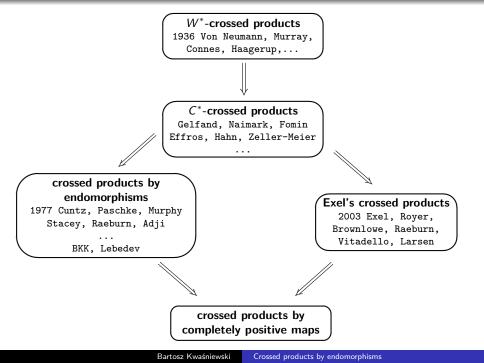
Advances in the theory of crossed products by endomorphisms

Bartosz Kosma Kwaśniewski Univeristy of Southern Denmark, Odense

- Crossed products by endomorphisms (ideal structure)
- Crossed products by c.p. maps (Exel's crossed product)
- Two model examples

O Crossed products by endomorphisms (ideal structure)

- Crossed products by c.p. maps (Exel's crossed product)
- Two model examples



What is crossed product by an endomorphism?

Throughout A is unital C^* -algebra.

Crossed product by an automorphism $\alpha : A \to A$ is a universal C^* -algebra $C^*(A, u)$ generated by A and u subject to relations:

$$\alpha(a) = uau^*, \qquad \alpha^{-1}(a) = u^*au, \qquad a \in A$$

Problem If $\alpha : A \to A$ is an endomorphism, then $\alpha \stackrel{1}{\alpha} \stackrel{(a)}{\longrightarrow} u^* a u$. What relation should we use instead?

Let $A \subset B$ be C^* -algebras with a common unit 1, $U \in B$.

Proposition (the Hint).

Let $\alpha : A \to A$ be a map of the form $\alpha(a) = UaU^*$. Then

 α is an endomorphism $\iff U$ is a partial isometry, $U^*U \in A'$ $\iff U$ is a partial isometry and $Ua = \alpha(a)U, \ a \in A.$ **Def.** A pair (π, U) is a **representation** of (A, α) in a C^* -algebra B if

 $\pi: A \rightarrow B$ is a unital homomorphism, $U \in B$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

Let $J \triangleleft A$. We say that (π, U) is a *J*-covariant representation if

$$J \subseteq \{a \in A : U^* U\pi(a) = \pi(a)\}.$$

Prop. There is a *J*-covariant represen. (ι, u) in a C^* -algebra $C^*(A, \alpha; J)$ s.t.:

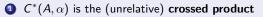
a) $C^*(A, \alpha; J)$ is generated by $\iota(A)$ and u,

b) for every J-covariant representation (π, U) there is a homomorphism of $\pi \rtimes U$ of $C^*(A, \alpha; J)$ given by $(\pi \rtimes U) \circ \iota = \pi$ and $(\pi \rtimes U)(u) = U$.

Moreover, ι is injective if and only if $J \subseteq (\ker \alpha)^{\perp}$.

Def. We call $C^*(A, \alpha; J)$ the relative crossed product of (A, α) relative to J. We define the crossed product by putting $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp})$.

Remark.



u is an isometry $\iff \alpha$ is a monomorphism

2 $C^*(A, \alpha; A)$ is **Stacey's crossed product** (*u* is always an isometry)

A embeds into $C^*(A, \alpha; A) \iff \alpha$ is a monomorphism

C*(A, α; {0}) 'Toeplitz' crossed product (u is never an isometry) studied by Raeburn et al.

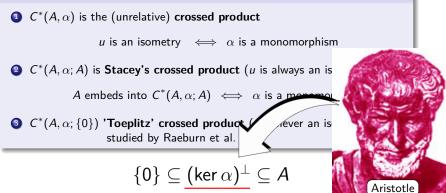
Remark.

For any (A, α) and J there is a canonical endomorphism $\alpha_J : A_J \to A_J$ s.t.:

- $C^*(A, \alpha; J) \cong C^*(A_J, \alpha_J)$
- ker α_J is a complemented ideal in A_J

From now on we assume that ker α is a complemented ideal.

Remark.



Remark.

For any (A, α) and J there is a canonical endomorphism $\alpha_J : A_J \to A_J$ s.t.:

•
$$C^*(A, \alpha; J) \cong C^*(A_J, \alpha_J)$$

• ker α_J is a complemented ideal in A_J

From now on we assume that ker α is a complemented ideal.

Def. We say that $I \triangleleft A$ is invariant if $(\ker \alpha)^{\perp} \cap \alpha^{-1}(I) = I \cap (\ker \alpha)^{\perp}$.

If I is invariant then $\alpha(I) \subseteq I$ and we have the restricted $\alpha|_I : I \to I$ and the quotinet $\alpha_I : A/I \to A/I$ endomorphism.

Theorem. Equality $I = A \cap \mathcal{I}$ yields a bijection between

invariant ideals I in A and gauge-invariant ideals \mathcal{I} in $C^*(A, \alpha)$. Moreover:

$$C^*(A,\alpha)/\mathcal{I} \cong C^*(A/I,\alpha_I)$$

and \mathcal{I} is Morita-Rieffel equivalent to $C^*(I, \alpha|_I)$.

Theorem. $C^*(A, \alpha)$ is simple if and only if

there are no non-trvial invariant ideals in A and either

- i) α is pointwise quasinilpotent $(\forall_{a \in A} \ \alpha^n(a) \rightarrow 0)$ or
- ii) α is injective and no power α^n , n > 0, is inner.

Endomorphisms of C(X)-algebras

Suppose that X := Prim(A) is Hausdorff and $\alpha(Z(A)) \subseteq Z(A)\alpha(1)$.

Then $Z(A) \cong C(X)$ and we may treat A as a section algebra of the bundle $\bigsqcup_{x \in X} A(x)$, where A(x) := A/x, $x \in X$. Then we have

$$\alpha(a)(x) = \begin{cases} \alpha_x(a(\varphi(x)), & x \in \Delta, \\ 0, & x \notin \Delta, \end{cases} \quad a \in A, \ x \in X.$$

where

1)
$$\varphi: \Delta \to X$$
 continuous proper map, $\Delta \subset X$ is open,

2) $\{\alpha_x\}_{x\in\Delta}$ 'continuous' bundle of homomorphisms $\alpha_x : A(\varphi(x)) \to A(x)$.

Theorem.

- If φ is topologically free, for every covariant representation (π, U) , with π injective, the representation $\pi \rtimes U$ of $C^*(A, \alpha)$ is faithful,
- $\bullet~$ If φ is free, then we have a bijective correspondence

$$A \cap \mathcal{I} = \{ a \in A : a(x) = 0 \text{ for all } x \in V \}$$

between ideals $\mathcal{I} \triangleleft C^*(A, \alpha)$ and closed sets V s.t. $\varphi(\Delta \cap V) = \varphi(\Delta) \cap V$.

- Crossed products by endomorphisms (ideal structure)
- **②** Crossed products by c.p. maps (Exel's crossed product)
- Two model examples

Exel's crossed product

Def. A transfer operator for an endomorphism $\alpha : A \rightarrow A$ is

a positive linear map $\mathcal{L}: A \to A$ such that $\mathcal{L}(a\alpha(b)) = \mathcal{L}(a)b$, $a, b \in A$.

Ex. $\sigma: M \to M$ a local homeomorphism on a compact Hausdorff M. The standard transfer operator for $\alpha(a) = a \circ \sigma$, $a \in A := C(M)$, is

$$\mathcal{L}(a)(x) = rac{1}{|\sigma^{-1}(x)|} \sum_{y \in \sigma^{-1}(x)} a(y).$$

Any transfer operator is of the form $\mathcal{L}_{\rho}(a)(x) = \sum_{y \in \sigma^{-1}(x)} \rho(y) a(y)$ where $\rho : M \to [0, \infty)$ is continuous.

Exel's crossed product

Def. A transfer operator for an endomorphism $\alpha : A \to A$ is a positive linear map $\mathcal{L} : A \to A$ such that $\mathcal{L}(a\alpha(b)) = \mathcal{L}(a)b$, $a, b \in A$.

Def. (π, S) is a representation of an Exel system (A, α, \mathcal{L}) in B if $\pi : A \to B$ is a unital homomorphism, $S \in B$ and

$$S\pi(a) = \pi(\alpha(a))S, \qquad S^*\pi(a)S = \pi(\mathcal{L}(a)) \qquad ext{for all } a \in A.$$

Let $\mathcal{T}(A, \bigotimes, \mathcal{L}) := C^*(\iota(A) \cup \{s\})$ where (ι, s) is the universal representation of $(A, \bigotimes, \mathcal{L})$. **Exel's crossed product** $A \times_{\alpha, \mathcal{L}} \mathbb{N}$ is the quotient of $\mathcal{T}(A, \bigotimes, \mathcal{L})$ by the ideal generated by

 $\{\iota(a) - k : a \in \overline{A\alpha(A)A} \text{ and } (\iota(a), k) \text{ is a redundancy}\}.$

Rem. A transfer operator is a c.p. map; for $a_i, b_i \in A$ we have

$$\sum_{i,j=1}^n b_i^* \mathcal{L}(a_i^*a_j) b_j = \mathcal{L}\Big(\big(\sum_{i=1}^n a_i \alpha(b_i)\big)^* \big(\sum_{j=1}^n a_j \alpha(b_j)\big) \Big) \geq 0.$$

Let $\rho: A \to A$ be a linear completely positive map (c.p. map)

Def. Representation of (A, ϱ) in B is (π, S) where

 $\pi: {A} \rightarrow {B}$ is a unital homomorphism, ${S} \in {B}$ and

 $S^*\pi(a)S = \pi(\varrho(a))$ for all $a \in A$.

Toeplitz algebra of (A, ϱ) is C^* -algebra $\mathcal{T}(A, \varrho) := C^*(\iota(A) \cup s)$ generated by the universal representation (ι, s) of (A, ϱ) .

Def. Redundancy is a pair $(\iota(a), k)$ where

 $a \in A$, $k \in \overline{\iota(A)s\iota(A)s^*\iota(A)}$ and $\iota(a)\iota(b)s = k\iota(b)s$ for all $b \in A$.

Def. GNS-kernel of ρ is $N_{\rho} := \{a \in A : \rho((ab)^*ab) = 0 \text{ for all } b \in A\}$

Rem. If $\rho = \alpha$ is multiplicative, then $N_{\rho} = \ker \alpha$ and

 $(\iota(a), k)$ is a redundancy $\iff k = ss^*\iota(a)$

Def. The crossed product $C^*(A, \varrho)$ is the quotient of $\mathcal{T}(A, \varrho)$ by the ideal generated by

$$\{\iota(a) - k : a \in N_{\varrho}^{\perp} \text{ and } (\iota(a), k) \text{ is a redundancy}\}.$$

More generally, for $J \trianglelefteq A$ we define $C^*(A, \varrho; J)$ similarly but with

$$\{\iota(a) - k : a \in J \text{ and } (\iota(a), k) \text{ is a redundancy}\}.$$

Corollary.

• If
$$\rho = \alpha$$
 is multiplicative, then (assuming $u = s^*$)

$$C^*(A, \alpha; J) = C^*(A, \rho; J), \qquad C^*(A, \alpha) = C^*(A, \rho).$$

• If $\varrho = \mathcal{L}$ is a transfer operator for an endomorphism α , then

$$A \times_{\alpha,\mathcal{L}} \mathbb{N} = C^*(A,\rho;J), \qquad \mathcal{O}(A,\alpha,\mathcal{L}) = C^*(A,\rho)$$

where $J = A\alpha(A)A$ and $\mathcal{O}(A, \alpha, \mathcal{L})$ is an adjusted crossed product (Exel and Royer 2007)

Thm. For any $J \leq A$ we have

$$C^*(A, \varrho; J) \cong \mathcal{O}(X_{\varrho}, J \cap J(X_{\varrho})), \qquad C^*(A, \varrho) \cong \mathcal{O}_{X_{\varrho}}$$

where X_{ϱ} is the **GNS** C^* -correspondence, i.e. Hausdorff completion of the algebraic tensor product $A \otimes A$ with $\langle a \otimes b, c \otimes d \rangle_A := b^* \varrho(a^*c)d$, where $a \cdot (b \otimes c) \cdot d := (ab) \otimes (cd)$ for $a, b, c, d \in A$.

Ex If A = C(V) commutative, then $X_{\varrho} \sim (V, E, \mu = {\mu_x}_{x \in V})$ where

$$arrho({\mathsf{a}})({\mathsf{x}}) = \int_V {\mathsf{a}}({\mathsf{y}}) d\mu_{\mathsf{x}}({\mathsf{y}}), \qquad {\mathsf{x}} \in V, {\mathsf{a}} \in A,$$

and

In special cases (V, E, μ) is: a topological relation (Brenken 2004),

- a topological quiver (Muhly, Tomoforde 2005),
- a 'Markov operator' (Ionescu, Muhly, Vega 2012).

- Crossed products by endomorphisms (ideal structure)
- Crossed products by c.p. maps (Exel's crossed product)
- **3** Two model examples

Example 1 (z^2 -mapping on \mathbb{T})

Let $H = L_2(\mathbb{T})$, $A \subset L(H)$ consists of operators of multiplication by continuous functions:

$$A\cong C(\mathbb{T}).$$

Consider the isometry $S \in L(H)$:

$$(Sf)(z) = f(z^2), \qquad (S^*f)(z) = \frac{1}{2}\sum_{w^2=z}f(w).$$

 $a \in A \Longrightarrow \begin{cases} SaS^* - \text{ is not an operator of multiplication } \notin A \\ S^*aS - \text{ operator of multiplication by } \frac{1}{2} \sum_{w^2 = z} a(w) \in A \end{cases}$ Hence $\mathcal{L}(a) := S^*aS$ is a positive map on A where $\mathcal{L}(a)(z) = \frac{1}{2} \sum_{w^2 = z} a(w), \qquad a \in A \cong C(\mathbb{T}), \ z \in \mathbb{T}.$

Prop. $C^*(A \cup \{S\}) \cong C^*(A, \mathcal{L})$ - crossed product by a c.p. map Also $C^*(A \cup \{S\}) \cong A \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$ - Exel's crossed product

$$lpha(\mathbf{a})(\mathbf{z}) = \mathbf{a}(\mathbf{z}^2), \qquad \mathbf{a} \in \mathcal{A} \cong C(\mathbb{T}), \ \mathbf{z} \in \mathbb{T}.$$

Example 2 (z^2 -mapping on \mathbb{T})

Let $\mathcal{H} = L_2(\mathbb{R})$, $A \subset L(\mathcal{H})$ consists of operators of multiplication by continuous periodic functions with period 1:

$$A\cong C(\mathbb{T}).$$

Consider unitary operator $U \in L(\mathcal{H})$

$$(Uf)(x) = \sqrt{2} f(2x), \qquad (U^*f)(x) = \frac{1}{\sqrt{2}} f\left(\frac{x}{2}\right).$$

$$a \in A \Longrightarrow \begin{cases} UaU^* \text{ - operator of multiplication by } a(2x) \in A \\ U^*aU \text{ - operator of multiplication by } a\left(\frac{x}{2}\right) \notin A \end{cases}$$

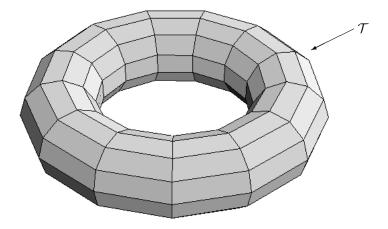
Hence $\alpha(a) := UaU^*$ is an endomorphism of \mathcal{A} where

$$\alpha(a)(z) = a(z^2), \qquad a \in A \cong C(\mathbb{T}), \ z \in \mathbb{T}.$$

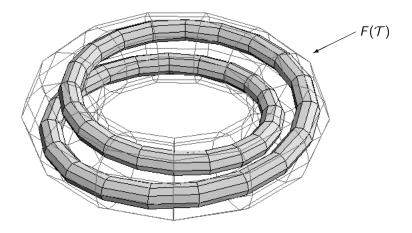
Prop. $C^*(A \cup \{U\}) \cong C^*(A, \alpha)$ - crossed product by an endomorphism Also $C^*(A \cup \{U\}) \cong B \rtimes_{\beta} \mathbb{Z}$ - crossed product by an automorphism

 $B:=C^*(\bigcup_{n=0}^{\infty}U^{*n}AU^n),\qquad \beta(b):=UbU^*,\qquad \beta^{-1}(b)=U^*bU.$

Algebra $B := C^*(\bigcup_{n=0}^{\infty} U^{*n}AU^n)$ is commutative. Its spectrum is: Smale's Solenoid $\bigcap_{n \in \mathbb{N}} F^n(\mathcal{T})$ where $F : \mathcal{T} \to \mathcal{T}$ acts as follows



Algebra $B = C^*(\bigcup_{n=0}^{\infty} U^n \mathcal{A} U^{*n})$ is commutative. Its spectrum is: Smale's Solenoid $\bigcap_{n \in \mathbb{N}} F^n(\mathcal{T})$ where $F : \mathcal{T} \to \mathcal{T}$ acts as follows



Algebra $B = C^*(\bigcup_{n=0}^{\infty} U^n A U^{*n})$ is commutative. Its spectrum is: Smale's Solenoid $\bigcap_{n \in \mathbb{N}} F^n(\mathcal{T})$ where $F : \mathcal{T} \to \mathcal{T}$ acts as follows

Bibliography

- [Exel] R. Exel "A new look at the crossed-product of a C*-algebra by an endomorphism", Ergodic Theory Dynam. Systems, (2003)
- [ABL] A.B. Antonevich, V.I. Bakhtin, A.V. Lebedev "Crossed product of C*-algebra by an endomorphism, coefficient algebras and transfer operators", Sb. Math. (2011)
 - [KL] BKK, A. V. Lebedev "Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras" J. of Functional Analysis (2013)
- [Kwa1] BKK, "Ideal structure of crossed products by endomorphisms via reversible extensions of C*-dynamical systems" Int. J. Math. (2015),
- [Kwa₂] BKK "Exel's crossed product and crossed products by completely positive maps" to appear in Houston Math. J.
- [Kwa₃] **BKK "Crossed products by endomorphisms of** $C_0(X)$ -algebras" submitted to J. of Functional Analysis