4 and U := XY \ (V, V ′)Y where 
(V, V ′)Y is given by (39). If V ′ = V ∩ Y , then

K∗(I) ∼= K∗(X \ V, ϕ|Δ\ϕ−1(V ), {αx}x∈Δ\ϕ−1(V );X \ (V ∪ Y )). (45)
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Proof. We get (43) by combining isomorphisms (41) and (42). Since I is Morita–Rieffel 
equivalent to C∗(C0(U, D), αJ |C0(U,D)) see Proposition 5.6, we get (44) by Theorem 5.13
and [24, Proposition B.5]. Similarly, in view of the last part of Proposition 5.6, we 
obtain (45). �
Corollary 5.16. Suppose that ϕ is free and ϕ(Δ) is open in X. For any ideal I in 
C∗(C0(X, D), α) we have

K∗(C∗(C0(X,D), α)/I) ∼= K∗(V, ϕ|Δ∩V , {αx}x∈Δ∩V )

and

K∗(I) ∼= K∗(X \ V, ϕ|Δ\ϕ−1(V ), {αx}x∈Δ\ϕ−1(V ))

where IV = C0(X, D) ∩ I.

Proof. In the proof of Theorem 5.15 apply Corollary 5.7 instead of Proposition 5.6. �
We illustrate the above results by indicating how our construction can be used to 

produce non-simple classifiable C∗-algebras from simple ones, only by adding an appro-
priate ‘dynamical ingredient’. Starting from an arbitrary Kirchberg algebra we construct 
a classifiable C∗-algebra with a non-Hausdorff primitive ideal space with two points. Such 
algebras were the first to be considered in classification of non-simple infinite C∗-algebras 
[50,7].

Example 5.17. Let D be a Kirchberg algebra that satisfies the UCT and let X := C∪{x0}
be a disjoint sum of the Cantor set C and a clopen singleton {x0}. Then A = C(X, D)
is a nuclear, separable C∗-algebra satisfying the UCT. Suppose that ϕ : X → X is 
such that ϕ(X) = C and ϕ : C → C is a minimal homeomorphism. Then C is the only 
non-trivial closed set invariant in (X, ϕ). Hence C∗(A, α) has the only one non-trivial 
ideal I (in particular, Prim(C∗(A, α)) has two elements and is non-Hausdorff). Note 
that IC ∼= D and αIC = 0. Hence C∗(IC , αIC ) ∼= D. By Theorem 2.19, we conclude that 
I is Morita–Rieffel equivalent to D, and thus K∗(I) = K∗(D). The latter fact can be 
deduced using our formulas for K-theory: since X \ C = {x0} and ϕ|X\ϕ−1(C) = ϕ|∅ is 
the empty map, the domain of the corresponding group homomorphism δ{x0}

α|IC
is the zero 

group C0(∅, G) = {0} and the codomain is C0({x0}, G) ∼= G. Moreover, both C∗(A, α)
and C∗(A, α)/I ∼= C∗(IC , αIC ) satisfy the UCT, see Proposition 2.10. Note that I is not 
a complemented ideal in A and hence has no unit. Concluding, cf. Proposition 5.8, we 
get

C∗(A, α) is a strongly purely infinite, nuclear and separable C∗-algebra with only 
one non-trivial ideal I, which is a unique non-unital Kirchberg algebra, satisfying 



2326 B.K. Kwaśniewski / Journal of Functional Analysis 270 (2016) 2268–2335
the UCT, with the same K-theory as D. The non-trivial quotient C∗(A, α)/I is sta-
bly isomorphic to the unique stable Kirchberg algebra satisfying the UCT with the 
K-theory equal to K∗(C, ϕ|C , {αx}x∈C).

Let us comment on the groups K∗(C∗(A, α)/I) ∼= K∗(C, ϕ|C , {αx}x∈C). In the case G = Z
(that is, for instance, when D = O∞) and K0(αx) = id for every x ∈ C, these groups 
coincide with K-groups of crossed products studied by Putnam in [48]. In particular, by 
[17, Theorem 6.2], K0(C∗(A, α)/I) might be any group which can be equipped with a 
structure of a simple dimension group. This indicates that allowing the endomorphisms 
K0(αx) to be non-trivial or G not to be equal to Z, we have a lot of flexibility for 
constructing systems with different K0(C∗(A, α)/I).

Turning to K1(C∗(A, α)/I) ∼= K1(C, ϕ|C , {αx}x∈C), we note that f ∈ K1(C, ϕ|C ,
{αx}x∈C) if and only if

f(x) = K0(αx)(f(ϕ(x))), for every x ∈ C. (46)

Thus by minimality of ϕ : C → C, we see that f ∈ K1(C, ϕ|C , {αx}x∈C) is uniquely 
determined by its value in a fixed point (0 ∈ C, for instance). Therefore we have

K1(C∗(A,α)/I) ∼= {g ∈ G : there is f ∈ C0(C, G) such that f(0) = g and (46) holds}.

If K0(αx) = id for every x ∈ C, then K1(C∗(A, α)/I) ∼= G. If K0(αx) = 0 for at least 
one point x ∈ C, then K1(C∗(A, α)/I) = {0} (by Lemma 5.11 and minimality of the 
system). For the particular case when G = Z, we have K0(αx)(τ) = mx · τ for all 
τ ∈ Z, where mx ∈ Z is fixed for every x ∈ C. If at least one of the numbers mx is 
different than ±1 then K1(C∗(A, α)/I) = {0}. Indeed, then there is a non-empty open 
set U ⊆ C and m ∈ Z \ {±1} such that K0(αx)(τ) = m · τ for all x in U . We may 
assume that m �= 0. By minimality, the orbit of 0 visits U infinitely many times. Thus 
for any f ∈ K1(C, ϕ|C , {αx}x∈C) the integer g := f(0) is divisible by any power of m. 
This implies that g = 0.

Finally, we include a simple example showing explicitly the dependence of
K0(C∗(A, α)) on the choice of endomorphisms αx, x ∈ X.

Example 5.18 (K-theory for finite minimal systems). Let (X, ϕ) be given by the relations: 
X = {1, 2, . . . , n}, n > 1, Δ = X \ {1}, ϕ(i) = i− 1, for i = 2, . . . , n. Let Y =
X \ϕ(Δ) = {n}. Assume also that G = Z. Then there are integers m2, . . . , mn such that 
K0(αi)(k) = mik, for all i = 2, . . . , n and k ∈ Z. In particular, identifying C0(X, Z) and 
C0(X \Y, Z) with Zn and Zn−1 respectively, we see that δYα : Zn−1 → Zn is given by the 
formula

δYα (k1, . . . , kn−1) = (0, k2 −m2k1, . . . , kn−1 −mn−1kn−2,−mnkn−1).
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A moment of thought yields that

K1(C∗(A,α)) ∼= ker(δYα ) ∼=
{
Z if mi = 0 for some i,

{0} otherwise.

The reader may check that coker(δYα ) ∼= Z2 if mi = 0 for some i, and if the numbers mi

are non-zero then the map (g1, . . . , gn) �→ (g1, 
∑n

i=2(
∏

j=i+1 m
n
j )gi) factors through to 

the isomorphism coker(δYα ) ∼= Z ⊕ Z/(m2m3 . . .mn)Z. Thus we get

K0(C∗(A,α)) ∼= Z⊕ Z/(m2m3 . . .mn)Z.
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Appendix A. Relative Cuntz–Pimsner algebras

A C∗-correspondence over a C∗-algebra A is a right Hilbert A-module E with a left 
action φE : A → L(E) of A on E via adjointable operators. We let J(E) := φ−1

E (K(E))
to be the ideal in A consisting of elements that act from the left on E as general-
ized compact operators. For any ideal J in J(E) the relative Cuntz–Pimsner algebra 
O(J, E) is constructed as a quotient of the C∗-algebra generated by Fock representation 
of E, see [42, Definition 2.18] or [37, Definition 4.9]. The C∗-algebra O(J, E) is universal 
with respect to appropriately defined representations of E, see [15, Remark 1.4] or [37, 
Proposition 4.10]. Namely, a representation (π, πE) of a C∗-correspondence E consists of 
a representation π : A → B(H) in a Hilbert space H and a linear map πE : E → B(H)
such that

πE(ax · b) = π(a)πE(x)π(b), πE(x)∗πE(y) = π(〈x, y〉A), a, b ∈ A, x ∈ E.

Then πE is automatically bounded. If π is faithful, then πE is isometric and we say that 
(π, πE) is injective. The C∗-subalgebra K(E) ⊆ L(E) of generalized compact operators
is the closed linear span of the operators Θx,y where Θx,y(z) = x〈y, z〉A for x, y, z ∈ E. 
Any representation (π, πE) of E induces a homomorphism (π, πE)(1) : K(E) → B(H)
which satisfies

(π, πE)(1)(Θx,y) = πE(x)πE(y)∗, (π, πE)(1)(T )πE(x) = πE(Tx)
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for x, y ∈ E and T ∈ K(E). The set

I(π,πE) := {a ∈ J(E) : (π, πE)(1)(φE(a)) = π(a)}

is an ideal in J(E). We call I(π,πE) the ideal of covariance for (π, πE). For any ideal J
contained in J(E) a representation (π, πE) of E is said to be J-covariant if J ⊆ I(π,πE). 
Note that if (π, πE) is injective, then we have

I(π,πE) = {a ∈ A : π(a) ∈ (π, πE)(1)(K(E))} ⊆ (kerφE)⊥

cf. [24, p. 143].

Proposition A.1. Let E be a C∗-correspondence over A and let J be an ideal in J(E). 
Then there is a J-covariant representation (ι, ιE) of E such that

i) O(J, E) is generated as a C∗-algebra by ι(A) ∪ ιE(E),
ii) for any J-covariant representation (π, πE) of E there is a homomorphism π �J πE

of O(J, E) such that (π �J πE) ◦ ι = π and (π �J πE) ◦ ιE = πE.

Moreover, the representation (ι, ιE) is injective if and only if J ⊆ (kerφE)⊥.

Proof. The first part of the assertion is [15, Proposition 1.3]. The second part follows 
from [42, Proposition 2.21] and [24, Proposition 3.3]. �

It follows from the above proposition that O(J, E) is equipped with a gauge circle 
action which acts as identity on the image of A in O(J, E). We say that a representation 
(π, πE) of E admits a gauge action if there exists a group homomorphism β : T →
Aut(C∗(π(A) ∪ πE)) such that βz(π(a)) = π(a) and βz(πE(x)) = zπE(x) for all a ∈ A, 
x ∈ E and z ∈ T.

Proposition A.2. (See Corollary 11.8 in [25].) Let us assume that J is an ideal J(E) ∩
(kerφE)⊥. For any injective J-covariant representation (π, πE) the homomorphism π�J

πE of O(J, E) is injective if and only if I(π,πE) = J and (π, πE) admits a gauge action.

Katsura, in [25], described ideals in O(J, E) that are invariant under the gauge action 
in the following way. For any ideal I in A we define two another ideals

E(I) := span{〈x, a · y〉A ∈ A : a ∈ I, x, y ∈ E},
E−1(I) := {a ∈ A : 〈x, a · y〉A ∈ I for all x, y ∈ E}.

If E(I) ⊆ I, then the ideal I is said to be positively invariant, [25, Definition 4.8]. For 
any positively invariant ideal I we have a naturally defined quotient C∗-correspondence 
EI = E/EI over A/I. Denoting by qI : A → A/I the quotient map one puts

JE(I) := {a ∈ A : φEI
(qI(a)) ∈ K(EI), aE−1(I) ⊆ I}.
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Definition A.3. (See Definition 5.6 in [25].) Let E be a C∗-correspondence over a 
C∗-algebra A. A T -pair of E is a pair (I, I ′) of ideals I, I ′ of A such that I is posi-
tively invariant and I ⊆ I ′ ⊆ JE(I).

Exploiting the results of [25] we get the following theorem.

Theorem A.4. Let E be a C∗-correspondence over a C∗-algebra A and J be an ideal of 
A contained in (kerφE)⊥ ∩ J(E). Then relations

I = A ∩ I, I ′ = A ∩ (I + EE∗) (47)

establish a bijective correspondence between T -pairs (I, I ′) for E with J ⊆ I ′ and gauge-
invariant ideals I in O(J, E). Moreover, for objects satisfying (47) we have

O(J,E)/I ∼= O(qI(I ′), EI),

and if I is generated (as an ideal) by I then I is Morita–Rieffel equivalent to O(J∩I, IE).

Proof. The first part of the assertion follows from [25, Proposition 11.9]. Now, let (I, I ′)
and I be the corresponding objects satisfying (47) and let q : O(J, E) → O(J, E)/I be 
the quotient map. Put

π(a + I) := q(a), πEI
(x + IE) := q(x), a ∈ A, x ∈ E.

Since I = A ∩ I, this yields a well defined representation (π, πEI
) of (I, EI). Since 

I ′ ⊆ (I + EE∗) we have qI(I ′) ⊆ I(π,πEI
). Thus (π, πEI

) gives rise to a surjection 
O(qI(I ′), EI) → O(J, E)/I. To see it is an isomorphism note that (π, πEI

) admits a 
gauge action, because I is gauge-invariant. Moreover, I ′ = A ∩ (I + EE∗) implies that 
a ∈ I ′ if and only if a + I ∈ I + EE∗, for any a ∈ A. Thus we get

{qI(a) ∈ A/I : π(qI(a)) ∈ (π, πE)(1)(K(EI)} = {a + I ∈ A/I : q(a) ∈ q(EE∗)}

= {a + I ∈ A/I : a ∈ I ′} = qI(I ′).

Hence by [25, Corollary 11.8] we get O(qI(I ′), EI) ∼= O(J, E)/I.
Suppose now that I is generated (as an ideal) by I. The embeddings of I and IE

into O(J, E) give rise to a faithful representation (π, πIE) of (I, IE) in O(J, E). Clearly, 
(π, πIE) admits a gauge action and we have

I(π,πIE) = {a ∈ I : a ∈ (IE)(IE)∗} = {a ∈ I : a ∈ EE∗}

= {a ∈ A : a ∈ EE∗} ∩ I = J ∩ I.

Hence by [25, Corollary 11.8] we see that the C∗-subalgebra B of O(J, E) generated 
by I and IE is isomorphic to O(J ∩ I, IE). It is not difficult to see, cf. the proof of
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[25, Proposition 9.3], that B = IO(J, E)I is the hereditary subalgebra of O(J, E) gener-
ated by I. Hence B ∼= O(J ∩ I, IE) is Morita–Rieffel equivalent to the ideal I generated 
by I. �

We recall Katsura’s version of the Pimsner–Voiculescu exact sequence for a C∗-cor-
respondence E. We consider the linking algebra DE = K(E⊕A) in the following matrix 
representation

DE =
(K(E) E

Ẽ A

)
,

where Ẽ = K(E, A) is the dual Hilbert bimodule of E ∼= K(A, E). Let ι : J → A, ι11 :

K(E) → DE and ι22 : A → DE be inclusion maps; ι11(a) =
(
a 0
0 0

)
, ι22(a) =

(
0 0
0 a

)
. 

By [24, Proposition B.3], Ki(ι22) : Ki(A) → Ki(DE), i = 0, 1, are isomorphisms.

Theorem A.5. (See Theorem 8.6 in [24].) Within the above notation, the following se-
quence is exact:

K0(J)
K0(ι)−K0(ι22)−1◦K0(ι11◦φE |J )

K0(A)
K0(iA)

K0(O(J,E))

K1(O(J,E)) K1(A)
K1(iA)

K1(J)
K1(ι)−K1(ι22)−1◦K1(ι11◦φE |J )

(48)

By a Hilbert A–B bimodule we mean E which is both a left Hilbert A-module and 
a right Hilbert B-module with respective inner products 〈·,·〉B and A〈·,·〉 satisfying the 
condition: x · 〈y, z〉B = A〈x, y〉 · z, for all x, y, z ∈ E. If additionally, B = 〈B, B〉B and 
A = A〈A, A〉, we say that A and B are Morita–Rieffel equivalent (or strongly Morita 
equivalent). A Hilbert A–A bimodule is also called a Hilbert bimodule over A. If E is a 
Hilbert bimodule over A then it is also a C∗-correspondence and Katsura’s algebra OE

associated to E coincides with the C∗-algebra associated to E in [1], see [23, Proposi-
tion 3.7].

Suppose that E is a Hilbert bimodule over A. Then E induces a partial homeo-
morphism Ê of Â dual to E, see [32, Definition 1.1]. More specifically, 〈E, E〉A and 

A〈E, E〉 are ideals in A and Ê : ̂〈E,E〉A → ̂
A〈E,E〉 is a homeomorphism, which factors 

through the induced representation functor E- Ind. The latter is defined as follows: if 
π : A → B(H) is a representation, then E- Ind(π) : A → B(E ⊗π H) is a representation 
where the Hilbert space E ⊗π H is generated by simple tensors x ⊗π h, x ∈ E, h ∈ H, 
satisfying 〈x1 ⊗π h1, x2 ⊗π h2〉 = 〈h1, π(〈x1, x2〉A)h2〉, and

E- Ind(π)(a)(x⊗π h) = (ax) ⊗π h, a ∈ A.
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By [32, Theorems 2.2 and 2.5] we have the following result.

Theorem A.6. Let Ê be the partial homeomorphism of Â associated to a Hilbert bi-
module E. If Ê is topologically free, then every non-zero ideal in OE has a non-zero 
intersection of A. If Ê is free, then every ideal in OE is gauge-invariant.

A.1. C∗-correspondences associated to C∗-dynamical systems

Let us now fix C∗-dynamical system (A, α). We associate to (A, α) the C∗-correspon-
dence given by

Eα := α(A)A, a · x := α(a)x, x · a := xa, 〈x, y〉A := x∗y,

where a ∈ A, x, y ∈ E. Clearly, we have kerφEα
= kerα.

Lemma A.7. We have J(Eα) = A and the map K(Eα) � Θx,y �→ xy∗ ∈ α(A)Aα(A)
yields an isomorphism of C∗-algebras.

Proof. The proof is straightforward and thus left to the reader. �
Proposition A.8. For any ideal J in (kerα)⊥ there is a natural isomorphism C∗(A, α; J) ∼=
O(J, Eα). More precisely, the relation

πEα
(x) = U∗π(x), x ∈ α(A)A,

yields a one-to-one correspondence between representations (π, U) of (A, α) and repre-
sentations (π, πEα

) of Eα where π : A → B(H) is a non-degenerate representation. For 
the corresponding representations we have I(π,πEα) = I(π,U).

Proof. By [36, Proposition 3.26] crossed product by α treated as a completely positive 
map coincides with the crossed product considered in the present paper (note that an 
operator S in [36] plays the role of U∗). By [36, Lemma 3.25] the GNS C∗-correspondence 
associated to α (treated as a completely positive map) is naturally isomorphic to Eα. 
Thus the assertion follows from [36, Propositions 3.10]. �

Some of the following facts were stated without proof in [34, Appendix A].

Proposition A.9. An ideal I in A is positively invariant for Eα if and only if I is pos-
itively invariant in (A, α). Moreover, if I is positively invariant, then we have natural 
identifications:

IEα = Eα|I , (Eα)I = EαI
.
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Proof. Clearly, α(I) ⊆ I if and only if Eα(I) = Aα(I)A ⊆ I, which proves the first part of 
the assertion. If I is positively invariant then α(I)A = α(I)IA = α(I)I, which allows us 
the identification IEα = Eα|I . The natural algebraic isomorphism EαI

= αI(A/I)A/I =
qI(α(A)A) ∼= α(A)A/α(A)I = (Eα)I intertwines the operations of C∗-correspondences. 
Hence it is an isomorphism that allows us the identification (Eα)I = EαI

. �
Proposition A.10. Suppose that I and I ′ are ideals in A.

(I, I ′) is a T -pair for Eα with J ⊆ I ′ ⇐⇒ (I, I ′) is a J-pair for (A,α).

Proof. We have E−1
α (I) = {a ∈ A : x∗α(a)y ∈ I for all x, y ∈ α(A)A} = α−1(I). By 

Proposition A.9 we may identify (Eα)I with EαI
. Hence J((Eα)I) = A/I and we get 

JEα
(I) = {a ∈ A : aα−1(I) ⊆ I}. Thus if we assume that I is positively invariant, cf. 

Proposition A.9, then we get

I ⊆ I ′ ⊆ JEα
(I) ⇐⇒ I ′ ∩ α−1(I) = I.

This implies the assertion. �
We recall, see [23, Subsection 3.3] or [31, Proposition 1.11], that a C∗-correspondence 

E over A is a Hilbert bimodule over A if and only if φE : (kerφE)⊥ ∩ J(E) → K(E) is 
an isomorphism, and then A〈x, y〉 = φ−1

E (Θx,y).

Proposition A.11. The C∗-correspondence Eα is a Hilbert bimodule over A if and only 
if (A, α) is reversible and then

A〈x, y〉 = α−1(xy∗)

where α−1 is the inverse to the isomorphism α : (kerα)⊥ → α(A).

Proof. Clearly, we have (kerφEα
)⊥ = (kerα)⊥. Thus Lemma A.7 implies that φEα

:
(kerφEα

)⊥ ∩ J(Eα) = (kerα)⊥ → K(E) ∼= α(A)Aα(A) is an isomorphism if and only if 
the system (A, α) is reversible. �

Let us now consider a reversible C∗-dynamical system (A, α) and the corresponding 
Hilbert bimodule Eα. Clearly, A〈Eα, Eα〉 = (kerα)⊥ and 〈Eα, Eα〉A = Aα(A)A. Under 
the standard identifications we have α̂(A) = {[π] ∈ Â : π(α(A)) �= 0} = ̂〈E,E〉A. 
The partial homeomorphism dual to Eα can be identified with the one described in 
Definition 2.34:

Lemma A.12. Let (A, α) be a reversible C∗-dynamical system. The homeomorphisms 
α̂ : α̂(A) → ̂(kerα)⊥ and Êα : ̂〈Eα, Eα〉A → ̂

A〈Eα, Eα〉 coincide.
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Proof. Let π : A → B(H) be an irreducible representation such that π(α(A)) �= 0. Then 
α̂([π]) is the equivalence class of the representation π ◦ α : A → B(π(α(A))H). Since 
π(α(A))H = π(α(A)A)H and ‖ 

∑
i ai⊗πhi‖2 = ‖ 

∑
i,j〈hi, π(a∗i aj)hj〉‖ = ‖ 

∑
i π(ai)hi‖2, 

for ai ∈ Eα = α(A)A, hi ∈ H, i = 1, . . . , n, we see that a ⊗π h �→ π(a)h yields a unitary 
operator U : Eα ⊗π H → π(α(A))H. Furthermore, for a ∈ A, b ∈ α(A) and h ∈ H we 
have

[Eα- Ind(π)(a)U∗]π(b)h = Eα- Ind(π)(a) b⊗π h = (α(a)b) ⊗π h = [U∗(π ◦ α)(a)]π(b)h.

Hence U intertwines Eα- Ind and π ◦ α. This proves that Êα = α̂. �
We get the exact sequence for crossed products by endomorphisms, see Proposi-

tion 2.26, by using (48) and the following lemma.

Lemma A.13. Let J be an ideal in (kerα)⊥. With the notation preceding Theorem A.5
applied to Eα we have Ki(ι22 ◦ α|J ) = Ki(ι11 ◦ φEα

|J ), i = 1, 2.

Proof. For brevity, we put E := Eα. Let � : E → Ẽ be the canonical antilinear iso-
morphism, and let α−1 be the inverse to the isomorphism α : (kerα)⊥ → α((kerα)⊥). 
Plainly, the map

M2(α(J)) �
(
a11 a12
a21 a22

)
Φ�−→

(
φE(α−1(a11)) a12

�(a∗21) a22

)
∈ DE ,

is a homomorphism of C∗-algebras. The following diagram commutes:

J

ι11◦α ι11◦φE

M2(α(J)) Φ
DE .

Therefore

Ki(ι11 ◦ φE |J) = Ki(Φ ◦ ι11 ◦ α|J ), i = 0, 1.

Recall that for any C∗-algebra B the homomorphisms ιii : B → M2(B), i = 1, 2, induce 
the same mappings on K-groups. Thus Ki(ι11 ◦ α|J ) = Ki(ι22 ◦ α|J ), i = 1, 2. By the 
form of Φ we see that Φ ◦ ι22 ◦ α = ι22 ◦ α on J . Concluding, for i = 0, 1 we get

Ki(ι11 ◦ φE |J) = Ki(Φ ◦ ι11 ◦ α|J ) = Ki(Φ ◦ ι22 ◦ α|J ) = Ki(ι22 ◦ α|J ). �
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