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A - C∗-algebra
α : A→ A - an extendible endomorphism of A, i.e. α extends to

strictly continuous endomorphism α : M(A)→ M(A)

}
C∗-dyna
mical
system

Def. (π,U) is a representation of (A, α) if
π : A→ B(H) is a nondegenerate representation, U ∈ B(H) and

Uπ(a)U∗ = π(α(a)), a ∈ A.

We let C∗(π,U) := C∗(π(A) ∪ π(A)U).

Lem. For any representation (π,U) of (A, α)

U is a partial isometry and U∗U ∈ π(A)′. In particular,

J := {a ∈ A : U∗Uπ(a) = π(a)}

is an ideal in A. Moreover, if π is faithful then J ⊆ (kerα)⊥.

Def. Let J / A. A representation (π,U) of (A, α) is J-covariant if

J ⊆ {a ∈ A : U∗Uπ(a) = π(a)}.
If J = (kerα)⊥ we omit prefix ‘J-’.
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Def. Let J / A. Relative crossed product is C∗(A, α; J) := C∗(jA, u) where
(jA, u) is a universal J-covariant representation of (A, α). We put

C∗(A, α) := C∗(A, α; (kerα)⊥).

Facts.

1 u ∈ M(C∗(A, α; J))

2 jA : A→ C∗(A, α; J) is injective ⇐⇒ J ⊆ (kerα)⊥.
3 C∗(A, α) is the (unrelative) crossed product

u is an isometry ⇐⇒ α is a monomorphism

4 C∗(A, α; A) is Stacey’s crossed product (u is always an isometry)

A embeds into C∗(A, α; A) ⇐⇒ α is a monomorphism

5 C∗(A, α; {0}) ’Toeplitz’ crossed product (u is never an isometry)
studied by Raeburn et al.

{0} ⊆ (kerα)⊥ ⊆ A
Aristotle———–
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Example: polar decomposition C ∗-algebras
Let T = U|T | be the polar decomposition of T ∈ B(H) and put

C∗(T ) := C∗({|T |,U, 1}).

We have two natural mappings on C∗(T ) and a subalgebra
α(a) := UaU∗, α∗(a) := U∗aU,

A := C∗
(⋃

n∈N

{αn(|T |), αn(1)}

)}
the smallest C∗-algebra
containing |T |, 1 and
invariant under α

(A, α) is a C∗-dynamical system ⇐⇒ U∗U ∈ A′ (†)

Assuming (†) we have the natural epimorphism

idA o U : C∗(A, α, J)→ C∗(T ) where J := {a ∈ A : U∗Ua = a}

Moreover, C∗(A, α, J) ∼= C∗(B, β) where

B := C∗
(⋃

n∈N

αn
∗(A)

)}
the smallest C∗-algebra
containing A and
invariant under α∗

and β := α|B is an endomorphism with complemented kernel and corner range
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Reversible C ∗-dynamical systems

Def. A C∗-dynamical system (B, β) is reversible if
ker β is complemented in B and β(B) is hereditary in B.

Then we put

β∗(a) := β−1(β(1)aβ(1)), a ∈ B,

where β−1 is the inverse to isomorphism β : (ker β)⊥ → β(B) = β(1)Bβ(1).

Facts. Let (B, β) be reversible. Then C∗(B, β) is spanned by
n∑

k=1

u∗ka∗−k + a0 +

n∑
k=1

akuk , a±k ∈ β
k
(1)B,

where β(a) = uau∗, β∗(a) = u∗au, a ∈ B. We have an exact sequence

K0(β(B))
ι∗−(β∗)∗

// K0(B)
ι∗
// K0(C∗(B, β))

��
K1(C∗(B, β))

OO

K1(B)
ι∗oo K1(β(B))

ι∗−(β∗)∗oo

Moreover, C∗(B, β) ∼= B oβ,β∗ N is isomorphic to Exel’s crossed product
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Let α : A→ A be an arbitrary extendible endomorphism and J E (kerα)⊥.

We define a C∗-dynamical system (B, β) to be the direct limit of the sequence

(A, α) = (B0, β0)
T0−→ (B1, β1)

T1−→ (B2, β2)
T2−→ ...

where we let q : A→ A/J to be the quotient map, An := αn(1)Aαn(1) and

Bn = q(A0)⊕ q(A1)⊕ ...⊕ q(An−1)⊕ An

βn(a0 ⊕ a1 ⊕ ...⊕ an) = a1 ⊕ a2 ⊕ ...⊕ q(an)⊕ α(an)

Bn

Tn

��

= q(A0)

id
��

⊕ ... ⊕ q(An−1)

id
��

⊕ An

q

��

α

!!
Bn+1 = q(A0) ⊕ ... ⊕ q(An−1) ⊕ q(An) ⊕ An+1

Thm. (B, β) is a well defined reversible C∗-dynamical system and

C∗(A, α, J) ∼= C∗(B, β).

Def. We call (B, β) the natural reversible J-extension of (A, α).
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Theorem (various ideal structures) We assume J ⊆ (kerα)⊥

�� ��ideals in C∗(A, α, J)
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in C∗(A, α, J) = C∗(B, β)
ks +3
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	invariant ideals

in (B, β)
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in (A, α)
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ideals in C∗(A, α, J)
generated by their
intersection with A
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�
	J-pairs of ideals

for (A, α)

Def. Ideal I in A is J-invariant in (A, α) if α(I) ⊆ I and J ∩ α−1(I) ⊆ I.

Def. The pair of ideals (I, I ′) in A is a J-pair in (A, α) if

I is J-invariant, J ⊆ I ′ and I ′ ∩ α−1(I) = I.
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Standing assumptions:
A is a C0(X)-algebra,

equivalently A is the section algebra in an upper
semicontinuous C∗-bundle A =

⊔
x∈X

A(x) where

A(x) := A/
(

C0(X \ {x}) · A
)
, x ∈ X .

A is a continuous C0(X)-algebra ⇔ A is a continuous C∗-bundle
there is an endomorphism Φ : C0(X)→ C0(X) satisfying

α(f · a) = Φ(f ) · α(a), f ∈ C0(X), a ∈ A.

Equivalently, there exists a pair (ϕ, {αx}x∈∆) consisting of
1) a continuous proper map ϕ : ∆→ X where ∆ ⊂ X is open,
2) a ’continuous‘ bundle of homomorphisms {αx}x∈∆ where

αx : A(ϕ(x))→ A(x) for each x ∈ ∆

such that treating A as the section algebra of A we have

α(a)(x) =

{
αx (a(ϕ(x)), x ∈ ∆,

0x , x /∈ ∆,
a ∈ A, x ∈ X .

We say (A, α) is induced by (ϕ, {αx}x∈∆) - a morphism of C∗-bundle A.
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Theorem. (Pure infiniteness I)

Suppose that ϕ̃ is free and for each x ∈ ∆̃ the range of βx is full in B(x).

Assume also that B has the ideal property. Then C∗(B, β) has the ideal
property and the following statements are equivalent:

(i) C∗(B, β) is purely infinite.

(ii) Every non-zero hereditary C∗-subalgebra in any quotient C∗(B, β)
contains an infinite projection.

(iii) Every element in B+ \ {0} is properly infinite in C∗(B, β).

If B is of real rank zero, each of the above conditions is equivalent to

(iii’) Every non-zero projection in B is properly infinite in C∗(B, β).

In particular, if B is purely infinite then C∗(B, β) is purely infinite.

Theorem. (Pure infiniteness II)
Suppose that ϕ is free and for each x ∈ ∆ the range of αx is full in A(x).

A is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).
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Example 1: systems on C∗-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C∗-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X )-algebra (with σA = id)

2) α : A→ A is an endomorphism with α(Z (A)) ⊆ Z (A)α(1).
Then (A, α) is induced by a morphism (ϕ, {αx}x∈∆)

Thm. (Pasnicu 2006)
A has the ideal property ⇐⇒ X is zero dimensional

Corollary.
If X is zero dimensional, ϕ is free, and A is purely infinite, then

C∗(A, α, J) is purely infinite and has the ideal property

and ideal lattice in C∗(A, α, J) is described by J-pairs for (A, α).



Example 1: systems on C∗-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C∗-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X )-algebra (with σA = id)

2) α : A→ A is an endomorphism with α(Z (A)) ⊆ Z (A)α(1).
Then (A, α) is induced by a morphism (ϕ, {αx}x∈∆)

Thm. (Pasnicu 2006)
A has the ideal property ⇐⇒ X is zero dimensional

Corollary.
If X is zero dimensional, ϕ is free, and A is purely infinite, then

C∗(A, α, J) is purely infinite and has the ideal property

and ideal lattice in C∗(A, α, J) is described by J-pairs for (A, α).



Example 1: systems on C∗-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C∗-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X )-algebra (with σA = id)

2) α : A→ A is an endomorphism with α(Z (A)) ⊆ Z (A)α(1).
Then (A, α) is induced by a morphism (ϕ, {αx}x∈∆)

Thm. (Pasnicu 2006)
A has the ideal property ⇐⇒ X is zero dimensional

Corollary.
If X is zero dimensional, ϕ is free, and A is purely infinite, then

C∗(A, α, J) is purely infinite and has the ideal property

and ideal lattice in C∗(A, α, J) is described by J-pairs for (A, α).



Example 1: systems on C∗-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C∗-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X )-algebra (with σA = id)

2) α : A→ A is an endomorphism with α(Z (A)) ⊆ Z (A)α(1).
Then (A, α) is induced by a morphism (ϕ, {αx}x∈∆)

Thm. (Pasnicu 2006)
A has the ideal property ⇐⇒ X is zero dimensional

Corollary.
If X is zero dimensional, ϕ is free, and A is purely infinite, then

C∗(A, α, J) is purely infinite and has the ideal property

and ideal lattice in C∗(A, α, J) is described by J-pairs for (A, α).



Example 1: systems on C∗-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C∗-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X )-algebra (with σA = id)

2) α : A→ A is an endomorphism with α(Z (A)) ⊆ Z (A)α(1).
Then (A, α) is induced by a morphism (ϕ, {αx}x∈∆)

Thm. (Pasnicu 2006)
A has the ideal property ⇐⇒ X is zero dimensional

Corollary.
If X is zero dimensional, ϕ is free, and A is purely infinite, then

C∗(A, α, J) is purely infinite and has the ideal property

and ideal lattice in C∗(A, α, J) is described by J-pairs for (A, α).



Example 1: systems on C∗-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C∗-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X )-algebra (with σA = id)

2) α : A→ A is an endomorphism with α(Z (A)) ⊆ Z (A)α(1).
Then (A, α) is induced by a morphism (ϕ, {αx}x∈∆)

Thm. (Pasnicu 2006)
A has the ideal property ⇐⇒ X is zero dimensional

Corollary.
If X is zero dimensional, ϕ is free, and A is purely infinite, then

C∗(A, α, J) is purely infinite and has the ideal property

and ideal lattice in C∗(A, α, J) is described by J-pairs for (A, α).



Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:

1) (A0, α0) is any C∗-dynamical system
2) (X , ϕ) is a partial dynamical system with ∆ ⊆ X clopen.

Consider (A, α) where A := C0(X )⊗ A0 = C0(X ,A0) and
α(a)(x) := α0(a(ϕ(x)) for x ∈ ∆, α(a)(x) = 0 for x /∈ ∆.

Prop. (Pasnicu, Rørdam 2007)

A0 is purely infinite and
has the ideal property,
X is zero dimensional

=⇒
A := C0(X )⊗ A0
is purely infinite and
has the ideal property

Corollary.
Suppose X is zero dimensional, ϕ is free, and α0(A0) is full in A0.

A0 is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).



Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:
1) (A0, α0) is any C∗-dynamical system

2) (X , ϕ) is a partial dynamical system with ∆ ⊆ X clopen.
Consider (A, α) where A := C0(X )⊗ A0 = C0(X ,A0) and

α(a)(x) := α0(a(ϕ(x)) for x ∈ ∆, α(a)(x) = 0 for x /∈ ∆.

Prop. (Pasnicu, Rørdam 2007)

A0 is purely infinite and
has the ideal property,
X is zero dimensional

=⇒
A := C0(X )⊗ A0
is purely infinite and
has the ideal property

Corollary.
Suppose X is zero dimensional, ϕ is free, and α0(A0) is full in A0.

A0 is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).



Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:
1) (A0, α0) is any C∗-dynamical system
2) (X , ϕ) is a partial dynamical system with ∆ ⊆ X clopen.

Consider (A, α) where A := C0(X )⊗ A0 = C0(X ,A0) and
α(a)(x) := α0(a(ϕ(x)) for x ∈ ∆, α(a)(x) = 0 for x /∈ ∆.

Prop. (Pasnicu, Rørdam 2007)

A0 is purely infinite and
has the ideal property,
X is zero dimensional

=⇒
A := C0(X )⊗ A0
is purely infinite and
has the ideal property

Corollary.
Suppose X is zero dimensional, ϕ is free, and α0(A0) is full in A0.

A0 is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).



Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:
1) (A0, α0) is any C∗-dynamical system
2) (X , ϕ) is a partial dynamical system with ∆ ⊆ X clopen.

Consider (A, α) where A := C0(X )⊗ A0 = C0(X ,A0) and
α(a)(x) := α0(a(ϕ(x)) for x ∈ ∆, α(a)(x) = 0 for x /∈ ∆.

Prop. (Pasnicu, Rørdam 2007)

A0 is purely infinite and
has the ideal property,
X is zero dimensional

=⇒
A := C0(X )⊗ A0
is purely infinite and
has the ideal property

Corollary.
Suppose X is zero dimensional, ϕ is free, and α0(A0) is full in A0.

A0 is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).



Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:
1) (A0, α0) is any C∗-dynamical system
2) (X , ϕ) is a partial dynamical system with ∆ ⊆ X clopen.

Consider (A, α) where A := C0(X )⊗ A0 = C0(X ,A0) and
α(a)(x) := α0(a(ϕ(x)) for x ∈ ∆, α(a)(x) = 0 for x /∈ ∆.

Prop. (Pasnicu, Rørdam 2007)

A0 is purely infinite and
has the ideal property,
X is zero dimensional

=⇒
A := C0(X )⊗ A0
is purely infinite and
has the ideal property

Corollary.
Suppose X is zero dimensional, ϕ is free, and α0(A0) is full in A0.

A0 is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).



Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:
1) (A0, α0) is any C∗-dynamical system
2) (X , ϕ) is a partial dynamical system with ∆ ⊆ X clopen.

Consider (A, α) where A := C0(X )⊗ A0 = C0(X ,A0) and
α(a)(x) := α0(a(ϕ(x)) for x ∈ ∆, α(a)(x) = 0 for x /∈ ∆.

Prop. (Pasnicu, Rørdam 2007)

A0 is purely infinite and
has the ideal property,
X is zero dimensional

=⇒
A := C0(X )⊗ A0
is purely infinite and
has the ideal property

Corollary.
Suppose X is zero dimensional, ϕ is free, and α0(A0) is full in A0.

A0 is purely infinite and
has the ideal property =⇒ the same is true for C∗(A, α, J).



Example 3: from 1-point to 2-point non-Hausdorff primitive spectrum

Let (A, α) be as in the previous slide where

1) A0 is your favorite Kirchberg algebra, α0 arbitrary (non-zero)
2) (X , ϕ) is a partial dynamical with X := C ∪ {x0} where

x0

= C

ϕ : C → C is your favorite minimal homeomorphism on the Cantor set

Corollary.
C∗(A, α) is strongly purely infinite, nuclear, separable and

Prim(C∗(A, α)) has two points and is non-Hausdorff.

Moreover, both C∗(A, α) and its non-trivial quotient satisfy UCT.
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