Operator algebra seminar, Copenhagen, 26 November, 2014

Purely infinite crossed products by endomorphisms of $C_{0}(X)$-algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

Operator algebra seminar, Copenhagen, 26 November, 2014

Purely infinite crossed products by endomorphisms of $C_{0}(X)$-algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

Operator algebra seminar, Copenhagen, 26 November, 2014

Purely infinite crossed products by endomorphisms of $C_{0}(X)$-algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

(1) What is crossed product by an endomorphism?

Operator algebra seminar, Copenhagen, 26 November, 2014

Purely infinite crossed products by endomorphisms of $C_{0}(X)$-algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

(1) What is crossed product by an endomorphism?
(2) Reversible extensions and ideal structure

Operator algebra seminar, Copenhagen, 26 November, 2014

Purely infinite crossed products by endomorphisms of $C_{0}(X)$-algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

(1) What is crossed product by an endomorphism?
(2) Reversible extensions and ideal structure
(3) Endomorphisms of $C_{0}(X)$-algebras and their crossed products

Operator algebra seminar, Copenhagen, 26 November, 2014

Purely infinite crossed products by endomorphisms of $C_{0}(X)$-algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

(1) What is crossed product by an endomorphism?
(2) Reversible extensions and ideal structure
(3) Endomorphisms of $C_{0}(X)$-algebras and their crossed products
(4) Examples

crossed products by endomorphisms
1977 Cuntz, Paschke, Murphy
Stacey, Raeburn, Adji
Lebedev, BKK

W^{*}-crossed products
 1936 Murray, Von Neumann, Connes, Haagerup, ...

crossed products by endomorphisms
1977 Cuntz, Paschke, Murphy
Stacey, Raeburn, Adji

W^{*}-crossed products
 1936 Murray, Von Neumann, Connes, Haagerup, ...

crossed products by endomorphisms
1977 Cuntz, Paschke, Murphy
Stacey, Raeburn, Adji
Lebedev, BKK
Exel's crossed products 2003 Exel, Royer, Brownlowe, Raeburn, Vitadello, Larsen

$A-C^{*}$-algebra
$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A)$

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A .
$$

$A-C^{*}$-algebra

$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A) \quad$ system

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A .
$$

We let $C^{*}(\pi, U):=C^{*}(\pi(A) \cup \pi(A) U)$.
$A-C^{*}$-algebra
$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A)$

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A .
$$

We let $C^{*}(\pi, U):=C^{*}(\pi(A) \cup \pi(A) U)$.

Lem. For any representation (π, U) of (A, α)
U is a partial isometry and $U^{*} U \in \pi(A)^{\prime}$.
$A-C^{*}$-algebra
$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A)$

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A .
$$

We let $C^{*}(\pi, U):=C^{*}(\pi(A) \cup \pi(A) U)$.

Lem. For any representation (π, U) of (A, α)
U is a partial isometry and $U^{*} U \in \pi(A)^{\prime}$. In particular,

$$
J:=\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}
$$

is an ideal in A.
$A-C^{*}$-algebra
$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A)$

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A .
$$

We let $C^{*}(\pi, U):=C^{*}(\pi(A) \cup \pi(A) U)$.

Lem. For any representation (π, U) of (A, α)
U is a partial isometry and $U^{*} U \in \pi(A)^{\prime}$. In particular,

$$
J:=\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}
$$

is an ideal in A. Moreover, if π is faithful then $J \subseteq(\operatorname{ker} \alpha)^{\perp}$.
$A-C^{*}$-algebra
$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A)$

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A
$$

We let $C^{*}(\pi, U):=C^{*}(\pi(A) \cup \pi(A) U)$.

Lem. For any representation (π, U) of (A, α)
U is a partial isometry and $U^{*} U \in \pi(A)^{\prime}$. In particular,

$$
J:=\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}
$$

is an ideal in A. Moreover, if π is faithful then $J \subseteq(\operatorname{ker} \alpha)^{\perp}$.

Def. Let $J \triangleleft A$. A representation (π, U) of (A, α) is J-covariant if

$$
J \subseteq\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}
$$

$A-C^{*}$-algebra
$\alpha: A \rightarrow A$ - an extendible endomorphism of A, i.e. α extends to strictly continuous endomorphism $\bar{\alpha}: M(A) \rightarrow M(A)$

Def. (π, U) is a representation of (A, α) if

$\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$
U \pi(a) U^{*}=\pi(\alpha(a)), \quad a \in A
$$

We let $C^{*}(\pi, U):=C^{*}(\pi(A) \cup \pi(A) U)$.

Lem. For any representation (π, U) of (A, α)
U is a partial isometry and $U^{*} U \in \pi(A)^{\prime}$. In particular,

$$
J:=\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}
$$

is an ideal in A. Moreover, if π is faithful then $J \subseteq(\operatorname{ker} \alpha)^{\perp}$.

Def. Let $J \triangleleft A$. A representation (π, U) of (A, α) is J-covariant if

$$
J \subseteq\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}
$$

If $J=(\operatorname{ker} \alpha)^{\perp}$ we omit prefix ' $J-$ '.

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$
(2) $j_{A}: A \rightarrow C^{*}(A, \alpha ; J)$ is injective $\Longleftrightarrow J \subseteq(\operatorname{ker} \alpha)^{\perp}$.

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$
(2) $j_{A}: A \rightarrow C^{*}(A, \alpha ; J)$ is injective $\Longleftrightarrow J \subseteq(\operatorname{ker} \alpha)^{\perp}$.
(3) $C^{*}(A, \alpha)$ is the (unrelative) crossed product
\mathbf{u} is an isometry $\Longleftrightarrow \alpha$ is a monomorphism

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$
(2) $j_{A}: A \rightarrow C^{*}(A, \alpha ; J)$ is injective $\Longleftrightarrow J \subseteq(\operatorname{ker} \alpha)^{\perp}$.
(3) $C^{*}(A, \alpha)$ is the (unrelative) crossed product
\mathbf{u} is an isometry $\Longleftrightarrow \alpha$ is a monomorphism
(4) $C^{*}(A, \alpha ; A)$ is Stacey's crossed product (\mathbf{u} is always an isometry) A embeds into $C^{*}(A, \alpha ; A) \Longleftrightarrow \alpha$ is a monomorphism

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$
(2) $j_{A}: A \rightarrow C^{*}(A, \alpha ; J)$ is injective $\Longleftrightarrow J \subseteq(\operatorname{ker} \alpha)^{\perp}$.
(3) $C^{*}(A, \alpha)$ is the (unrelative) crossed product
\mathbf{u} is an isometry $\Longleftrightarrow \alpha$ is a monomorphism
(4) $C^{*}(A, \alpha ; A)$ is Stacey's crossed product (\mathbf{u} is always an isometry)
A embeds into $C^{*}(A, \alpha ; A) \Longleftrightarrow \alpha$ is a monomorphism
(5) $C^{*}(A, \alpha ;\{0\})$ 'Toeplitz' crossed product (\mathbf{u} is never an isometry) studied by Raeburn et al.

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right) .
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$
(2) $j_{A}: A \rightarrow C^{*}(A, \alpha ; J)$ is injective $\Longleftrightarrow J \subseteq(\operatorname{ker} \alpha)^{\perp}$.
(3) $C^{*}(A, \alpha)$ is the (unrelative) crossed product
\mathbf{u} is an isometry $\Longleftrightarrow \alpha$ is a monomorphism
(4) $C^{*}(A, \alpha ; A)$ is Stacey's crossed product (\mathbf{u} is always an isometry)
A embeds into $C^{*}(A, \alpha ; A) \Longleftrightarrow \alpha$ is a monomorphism
(5) $C^{*}(A, \alpha ;\{0\})$ 'Toeplitz' crossed product (\mathbf{u} is never an isometry) studied by Raeburn et al.

$$
\{0\} \subseteq(\operatorname{ker} \alpha)^{\perp} \subseteq A
$$

Def. Let $J \triangleleft A$. Relative crossed product is $C^{*}(A, \alpha ; J):=C^{*}\left(j_{A}, \mathbf{u}\right)$ where
$\left(j_{A}, \mathbf{u}\right)$ is a universal J-covariant representation of (A, α). We put

$$
C^{*}(A, \alpha):=C^{*}\left(A, \alpha ;(\operatorname{ker} \alpha)^{\perp}\right)
$$

Facts.

(1) $\mathbf{u} \in M\left(C^{*}(A, \alpha ; J)\right)$
(2) $j_{A}: A \rightarrow C^{*}(A, \alpha ; J)$ is injective $\Longleftrightarrow J \subseteq(\operatorname{ker} \alpha)^{\perp}$.
(3) $C^{*}(A, \alpha)$ is the (unrelative) crossed product
\mathbf{u} is an isometry $\Longleftrightarrow \alpha$ is a monomorphism
(4) $C^{*}(A, \alpha ; A)$ is Stacey's crossed product (\mathbf{u} is always an is A embeds into $C^{*}(A, \alpha ; A) \Longleftrightarrow \alpha$ is a monomo।
(5) $C^{*}(A, \alpha ;\{0\})$ 'Toeplitz' crossed product (u/ an is studied by Raeburn et al.

$$
\{0\} \subseteq \underline{(\operatorname{ker} \alpha)^{\perp} \subseteq A}
$$

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\}) .
$$

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\}) .
$$

We have two natural mappings on $C^{*}(T)$ and a subalgebra

$$
\alpha(a):=U a U^{*}, \quad \alpha_{*}(a):=U^{*} a U
$$

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\}) .
$$

We have two natural mappings on $C^{*}(T)$ and a subalgebra

$$
\begin{aligned}
\alpha(a):=U a U^{*}, \quad \alpha_{*}(a): & =U^{*} a U \\
\left.A:=C^{*}\left(\bigcup_{n \in \mathbb{N}}\left\{\alpha^{n}(|T|), \alpha^{n}(1)\right\}\right)\right\} & \begin{array}{l}
\text { the smallest } C^{*} \text {-algebra } \\
\text { containing }|T|, 1 \text { and } \\
\text { invariant under } \alpha
\end{array}
\end{aligned}
$$

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\}) .
$$

We have two natural mappings on $C^{*}(T)$ and a subalgebra

$$
\begin{align*}
\alpha(a):=U a U^{*}, \quad \alpha_{*}(a): & =U^{*} a U \\
\left.A:=C^{*}\left(\bigcup_{n \in \mathbb{N}}\left\{\alpha^{n}(|T|), \alpha^{n}(1)\right\}\right)\right\} & \begin{array}{l}
\text { the smallest } C^{*} \text {-algebra } \\
\text { containing }|T|, 1 \text { and } \\
\text { invariant under } \alpha
\end{array}
\end{align*}
$$

(A, α) is a C^{*}-dynamical system $\Longleftrightarrow U^{*} U \in A^{\prime}$

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\}) .
$$

We have two natural mappings on $C^{*}(T)$ and a subalgebra

$$
\begin{align*}
\alpha(a):=U a U^{*}, \quad \alpha_{*}(a): & =U^{*} a U \\
\left.A:=C^{*}\left(\bigcup_{n \in \mathbb{N}}\left\{\alpha^{n}(|T|), \alpha^{n}(1)\right\}\right)\right\} & \begin{array}{l}
\text { the smallest } C^{*} \text {-algebra } \\
\text { containing }|T|, 1 \text { and } \\
\text { invariant under } \alpha
\end{array}
\end{align*}
$$

(A, α) is a C^{*}-dynamical system $\Longleftrightarrow U^{*} U \in A^{\prime}$

Assuming (\dagger) we have the natural epimorphism

$$
i d_{A} \rtimes U: C^{*}(A, \alpha, J) \rightarrow C^{*}(T) \quad \text { where } J:=\left\{a \in A: U^{*} U a=a\right\}
$$

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\}) .
$$

We have two natural mappings on $C^{*}(T)$ and a subalgebra

$$
\begin{align*}
\alpha(a):=U a U^{*}, \quad \alpha_{*}(a): & =U^{*} a U \\
\left.A:=C^{*}\left(\bigcup_{n \in \mathbb{N}}\left\{\alpha^{n}(|T|), \alpha^{n}(1)\right\}\right)\right\} & \begin{array}{l}
\text { the smallest } C^{*} \text {-algebra } \\
\text { containing }|T|, 1 \text { and } \\
\text { invariant under } \alpha
\end{array}
\end{align*}
$$

(A, α) is a C^{*}-dynamical system $\Longleftrightarrow U^{*} U \in A^{\prime}$

Assuming (\dagger) we have the natural epimorphism

$$
i d_{A} \rtimes U: C^{*}(A, \alpha, J) \rightarrow C^{*}(T) \quad \text { where } J:=\left\{a \in A: U^{*} U a=a\right\}
$$

Moreover, $C^{*}(A, \alpha, J) \cong C^{*}(B, \beta)$ where

Example: polar decomposition C^{*}-algebras

Let $T=U|T|$ be the polar decomposition of $T \in B(H)$ and put

$$
C^{*}(T):=C^{*}(\{|T|, U, 1\})
$$

We have two natural mappings on $C^{*}(T)$ and a subalgebra

$$
\begin{align*}
\alpha(a):=U a U^{*}, \quad \alpha_{*}(a): & =U^{*} a U \\
\left.A:=C^{*}\left(\bigcup_{n \in \mathbb{N}}\left\{\alpha^{n}(|T|), \alpha^{n}(1)\right\}\right)\right\} & \begin{array}{l}
\text { the smallest } C^{*} \text {-algebra } \\
\text { containing }|T|, 1 \text { and } \\
\text { invariant under } \alpha
\end{array}
\end{align*}
$$

(A, α) is a C^{*}-dynamical system $\Longleftrightarrow \quad U^{*} U \in A^{\prime}$

Assuming (\dagger) we have the natural epimorphism

$$
i d_{A} \rtimes U: C^{*}(A, \alpha, J) \rightarrow C^{*}(T) \quad \text { where } J:=\left\{a \in A: U^{*} U a=a\right\}
$$

Moreover, $C^{*}(A, \alpha, J) \cong C^{*}(B, \beta)$ where

$$
\left.B:=C^{*}\left(\bigcup_{n \in \mathbb{N}} \alpha_{*}^{n}(A)\right)\right\} \begin{aligned}
& \text { the smallest } C^{*} \text {-algebra } \\
& \text { containing } A \text { and } \\
& \text { invariant under } \alpha_{*}
\end{aligned}
$$

and $\beta:=\left.\alpha\right|_{B}$ is an endomorphism with complemented kernel and corner range

Reversible C^{*}-dynamical systems

Def. $\mathrm{A} C^{*}$-dynamical system (B, β) is reversible if
$\operatorname{ker} \beta$ is complemented in B and $\beta(B)$ is hereditary in B.

Reversible C^{*}-dynamical systems

Def. $\mathrm{A} C^{*}$-dynamical system (B, β) is reversible if
ker β is complemented in B and $\beta(B)$ is hereditary in B. Then we put

$$
\beta_{*}(a):=\beta^{-1}(\bar{\beta}(1) a \bar{\beta}(1)), \quad a \in B,
$$

where β^{-1} is the inverse to isomorphism $\beta:(\operatorname{ker} \beta)^{\perp} \rightarrow \beta(B)=\bar{\beta}(1) B \bar{\beta}(1)$.

Reversible C^{*}-dynamical systems

Def. $\mathrm{A} C^{*}$-dynamical system (B, β) is reversible if
$\operatorname{ker} \beta$ is complemented in B and $\beta(B)$ is hereditary in B. Then we put

$$
\beta_{*}(a):=\beta^{-1}(\bar{\beta}(1) a \bar{\beta}(1)), \quad a \in B,
$$

where β^{-1} is the inverse to isomorphism $\beta:(\operatorname{ker} \beta)^{\perp} \rightarrow \beta(B)=\bar{\beta}(1) B \bar{\beta}(1)$.
Facts. Let (B, β) be reversible. Then $C^{*}(B, \beta)$ is spanned by

$$
\sum_{k=1}^{n} \mathbf{u}^{* k} a_{-k}^{*}+a_{0}+\sum_{k=1}^{n} a_{k} \mathbf{u}^{k}, \quad a_{ \pm k} \in \bar{\beta}^{k}(1) B
$$

where $\beta(a)=\mathbf{u} \mathbf{u}^{*}, \beta_{*}(a)=\mathbf{u}^{*} a \mathbf{u}, a \in B$.

Reversible C*-dynamical systems

Def. $A C^{*}$-dynamical system (B, β) is reversible if
ker β is complemented in B and $\beta(B)$ is hereditary in B. Then we put

$$
\beta_{*}(a):=\beta^{-1}(\bar{\beta}(1) a \bar{\beta}(1)), \quad a \in B,
$$

where β^{-1} is the inverse to isomorphism $\beta:(\operatorname{ker} \beta)^{\perp} \rightarrow \beta(B)=\bar{\beta}(1) B \bar{\beta}(1)$.
Facts. Let (B, β) be reversible. Then $C^{*}(B, \beta)$ is spanned by

$$
\sum_{k=1}^{n} \mathbf{u}^{* k} a_{-k}^{*}+a_{0}+\sum_{k=1}^{n} a_{k} \mathbf{u}^{k}, \quad a_{ \pm k} \in \bar{\beta}^{k}(1) B
$$

where $\beta(a)=\mathbf{u} \mathbf{a} \mathbf{u}^{*}, \beta_{*}(a)=\mathbf{u}^{*} a \mathbf{u}, a \in B$. We have an exact sequence

$$
\begin{gathered}
\underset{\uparrow}{K_{0}(\beta(B)) \underset{\iota_{*}-\left(\beta_{*}\right)_{*}}{\longrightarrow}} K_{0}(B) \xrightarrow[\iota_{*}]{\longrightarrow} K_{0}\left(C^{*}(B, \beta)\right) \\
\\
K_{1}\left(C^{*}(B, \beta)\right) \stackrel{\iota_{*}}{\leftarrow} K_{1}(B) \stackrel{\iota_{*}-\left(\beta_{*}\right)_{*}}{\leftarrow} K_{1}(\beta(B))
\end{gathered}
$$

Moreover, $C^{*}(B, \beta) \cong B \rtimes_{\beta, \beta_{*}} \mathbb{N}$ is isomorphic to Exel's crossed product

Let $\alpha: A \rightarrow A$ be an arbitrary extendible endomorphism and $J \unlhd(\operatorname{ker} \alpha)^{\perp}$.

Let $\alpha: A \rightarrow A$ be an arbitrary extendible endomorphism and $J \unlhd(\operatorname{ker} \alpha)^{\perp}$.
We define a C^{*}-dynamical system (B, β) to be the direct limit of the sequence

$$
(A, \alpha)=\left(B_{0}, \beta_{0}\right) \xrightarrow{T_{0}}\left(B_{1}, \beta_{1}\right) \xrightarrow{T_{1}}\left(B_{2}, \beta_{2}\right) \xrightarrow{T_{2}} \ldots
$$

Let $\alpha: A \rightarrow A$ be an arbitrary extendible endomorphism and $J \unlhd(\operatorname{ker} \alpha)^{\perp}$.
We define a C^{*}-dynamical system (B, β) to be the direct limit of the sequence

$$
(A, \alpha)=\left(B_{0}, \beta_{0}\right) \xrightarrow{T_{0}}\left(B_{1}, \beta_{1}\right) \xrightarrow{T_{1}}\left(B_{2}, \beta_{2}\right) \xrightarrow{T_{2}} \ldots
$$

where we let $q: A \rightarrow A / J$ to be the quotient map, $A_{n}:=\bar{\alpha}^{n}(1) A \bar{\alpha}^{n}(1)$ and

Let $\alpha: A \rightarrow A$ be an arbitrary extendible endomorphism and $J \unlhd(\operatorname{ker} \alpha)^{\perp}$.
We define a C^{*}-dynamical system (B, β) to be the direct limit of the sequence

$$
(A, \alpha)=\left(B_{0}, \beta_{0}\right) \xrightarrow{T_{0}}\left(B_{1}, \beta_{1}\right) \xrightarrow{T_{1}}\left(B_{2}, \beta_{2}\right) \xrightarrow{T_{2}} \ldots
$$

where we let $q: A \rightarrow A / J$ to be the quotient map, $A_{n}:=\bar{\alpha}^{n}(1) A \bar{\alpha}^{n}(1)$ and

$$
B_{n}=q\left(A_{0}\right) \oplus q\left(A_{1}\right) \oplus \ldots \oplus q\left(A_{n-1}\right) \oplus A_{n}
$$

$$
\beta_{n}\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n}\right)=a_{1} \oplus a_{2} \oplus \ldots \oplus q\left(a_{n}\right) \oplus \alpha\left(a_{n}\right)
$$

Thm. (B, β) is a well defined reversible C^{*}-dynamical system and

$$
C^{*}(A, \alpha, J) \cong C^{*}(B, \beta)
$$

Let $\alpha: A \rightarrow A$ be an arbitrary extendible endomorphism and $J \unlhd(\operatorname{ker} \alpha)^{\perp}$.
We define a C^{*}-dynamical system (B, β) to be the direct limit of the sequence

$$
(A, \alpha)=\left(B_{0}, \beta_{0}\right) \xrightarrow{T_{0}}\left(B_{1}, \beta_{1}\right) \xrightarrow{T_{1}}\left(B_{2}, \beta_{2}\right) \xrightarrow{T_{2}} \ldots
$$

where we let $q: A \rightarrow A / J$ to be the quotient map, $A_{n}:=\bar{\alpha}^{n}(1) A \bar{\alpha}^{n}(1)$ and

$$
B_{n}=q\left(A_{0}\right) \oplus q\left(A_{1}\right) \oplus \ldots \oplus q\left(A_{n-1}\right) \oplus A_{n}
$$

$$
\beta_{n}\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n}\right)=a_{1} \oplus a_{2} \oplus \ldots \oplus q\left(a_{n}\right) \oplus \alpha\left(a_{n}\right)
$$

Thm. (B, β) is a well defined reversible C^{*}-dynamical system and

$$
C^{*}(A, \alpha, J) \cong C^{*}(B, \beta)
$$

Def. We call (B, β) the natural reversible J-extension of (A, α).

Theorem (various ideal structures) We assume $J \subseteq(\operatorname{ker} \alpha)$

Theorem (various ideal structures) We assume $J \subseteq(\operatorname{ker} \alpha)$

Theorem (various ideal structures) We assume $J \subseteq(\operatorname{ker} \alpha)^{\perp}$

Theorem (various ideal structures) We assume $J \subseteq(\operatorname{ker} \alpha)$

Def. Ideal I in A is J-invariant in (A, α) if $\alpha(I) \subseteq I$ and $J \cap \alpha^{-1}(I) \subseteq I$.

Theorem (various ideal structures) We assume $J \subseteq(\operatorname{ker} \alpha)$

Def. Ideal I in A is J-invariant in (A, α) if $\alpha(I) \subseteq I$ and $J \cap \alpha^{-1}(I) \subseteq I$.

Def. The pair of ideals $\left(I, I^{\prime}\right)$ in A is a J-pair in (A, α) if

$$
I \text { is } J \text {-invariant, } J \subseteq I^{\prime} \quad \text { and } \quad I^{\prime} \cap \alpha^{-1}(I)=I .
$$

Standing assumptions:

- A is a $C_{0}(X)$-algebra,

Standing assumptions:

- A is a $C_{0}(X)$-algebra, equivalently A is the section algebra in an upper semicontinuous C^{*}-bundle $\mathcal{A}=\bigsqcup_{x \in X} A(x)$ where

$$
A(x):=A /\left(C_{0}(X \backslash\{x\}) \cdot A\right), \quad x \in X
$$

Standing assumptions:

- A is a $C_{0}(X)$-algebra, equivalently A is the section algebra in an upper semicontinuous C^{*}-bundle $\mathcal{A}=\bigsqcup_{x \in X} A(x)$ where

$$
A(x):=A /\left(C_{0}(X \backslash\{x\}) \cdot A\right), \quad x \in X
$$

A is a continuous $C_{0}(X)$-algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^{*}-bundle

Standing assumptions:

- A is a $C_{0}(X)$-algebra, equivalently A is the section algebra in an upper semicontinuous C^{*}-bundle $\mathcal{A}=\bigsqcup_{x \in X} A(x)$ where

$$
A(x):=A /\left(C_{0}(X \backslash\{x\}) \cdot A\right), \quad x \in X
$$

A is a continuous $C_{0}(X)$-algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^{*}-bundle

- there is an endomorphism $\Phi: C_{0}(X) \rightarrow C_{0}(X)$ satisfying

$$
\alpha(f \cdot a)=\Phi(f) \cdot \alpha(a), \quad f \in C_{0}(X), a \in A
$$

Standing assumptions:

- A is a $C_{0}(X)$-algebra, equivalently A is the section algebra in an upper semicontinuous C^{*}-bundle $\mathcal{A}=\bigsqcup_{x \in X} A(x)$ where

$$
A(x):=A /\left(C_{0}(X \backslash\{x\}) \cdot A\right), \quad x \in X
$$

A is a continuous $C_{0}(X)$-algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^{*}-bundle

- there is an endomorphism $\Phi: C_{0}(X) \rightarrow C_{0}(X)$ satisfying

$$
\alpha(f \cdot a)=\Phi(f) \cdot \alpha(a), \quad f \in C_{0}(X), a \in A
$$

Equivalently, there exists a pair $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$ consisting of

1) a continuous proper map $\varphi: \Delta \rightarrow X$ where $\Delta \subset X$ is open,
2) a 'continuous' bundle of homomorphisms $\left\{\alpha_{x}\right\}_{x \in \Delta}$ where $\alpha_{x}: A(\varphi(x)) \rightarrow A(x)$ for each $x \in \Delta$

Standing assumptions:

- A is a $C_{0}(X)$-algebra, equivalently A is the section algebra in an upper semicontinuous C^{*}-bundle $\mathcal{A}=\bigsqcup_{x \in X} A(x)$ where

$$
A(x):=A /\left(C_{0}(X \backslash\{x\}) \cdot A\right), \quad x \in X
$$

A is a continuous $C_{0}(X)$-algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^{*}-bundle

- there is an endomorphism $\Phi: C_{0}(X) \rightarrow C_{0}(X)$ satisfying

$$
\alpha(f \cdot a)=\Phi(f) \cdot \alpha(a), \quad f \in C_{0}(X), a \in A
$$

Equivalently, there exists a pair $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$ consisting of

1) a continuous proper map $\varphi: \Delta \rightarrow X$ where $\Delta \subset X$ is open,
2) a 'continuous' bundle of homomorphisms $\left\{\alpha_{x}\right\}_{x \in \Delta}$ where $\alpha_{x}: A(\varphi(x)) \rightarrow A(x)$ for each $x \in \Delta$
such that treating A as the section algebra of \mathcal{A} we have

$$
\alpha(a)(x)=\left\{\begin{array}{ll}
\alpha_{x}(a(\varphi(x)), & x \in \Delta, \\
0_{x}, & x \notin \Delta,
\end{array} \quad a \in A, x \in X\right.
$$

Standing assumptions:

- A is a $C_{0}(X)$-algebra, equivalently A is the section algebra in an upper semicontinuous C^{*}-bundle $\mathcal{A}=\bigsqcup_{x \in X} A(x)$ where

$$
A(x):=A /\left(C_{0}(X \backslash\{x\}) \cdot A\right), \quad x \in X
$$

A is a continuous $C_{0}(X)$-algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^{*}-bundle

- there is an endomorphism $\Phi: C_{0}(X) \rightarrow C_{0}(X)$ satisfying

$$
\alpha(f \cdot a)=\Phi(f) \cdot \alpha(a), \quad f \in C_{0}(X), a \in A
$$

Equivalently, there exists a pair $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$ consisting of

1) a continuous proper map $\varphi: \Delta \rightarrow X$ where $\Delta \subset X$ is open,
2) a 'continuous' bundle of homomorphisms $\left\{\alpha_{x}\right\}_{x \in \Delta}$ where $\alpha_{x}: A(\varphi(x)) \rightarrow A(x)$ for each $x \in \Delta$
such that treating A as the section algebra of \mathcal{A} we have

$$
\alpha(a)(x)=\left\{\begin{array}{ll}
\alpha_{x}(a(\varphi(x)), & x \in \Delta, \\
0_{x}, & x \notin \Delta,
\end{array} \quad a \in A, x \in X\right.
$$

We say (A, α) is induced by $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$ - a morphism of C^{*}-bundle \mathcal{A}.

Let (B, β) be the natural reversible J-extension of (A, α).
Proposition. B is a natural $C_{0}(\widetilde{X})$-algebra in such a way that
i) β is induced by $\left(\widetilde{\varphi},\left\{\beta_{x}\right\}_{x \in \widetilde{\Delta}}\right)$ where $\widetilde{\varphi}$ is a partial homeomorphism
ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ.

Let (B, β) be the natural reversible J-extension of (A, α).
Proposition. B is a natural $C_{0}(\tilde{X})$-algebra in such a way that
i) β is induced by $\left(\widetilde{\varphi},\left\{\beta_{x}\right\}_{x \in \widetilde{\Delta}}\right)$ where $\widetilde{\varphi}$ is a partial homeomorphism
ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ.

Corollary. (Uniqueness theorem)

If φ is topologically free outside $Y:=\overline{\sigma_{A}(\operatorname{Prim}(\mathrm{~A} / \mathrm{J}))}$ and B is a continuous $C_{0}(\widetilde{X})$-algebra,

Let (B, β) be the natural reversible J-extension of (A, α).
Proposition. B is a natural $C_{0}(\widetilde{X})$-algebra in such a way that
i) β is induced by $\left(\widetilde{\varphi},\left\{\beta_{x}\right\}_{x \in \widetilde{\Delta}}\right)$ where $\widetilde{\varphi}$ is a partial homeomorphism
ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ.

Corollary. (Uniqueness theorem)

If φ is topologically free outside $Y:=\overline{\sigma_{A}(\operatorname{Prim}(\mathrm{~A} / \mathrm{J}))}$ and B is a continuous $C_{0}(\widetilde{X})$-algebra, then for every faithful representation (π, U) of (A, α) such that $J=\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}$ we have

$$
C^{*}(A, \alpha, J) \cong C^{*}(\pi(A) \cup \pi(A) U)
$$

Let (B, β) be the natural reversible J-extension of (A, α).
Proposition. B is a natural $C_{0}(\widetilde{X})$-algebra in such a way that
i) β is induced by $\left(\widetilde{\varphi},\left\{\beta_{x}\right\}_{x \in \widetilde{\Delta}}\right)$ where $\widetilde{\varphi}$ is a partial homeomorphism
ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ.

Corollary. (Uniqueness theorem)

If φ is topologically free outside $Y:=\overline{\sigma_{A}(\operatorname{Prim}(\mathrm{~A} / \mathrm{J}))}$ and B is a continuous $C_{0}(\widetilde{X})$-algebra, then for every faithful representation (π, U) of (A, α) such that $J=\left\{a \in A: U^{*} U \pi(a)=\pi(a)\right\}$ we have

$$
C^{*}(A, \alpha, J) \cong C^{*}(\pi(A) \cup \pi(A) U)
$$

Corollary. (Ideal lattice description)

If φ is free, then all ideals in $C^{*}(A, \alpha, J)$ are gauge-invariant - we have a lattice isomorphism between ideals in $C^{*}(A, \alpha, J)$ and J-pairs for (A, α).

Theorem. (Pure infiniteness I)
Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$.

Theorem. (Pure infiniteness I)
Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property.

Theorem. (Pure infiniteness I)
Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:

Theorem. (Pure infiniteness I)
Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:
(i) $C^{*}(B, \beta)$ is purely infinite.

Theorem. (Pure infiniteness I)

Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:
(i) $C^{*}(B, \beta)$ is purely infinite.
(ii) Every non-zero hereditary C^{*}-subalgebra in any quotient $C^{*}(B, \beta)$ contains an infinite projection.

Theorem. (Pure infiniteness I)

Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:
(i) $C^{*}(B, \beta)$ is purely infinite.
(ii) Every non-zero hereditary C^{*}-subalgebra in any quotient $C^{*}(B, \beta)$ contains an infinite projection.
(iii) Every element in $B^{+} \backslash\{0\}$ is properly infinite in $C^{*}(B, \beta)$.

Theorem. (Pure infiniteness I)

Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:
(i) $C^{*}(B, \beta)$ is purely infinite.
(ii) Every non-zero hereditary C^{*}-subalgebra in any quotient $C^{*}(B, \beta)$ contains an infinite projection.
(iii) Every element in $B^{+} \backslash\{0\}$ is properly infinite in $C^{*}(B, \beta)$.

If B is of real rank zero, each of the above conditions is equivalent to
(iii') Every non-zero projection in B is properly infinite in $C^{*}(B, \beta)$.

Theorem. (Pure infiniteness I)

Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:
(i) $C^{*}(B, \beta)$ is purely infinite.
(ii) Every non-zero hereditary C^{*}-subalgebra in any quotient $C^{*}(B, \beta)$ contains an infinite projection.
(iii) Every element in $B^{+} \backslash\{0\}$ is properly infinite in $C^{*}(B, \beta)$.

If B is of real rank zero, each of the above conditions is equivalent to
(iii') Every non-zero projection in B is properly infinite in $C^{*}(B, \beta)$.
In particular, if B is purely infinite then $C^{*}(B, \beta)$ is purely infinite.

Theorem. (Pure infiniteness I)

Suppose that $\widetilde{\varphi}$ is free and for each $x \in \widetilde{\Delta}$ the range of β_{x} is full in $B(x)$. Assume also that B has the ideal property. Then $C^{*}(B, \beta)$ has the ideal property and the following statements are equivalent:
(i) $C^{*}(B, \beta)$ is purely infinite.
(ii) Every non-zero hereditary C^{*}-subalgebra in any quotient $C^{*}(B, \beta)$ contains an infinite projection.
(iii) Every element in $B^{+} \backslash\{0\}$ is properly infinite in $C^{*}(B, \beta)$.

If B is of real rank zero, each of the above conditions is equivalent to
(iii') Every non-zero projection in B is properly infinite in $C^{*}(B, \beta)$.
In particular, if B is purely infinite then $C^{*}(B, \beta)$ is purely infinite.

Theorem. (Pure infiniteness II)

Suppose that φ is free and for each $x \in \Delta$ the range of α_{x} is full in $A(x)$.
A is purely infinite and has the ideal property
$\Longrightarrow \quad$ the same is true for $C^{*}(A, \alpha, J)$.

Example 1: systems on C^{*}-algebras with Hausdorff primitive ideal space

Assume:

Example 1: systems on C^{*}-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C^{*}-algebra with $X:=\operatorname{Prim}(A)$ being Hausdorff space.

Then A is a continuous $C(X)$-algebra (with $\sigma_{A}=i d$)

Example 1: systems on C^{*}-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C^{*}-algebra with $X:=\operatorname{Prim}(A)$ being Hausdorff space.

Then A is a continuous $C(X)$-algebra (with $\sigma_{A}=i d$)
2) $\alpha: A \rightarrow A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A) \alpha(1)$. Then (A, α) is induced by a morphism $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$

Example 1: systems on C^{*}-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C^{*}-algebra with $X:=\operatorname{Prim}(A)$ being Hausdorff space.

Then A is a continuous $C(X)$-algebra (with $\sigma_{A}=i d$)
2) $\alpha: A \rightarrow A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A) \alpha(1)$. Then (A, α) is induced by a morphism $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$

Thm. (Pasnicu 2006)

A has the ideal property $\Longleftrightarrow X$ is zero dimensional

Example 1: systems on C^{*}-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C^{*}-algebra with $X:=\operatorname{Prim}(A)$ being Hausdorff space. Then A is a continuous $C(X)$-algebra (with $\sigma_{A}=i d$)
2) $\alpha: A \rightarrow A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A) \alpha(1)$. Then (A, α) is induced by a morphism $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$

Thm. (Pasnicu 2006)

A has the ideal property $\Longleftrightarrow X$ is zero dimensional

Corollary.

If X is zero dimensional, φ is free, and A is purely infinite, then

$$
C^{*}(A, \alpha, J) \text { is purely infinite and has the ideal property }
$$

Example 1: systems on C^{*}-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C^{*}-algebra with $X:=\operatorname{Prim}(A)$ being Hausdorff space. Then A is a continuous $C(X)$-algebra (with $\sigma_{A}=i d$)
2) $\alpha: A \rightarrow A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A) \alpha(1)$. Then (A, α) is induced by a morphism $\left(\varphi,\left\{\alpha_{x}\right\}_{x \in \Delta}\right)$

Thm. (Pasnicu 2006)

A has the ideal property $\Longleftrightarrow X$ is zero dimensional

Corollary.

If X is zero dimensional, φ is free, and A is purely infinite, then
$C^{*}(A, \alpha, J)$ is purely infinite and has the ideal property and ideal lattice in $C^{*}(A, \alpha, J)$ is described by J-pairs for (A, α).

Example 2: 'tensoring' of non-commuative and commutative dynamics

Assume:

Example 2: 'tensoring' of non-commuative and commutative dynamics
Assume:

1) $\left(A_{0}, \alpha_{0}\right)$ is any C^{*}-dynamical system

Example 2: 'tensoring' of non-commuative and commutative dynamics
Assume:

1) $\left(A_{0}, \alpha_{0}\right)$ is any C^{*}-dynamical system
2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Example 2: 'tensoring' of non-commuative and commutative dynamics

Assume:

1) $\left(A_{0}, \alpha_{0}\right)$ is any C^{*}-dynamical system
2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Consider (A, α) where $A:=C_{0}(X) \otimes A_{0}=C_{0}\left(X, A_{0}\right)$ and

$$
\alpha(a)(x):=\alpha_{0}(a(\varphi(x)) \quad \text { for } x \in \Delta, \quad \alpha(a)(x)=0 \quad \text { for } x \notin \Delta .
$$

Example 2: 'tensoring' of non-commuative and commutative dynamics

Assume:

1) $\left(A_{0}, \alpha_{0}\right)$ is any C^{*}-dynamical system
2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Consider (A, α) where $A:=C_{0}(X) \otimes A_{0}=C_{0}\left(X, A_{0}\right)$ and

$$
\alpha(a)(x):=\alpha_{0}(a(\varphi(x)) \quad \text { for } x \in \Delta, \quad \alpha(a)(x)=0 \quad \text { for } x \notin \Delta .
$$

Prop. (Pasnicu, Rørdam 2007)

A_{0} is purely infinite and has the ideal property, X is zero dimensional
$A:=C_{0}(X) \otimes A_{0}$
$\Longrightarrow \quad$ is purely infinite and has the ideal property

Example 2: 'tensoring' of non-commuative and commutative dynamics

Assume:

1) $\left(A_{0}, \alpha_{0}\right)$ is any C^{*}-dynamical system
2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Consider (A, α) where $A:=C_{0}(X) \otimes A_{0}=C_{0}\left(X, A_{0}\right)$ and

$$
\alpha(a)(x):=\alpha_{0}(a(\varphi(x)) \quad \text { for } x \in \Delta, \quad \alpha(a)(x)=0 \quad \text { for } x \notin \Delta .
$$

Prop. (Pasnicu, Rørdam 2007)

A_{0} is purely infinite and has the ideal property, X is zero dimensional

$$
A:=C_{0}(X) \otimes A_{0}
$$

$\Longrightarrow \quad$ is purely infinite and has the ideal property

Corollary.

Suppose X is zero dimensional, φ is free, and $\alpha_{0}\left(A_{0}\right)$ is full in A_{0}.
A_{0} is purely infinite and has the ideal property

$$
\Longrightarrow \text { the same is true for } C^{*}(A, \alpha, J) .
$$

Example 3: from 1-point to 2-point non-Hausdorff primitive spectrum

Let (A, α) be as in the previous slide where

Example 3: from 1-point to 2-point non-Hausdorff primitive spectrum

Let (A, α) be as in the previous slide where

1) A_{0} is your favorite Kirchberg algebra, α_{0} arbitrary (non-zero)

Example 3: from 1-point to 2-point non-Hausdorff primitive spectrum

Let (A, α) be as in the previous slide where

1) A_{0} is your favorite Kirchberg algebra, α_{0} arbitrary (non-zero)
2) (X, φ) is a partial dynamical with $X:=\mathcal{C} \cup\left\{x_{0}\right\}$ where

$\varphi: \mathcal{C} \rightarrow \mathcal{C}$ is your favorite minimal homeomorphism on the Cantor set

Example 3: from 1-point to 2-point non-Hausdorff primitive spectrum

Let (A, α) be as in the previous slide where

1) A_{0} is your favorite Kirchberg algebra, α_{0} arbitrary (non-zero)
2) (X, φ) is a partial dynamical with $X:=\mathcal{C} \cup\left\{x_{0}\right\}$ where

$\varphi: \mathcal{C} \rightarrow \mathcal{C}$ is your favorite minimal homeomorphism on the Cantor set

Corollary.

$C^{*}(A, \alpha)$ is strongly purely infinite, nuclear, separable and
$\operatorname{Prim}\left(C^{*}(A, \alpha)\right)$ has two points and is non-Hausdorff.
Moreover, both $C^{*}(A, \alpha)$ and its non-trivial quotient satisfy UCT.

