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[ crossed products by c.p. maps ]

BKK, see arXive
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Def. A C*-dynamical system (B, §) is reversible if

ker 8 is complemented in B and 3(B) is hereditary in B. Then we put
B.(a) == B1(B(1)aB(1)), a€B,
where 371 is the inverse to isomorphism 3 : (ker 3)* — B(B) = B(1)BA(1).

Facts. Let (B, 3) be reversible. Then C*(B, 3) is spanned by

n

Zu*ka*,k +ao+Zakuk, a4k eBk(l)B,

k=1 k=1

where 8(a) = uau™, 8.(a) = u*au, a € B. We have an exact sequence

Ko(B(B)) o Ko(B) —— Ko(C"(B,))

T Ls—(Bx)x J{

Ki(C*(B, B)) <—— K(B) <22 Ky (3(B))

Moreover, C*(B, ) & B x3,3, N is isomorphic to Exel's crossed product
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Thm. (B, ) is a well defined reversible C*-dynamical system and

C*(A o, J) = C*(B, B).

Def. We call (B, 3) the natural reversible J-extension of (A, «). J
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Theorem (various ideal structures) \We assume J C (ker o)

[ideals in C*(A, a, J)]

/ N\

gauge-invariant ideals
in C*(A,a,J) = C*(B,B)

] [ invariant ideals ]
>

in (B, 5)

/\ 7N\

ideals in (‘(; [SA E‘ J) J- |nvar|ant ideals J-pairs of ideals
_generate_ Yy t eir < (A, a) < for (A, a)
intersection with A

Def. Ideal / in A is J-invariant in (A, ) if (/) C/and JNa™*(/) C I. J

Def. The pair of ideals (/, /") in A is a J-pair in (A, a) if ’

lis J-invariant, JC /I and [I'na '(f)=1.
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@ Ais a Go(X)-algebra, equivalently A is the section algebra in an upper

semicontinuous C*-bundle A = | | A(x) where
xeX

A(x) = A/(Co(X \{x}) - A), X € X.

A'is a continuous Co(X)-algebra < A is a continuous C*-bundle

@ there is an endomorphism & : Go(X) — Go(X) satisfying
aff - a) = o(f) - aa), fe G(X), ae A

Equivalently, there exists a pair (p, {ax}xca) consisting of

1) a continuous proper map ¢ : A — X where A C X is open,
2) a 'continuous' bundle of homomorphisms {ay}xca where
ax : A(p(x)) — A(x) for each x € A

such that treating A as the section algebra of A we have

) — {ax(a@(x)), xea,

acA xeX.
Oy, x ¢ A,

We say (A, @) is induced by (¢, {ax}xea) - a morphism of C*-bundle A.
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Let (B, 3) be the natural reversible J-extension of (A, @).

Proposition. B is a natural Co(X)-algebra in such a way that

i) B is induced by (4, {8x}, _z) where @ is a partial homeomorphism

ii) there is a continuous surjection X — X that intertwines @ and o.

Corollary. (Uniqueness theorem)

If ¢ is topologically free outside Y := ga(Prim(A/J)) and B is a
continuous Co(X)-algebra, then for every faithful representation (m, U) of
(A, @) such that J = {a € A: U*Un(a) = n(a)} we have

C*(A,a, J) = C*(n(A) U n(A)U)

Corollary. (ldeal lattice description)

If ¢ is free, then all ideals in C*(A, a, J) are gauge-invariant — we have a
lattice isomorphism between ideals in C*(A, «, J) and J-pairs for (A, a).
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Theorem. (Pure infiniteness |)

Suppose that ¢ is free and for each x € A the range of [y is full in B(x).
Assume also that B has the ideal property. Then C*(B, 3) has the ideal
property and the following statements are equivalent:

(i) C*(B,p) is purely infinite.

(ii) Every non-zero hereditary C*-subalgebra in any quotient C*(B, 53)
contains an infinite projection.

(iii) Every element in BT \ {0} is properly infinite in C*(B, 3).
If B is of real rank zero, each of the above conditions is equivalent to
(iii") Every non-zero projection in B is properly infinite in C*(B, j3).

In particular, if B is purely infinite then C*(B, ) is purely infinite.

Theorem. (Pure infiniteness Il)

Suppose that ¢ is free and for each x € A the range of ay is full in A(x).

A is purely infinite and

has the ideal property = the same is true for C*(A, «, J).
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Example 1: systems on C*-algebras with Hausdorff primitive ideal space

Assume:

1) Ais a unital C*-algebra with X := Prim(A) being Hausdorff space.
Then A is a continuous C(X)-algebra (with o4 = id)

2) a:A— Ais an endomorphism with a(Z(A)) C Z(A)a(1).
Then (A, «) is induced by a morphism (i, {ax }xea)

Thm. (Pasnicu 2006)
A has the ideal property <= X is zero dimensional

If X is zero dimensional, ¢ is free, and A is purely infinite, then

C*(A, a, J) is purely infinite and has the ideal property

and ideal lattice in C*(A, «, J) is described by J-pairs for (A, «).
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Example 2: ‘tensoring’ of non-commuative and commutative dynamics

Assume:
1) (Ao, ap) is any C*-dynamical system
2) (X, ) is a partial dynamical system with A C X clopen.
Consider (A, ) where A := Go(X) ® Ag = Go(X, Ap) and
a(a)(x) == ao(a(p(x)) forx e A, afa)(x)=0 forx ¢ A.

Prop. (Pasnicu, Rgrdam 2007)

Ag is purely infinite and A= G(X)® Ag
has the ideal property, — s purely infinite and
X is zero dimensional has the ideal property

v
Corollary.

Suppose X is zero dimensional, ¢ is free, and ag(Ao) is full in Ag.

Ao is purely infinite and

has the ideal property = the same is true for C*(A, o, J).
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Example 3: from 1-point to 2-point non-Hausdorff primitive spectrum

Let (A, ) be as in the previous slide where

1) Ag is your favorite Kirchberg algebra, aq arbitrary (non-zero)

2) (X, ) is a partial dynamical with X := C U {xp} where

‘
. I =C

0 1/3 2/3 1

¢ : C — C is your favorite minimal homeomorphism on the Cantor set

C*(A, «) is strongly purely infinite, nuclear, separable and

Prim(C*(A, «)) has two points and is non-Hausdorff.

Moreover, both C*(A, «) and its non-trivial quotient satisfy UCT.




