Purely infinite crossed products by endomorphisms of $C_0(X)$ -algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

▲日 ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶ ▲ 回 ▶ ▲ 回 ▶

Purely infinite crossed products by endomorphisms of $C_0(X)$ -algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

▲日 ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶ ▲ 回 ▶ ▲ 回 ▶

Purely infinite crossed products by endomorphisms of $C_0(X)$ -algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

▲御▶ ▲陸▶ ▲陸▶

What is crossed product by an endomorphism?

Purely infinite crossed products by endomorphisms of $C_0(X)$ -algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

- What is crossed product by an endomorphism?
- 2 Reversible extensions and ideal structure

Purely infinite crossed products by endomorphisms of $C_0(X)$ -algebras

Bartosz Kosma Kwaśniewski

IMADA, Odense

→ 同 ▶ → 臣 ▶ → 臣 ▶

- What is crossed product by an endomorphism?
- 2 Reversible extensions and ideal structure
- **③** Endomorphisms of $C_0(X)$ -algebras and their crossed products

Purely infinite crossed products by endomorphisms of $C_0(X)$ -algebras

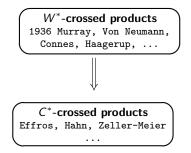
Bartosz Kosma Kwaśniewski

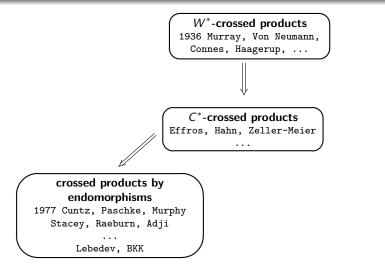
IMADA, Odense

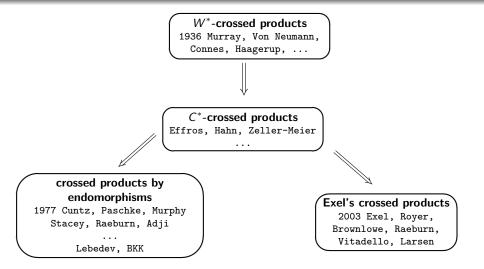
- What is crossed product by an endomorphism?
- 2 Reversible extensions and ideal structure
- **③** Endomorphisms of $C_0(X)$ -algebras and their crossed products
- Examples

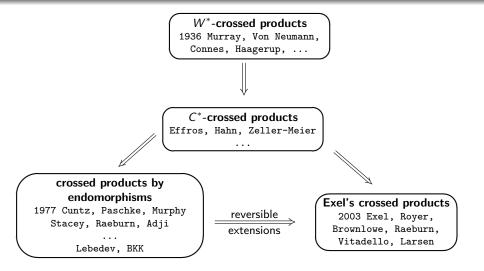
W*-crossed products
1936 Murray, Von Neumann,
Connes, Haagerup, ...

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

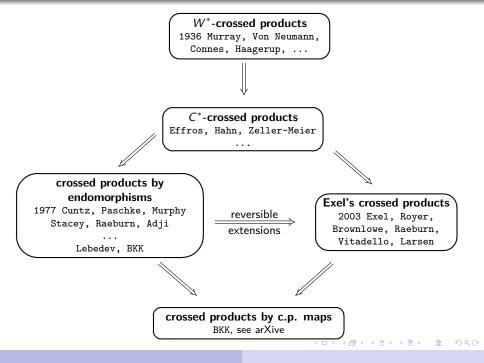








▲ロト▲御ト▲臣ト▲臣ト 臣 のQの



 $\begin{array}{c} A - C^* \text{-algebra} \\ \alpha : A \to A \text{- an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{c} C^* \text{-dyna} \\ \text{mical} \\ \text{system} \end{array}$

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▶ ● ○ ○

 $\begin{array}{c} A - C^* \text{-algebra} \\ \alpha : A \to A \text{ - an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{c} C^* \text{-dyna} \\ \text{mical} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a nondegenerate representation, $\mathcal{U} \in \mathcal{B}(\mathcal{H})$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

 $\begin{array}{c} A - C^* \text{-algebra} \\ \alpha : A \to A \text{ - an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{c} C^* \text{-dyna} \\ \text{mical} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: A
ightarrow \mathcal{B}(H)$ is a nondegenerate representation, $U \in \mathcal{B}(H)$ and

$$U\pi(a)U^*=\pi(\alpha(a)), \qquad a\in A.$$

イロト イポト イヨト イヨト 三日

We let $C^*(\pi, U) := C^*(\pi(A) \cup \pi(A)U).$

 $\begin{array}{l} A - C^* \text{-algebra} \\ \alpha : A \to A \text{- an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{l} C^* \text{-dyna} \\ \underset{\text{system}}{\text{mical}} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: \mathcal{A}
ightarrow \mathcal{B}(\mathcal{H})$ is a nondegenerate representation, $\mathcal{U} \in \mathcal{B}(\mathcal{H})$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

We let $C^*(\pi, U) := C^*(\pi(A) \cup \pi(A)U).$

Lem. For any representation (π, U) of (A, α)

U is a partial isometry and $U^*U \in \pi(A)'$.

 $\begin{array}{l} A - C^* \text{-algebra} \\ \alpha : A \to A \text{- an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{l} C^* \text{-dyna} \\ \underset{\text{system}}{\text{mical}} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: \mathcal{A}
ightarrow \mathcal{B}(\mathcal{H})$ is a nondegenerate representation, $\mathcal{U} \in \mathcal{B}(\mathcal{H})$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

We let $C^*(\pi, U) := C^*(\pi(A) \cup \pi(A)U).$

Lem. For any representation (π, U) of (A, α)

U is a partial isometry and $U^*U\in\pi(A)'$. In particular,

$$J:=\{a\in A: U^*U\pi(a)=\pi(a)\}$$

イロト 不得 トイヨト イヨト 二日

is an ideal in A.

 $\begin{array}{c} A - C^* \text{-algebra} \\ \alpha : A \to A \text{ - an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{c} C^* \text{-dyna} \\ \text{mical} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: \mathcal{A}
ightarrow \mathcal{B}(\mathcal{H})$ is a nondegenerate representation, $\mathcal{U} \in \mathcal{B}(\mathcal{H})$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

We let $C^*(\pi, U) := C^*(\pi(A) \cup \pi(A)U).$

Lem. For any representation (π, U) of (A, α)

U is a partial isometry and $U^*U\in\pi(A)'$. In particular,

$$J:=\{a\in A: U^*U\pi(a)=\pi(a)\}$$

イロト イポト イヨト イヨト 三日

is an ideal in A. Moreover, if π is faithful then $J \subseteq (\ker \alpha)^{\perp}$.

 $\begin{array}{l} A - C^* \text{-algebra} \\ \alpha : A \to A \text{ - an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{l} C^* \text{-dyna} \\ \text{mical} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: \mathcal{A}
ightarrow \mathcal{B}(\mathcal{H})$ is a nondegenerate representation, $\mathcal{U} \in \mathcal{B}(\mathcal{H})$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

We let $C^*(\pi, U) := C^*(\pi(A) \cup \pi(A)U).$

Lem. For any representation (π, U) of (A, α)

U is a partial isometry and $U^*U\in\pi(A)'$. In particular,

$$J:=\{a\in A: U^*U\pi(a)=\pi(a)\}$$

is an ideal in A. Moreover, if π is faithful then $J \subseteq (\ker \alpha)^{\perp}$.

Def. Let $J \triangleleft A$. A representation (π, U) of (A, α) is *J*-covariant if

$$J \subseteq \{a \in A : U^* U\pi(a) = \pi(a)\}.$$

 $\begin{array}{l} A - C^* \text{-algebra} \\ \alpha : A \to A \text{ - an extendible endomorphism of } A, \text{ i.e. } \alpha \text{ extends to} \\ \text{ strictly continuous endomorphism } \overline{\alpha} : M(A) \to M(A) \end{array} \right\} \begin{array}{l} C^* \text{-dyna} \\ \text{mical} \\ \text{system} \end{array}$

Def. (π, U) is a representation of (A, α) if

 $\pi: \mathcal{A}
ightarrow \mathcal{B}(\mathcal{H})$ is a nondegenerate representation, $\mathcal{U} \in \mathcal{B}(\mathcal{H})$ and

$$U\pi(a)U^* = \pi(\alpha(a)), \qquad a \in A.$$

We let $C^*(\pi, U) := C^*(\pi(A) \cup \pi(A)U).$

Lem. For any representation (π, U) of (A, α)

U is a partial isometry and $U^*U\in\pi(A)'$. In particular,

$$J:=\{a\in A: U^*U\pi(a)=\pi(a)\}$$

is an ideal in A. Moreover, if π is faithful then $J \subseteq (\ker \alpha)^{\perp}$.

Def. Let $J \triangleleft A$. A representation (π, U) of (A, α) is *J*-covariant if

$$J \subseteq \{a \in A : U^* U\pi(a) = \pi(a)\}.$$

If $J = (\ker \alpha)^{\perp}$ we omit prefix '*J*-'.

 (j_A, \mathbf{u}) is a universal J-covariant representation of (A, α) . We put

$$C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$$

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put

 $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.

 $u \in M(C^*(A, \alpha; J))$

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.

 $u \in M(C^*(A, \alpha; J))$

2 $j_A : A \to C^*(A, \alpha; J)$ is injective $\iff J \subseteq (\ker \alpha)^{\perp}$.

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put

 $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.

- $u \in M(C^*(A, \alpha; J))$
- $2 j_A : A \to C^*(A, \alpha; J) \text{ is injective } \Longleftrightarrow J \subseteq (\ker \alpha)^{\perp}.$
- **(3)** $C^*(A, \alpha)$ is the (unrelative) crossed product

 \mathbf{u} is an isometry $\iff \alpha$ is a monomorphism

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.

- $u \in M(C^*(A, \alpha; J))$
- $2 j_A : A \to C^*(A, \alpha; J) \text{ is injective } \Longleftrightarrow J \subseteq (\ker \alpha)^{\perp}.$
- **3** $C^*(A, \alpha)$ is the (unrelative) crossed product

u is an isometry $\iff \alpha$ is a monomorphism

3 $C^*(A, \alpha; A)$ is **Stacey's crossed product** (**u** is always an isometry)

A embeds into $C^*(A, \alpha; A) \iff \alpha$ is a monomorphism

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.

- $u \in M(C^*(A, \alpha; J))$
- 2 $j_A : A \to C^*(A, \alpha; J)$ is injective $\iff J \subseteq (\ker \alpha)^{\perp}$.
- **(3)** $C^*(A, \alpha)$ is the (unrelative) crossed product

u is an isometry $\iff \alpha$ is a monomorphism

• $C^*(A, \alpha; A)$ is Stacey's crossed product (u is always an isometry)

A embeds into $C^*(A, \alpha; A) \iff \alpha$ is a monomorphism

Studied by Raeburn et al.
(Λ, α; {0}) 'Toeplitz' crossed product (u is never an isometry) studied by Raeburn et al.

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.

- $\mathbf{0} \ \mathbf{u} \in M(C^*(A, \alpha; J))$
- $2 j_A : A \to C^*(A, \alpha; J) \text{ is injective } \Longleftrightarrow J \subseteq (\ker \alpha)^{\perp}.$
- **3** $C^*(A, \alpha)$ is the (unrelative) crossed product

 \mathbf{u} is an isometry $\iff \alpha$ is a monomorphism

C^{*}(A, α; A) is Stacey's crossed product (u is always an isometry)

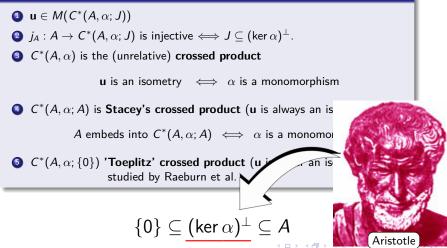
A embeds into $C^*(A, \alpha; A) \iff \alpha$ is a monomorphism

O C*(A, α; {0}) 'Toeplitz' crossed product (u is never an isometry) studied by Raeburn et al.

$$\{0\} \subseteq (\ker \alpha)^{\perp} \subseteq A$$

 (j_A, \mathbf{u}) is a universal *J*-covariant representation of (A, α) . We put $C^*(A, \alpha) := C^*(A, \alpha; (\ker \alpha)^{\perp}).$

Facts.



Let T = U|T| be the polar decomposition of $T \in B(H)$ and put $C^*(T) := C^*(\{|T|, U, 1\}).$

Let T = U|T| be the polar decomposition of $T \in B(H)$ and put $C^*(T) := C^*(\{|T|, U, 1\}).$

We have two natural mappings on $C^*(T)$ and a subalgebra

 $\alpha(\mathbf{a}) := U\mathbf{a}U^*, \qquad \alpha_*(\mathbf{a}) := U^*\mathbf{a}U,$

Let T = U|T| be the polar decomposition of $T \in B(H)$ and put $C^*(T) := C^*(\{|T|, U, 1\}).$

We have two natural mappings on $\mathcal{C}^*(\mathcal{T})$ and a subalgebra

$$\begin{aligned} \alpha(\mathbf{a}) &:= U\mathbf{a}U^*, \qquad \alpha_*(\mathbf{a}) := U^*\mathbf{a}U, \\ A &:= C^*\left(\bigcup_{n \in \mathbb{N}} \left\{\alpha^n(|\mathcal{T}|), \alpha^n(1)\right\}\right) \\ & \text{the smallest } C^*\text{-algebra} \\ & \text{containing } |\mathcal{T}|, 1 \text{ and} \\ & \text{invariant under } \alpha \end{aligned}$$

イロト イロト イヨト イヨト 三日

Let T = U|T| be the polar decomposition of $T \in B(H)$ and put $C^*(T) := C^*(\{|T|, U, 1\}).$

We have two natural mappings on $C^*(T)$ and a subalgebra

$$\begin{aligned} \alpha(\mathbf{a}) &:= U\mathbf{a}U^*, \qquad \alpha_*(\mathbf{a}) := U^*\mathbf{a}U, \\ A &:= C^*\left(\bigcup_{n \in \mathbb{N}} \left\{\alpha^n(|\mathcal{T}|), \alpha^n(1)\right\}\right) \end{aligned} \qquad \begin{array}{l} \text{the smallest C^*-algebra}\\ \text{containing $|\mathcal{T}|$, 1 and}\\ \text{invariant under α} \end{aligned}$$

 (A, α) is a C^* -dynamical system $\iff U^*U \in A'$ (†)

Let T = U|T| be the polar decomposition of $T \in B(H)$ and put

 $C^{*}(T) := C^{*}(\{|T|, U, 1\}).$

We have two natural mappings on $C^*(T)$ and a subalgebra

$$\begin{split} \alpha(\mathbf{a}) &:= U\mathbf{a}U^*, \qquad \alpha_*(\mathbf{a}) := U^*\mathbf{a}U, \\ A &:= C^*\left(\bigcup_{n \in \mathbb{N}} \left\{\alpha^n(|\mathcal{T}|), \alpha^n(1)\right\}\right) \\ \begin{array}{l} \text{the smallest } C^*\text{-algebra} \\ \text{containing } |\mathcal{T}|, 1 \text{ and} \\ \text{invariant under } \alpha \\ \end{array} \end{split}$$

 $({\sf A}, lpha)$ is a ${\sf C}^*$ -dynamical system $\iff {\sf U}^*{\sf U}\in {\sf A}'$

Assuming (\dagger) we have the natural epimorphism

$$id_A \rtimes U : C^*(A, \alpha, J) \to C^*(T)$$
 where $J := \{a \in A : U^*Ua = a\}$

Let T = U|T| be the polar decomposition of $T \in B(H)$ and put

 $C^{*}(T) := C^{*}(\{|T|, U, 1\}).$

We have two natural mappings on $C^*(T)$ and a subalgebra

$$\begin{split} &\alpha(\mathbf{a}) := U\mathbf{a}U^*, \qquad \alpha_*(\mathbf{a}) := U^*\mathbf{a}U, \\ &A := C^*\left(\bigcup_{n \in \mathbb{N}} \left\{\alpha^n(|\mathcal{T}|), \alpha^n(1)\right\}\right) \\ & \begin{array}{c} \text{the smallest } C^*\text{-algebra} \\ \text{containing } |\mathcal{T}|, 1 \text{ and} \\ \text{invariant under } \alpha \\ \end{array} \end{split}$$

 $({\sf A}, lpha)$ is a ${\sf C}^*$ -dynamical system $\iff {\sf U}^*{\sf U}\in {\sf A}'$

Assuming (\dagger) we have the natural epimorphism

$$id_A \rtimes U : C^*(A, \alpha, J) \to C^*(T)$$
 where $J := \{a \in A : U^*Ua = a\}$

Moreover, $C^*(A, \alpha, J) \cong C^*(B, \beta)$ where

Let T = U|T| be the polar decomposition of $T \in B(H)$ and put

 $C^{*}(T) := C^{*}(\{|T|, U, 1\}).$

We have two natural mappings on $C^*(T)$ and a subalgebra

$$\begin{split} \alpha(\mathbf{a}) &:= U\mathbf{a}U^*, \qquad \alpha_*(\mathbf{a}) := U^*\mathbf{a}U, \\ A &:= C^*\left(\bigcup_{n \in \mathbb{N}} \left\{\alpha^n(|\mathcal{T}|), \alpha^n(1)\right\}\right) \\ \end{bmatrix} \quad \begin{array}{l} \text{the smallest } \mathcal{C}^*\text{-algebra}\\ \text{containing } |\mathcal{T}|, 1 \text{ and}\\ \text{invariant under } \alpha \\ \end{split}$$

 (A, α) is a C^* -dynamical system $\iff U^*U \in A'$

Assuming (\dagger) we have the natural epimorphism

$$\mathit{id}_A \rtimes U : \mathit{C}^*(A, \alpha, J) \to \mathit{C}^*(T) \qquad ext{where } J := \{ a \in A : \mathit{U}^* \mathit{U}a = a \}$$

Moreover, $C^*(A, \alpha, J) \cong C^*(B, \beta)$ where

$$B := C^* \left(\bigcup_{n \in \mathbb{N}} \alpha_*^n(A) \right)$$
 the smallest C*-algebra
containing A and
invariant under α_*

and $\beta := \alpha|_B$ is an endomorphism with complemented kernel and corner range

Reversible C^* -dynamical systems

Def. A C^* -dynamical system (B, β) is reversible if

ker β is complemented in B and $\beta(B)$ is hereditary in B.

Reversible C^* -dynamical systems

Def. A C^* -dynamical system (B, β) is reversible if

ker β is complemented in B and $\beta(B)$ is hereditary in B. Then we put

$$eta_*(\mathsf{a}):=eta^{-1}(\overlineeta(1)\mathsf{a}\overlineeta(1)),\qquad \mathsf{a}\in B,$$

where β^{-1} is the inverse to isomorphism $\beta : (\ker \beta)^{\perp} \to \beta(B) = \overline{\beta}(1)B\overline{\beta}(1)$.

Reversible C^* -dynamical systems

Def. A C^* -dynamical system (B, β) is reversible if

ker β is complemented in B and $\beta(B)$ is hereditary in B. Then we put

$$eta_*(a):=eta^{-1}(\overlineeta(1)a\overlineeta(1)), \qquad a\in B,$$

where β^{-1} is the inverse to isomorphism $\beta : (\ker \beta)^{\perp} \to \beta(B) = \overline{\beta}(1)B\overline{\beta}(1)$.

Facts. Let (B, β) be reversible. Then $C^*(B, \beta)$ is spanned by

$$\sum_{k=1}^{n} \mathbf{u}^{*k} a_{-k}^{*} + a_0 + \sum_{k=1}^{n} a_k \mathbf{u}^k, \qquad a_{\pm k} \in \overline{\beta}^k(1) B$$

where $\beta(a) = uau^*$, $\beta_*(a) = u^*au$, $a \in B$.

Reversible C^* -dynamical systems

Def. A C^* -dynamical system (B, β) is reversible if

 $\ker\beta$ is complemented in B and $\beta(B)$ is hereditary in B. Then we put

$$eta_*(a):=eta^{-1}(\overlineeta(1)a\overlineeta(1)), \qquad a\in B,$$

where β^{-1} is the inverse to isomorphism β : $(\ker \beta)^{\perp} \rightarrow \beta(B) = \overline{\beta}(1)B\overline{\beta}(1)$.

Facts. Let (B, β) be reversible. Then $C^*(B, \beta)$ is spanned by

$$\sum_{k=1}^{n} \mathbf{u}^{*k} a_{-k}^{*} + a_0 + \sum_{k=1}^{n} a_k \mathbf{u}^k, \qquad a_{\pm k} \in \overline{\beta}^k(1) B_{\underline{\beta}}$$

where $\beta(a) = uau^*$, $\beta_*(a) = u^*au$, $a \in B$. We have an exact sequence

Moreover, $C^*(B,\beta) \cong B \rtimes_{\beta,\beta_*} \mathbb{N}$ is isomorphic to Exel's crossed product

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We define a C^* -dynamical system (B, β) to be the direct limit of the sequence

$$(A, \alpha) = (B_0, \beta_0) \xrightarrow{T_0} (B_1, \beta_1) \xrightarrow{T_1} (B_2, \beta_2) \xrightarrow{T_2} \dots$$

We define a C^* -dynamical system (B, β) to be the direct limit of the sequence

$$(A, \alpha) = (B_0, \beta_0) \xrightarrow{T_0} (B_1, \beta_1) \xrightarrow{T_1} (B_2, \beta_2) \xrightarrow{T_2} \dots$$

where we let $q: A \to A/J$ to be the quotient map, $A_n := \overline{\alpha}^n(1)A\overline{\alpha}^n(1)$ and

$$B_{n} = q(A_{0}) \oplus q(A_{1}) \oplus ... \oplus q(A_{n-1}) \oplus A_{n}$$

$$\beta_{n}(a_{0} \oplus a_{1} \oplus ... \oplus a_{n}) = a_{1} \oplus a_{2} \oplus ... \oplus q(a_{n}) \oplus \alpha(a_{n})$$

$$B_{n} = q(A_{0}) \oplus ... \oplus q(A_{n-1}) \oplus A_{n}$$

$$\downarrow^{T_{n}} \qquad \qquad \downarrow^{id} \qquad \qquad \downarrow^{id} \qquad \qquad \downarrow^{q}$$

$$B_{n+1} = q(A_{0}) \oplus ... \oplus q(A_{n-1}) \oplus q(A_{n}) \oplus A_{n+1}$$

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

We define a C^* -dynamical system (B, β) to be the direct limit of the sequence

$$(A, \alpha) = (B_0, \beta_0) \xrightarrow{T_0} (B_1, \beta_1) \xrightarrow{T_1} (B_2, \beta_2) \xrightarrow{T_2} \dots$$

where we let q:A o A/J to be the quotient map, $A_n:=\overline{lpha}^n(1)A\overline{lpha}^n(1)$ and

Thm. (B,β) is a well defined reversible C^* -dynamical system and

 $C^*(A, \alpha, J) \cong C^*(B, \beta).$

・ロト・西ト・山田・山田・山下

We define a C^* -dynamical system (B, β) to be the direct limit of the sequence

$$(\mathbf{A},\alpha) = (\mathbf{B}_0,\beta_0) \stackrel{T_0}{\longrightarrow} (\mathbf{B}_1,\beta_1) \stackrel{T_1}{\longrightarrow} (\mathbf{B}_2,\beta_2) \stackrel{T_2}{\longrightarrow} \dots$$

where we let q:A o A/J to be the quotient map, $A_n:=\overline{lpha}^n(1)A\overline{lpha}^n(1)$ and

$$B_{n} = q(A_{0}) \oplus q(A_{1}) \oplus ... \oplus q(A_{n-1}) \oplus A_{n}$$

$$\beta_{n}(a_{0} \oplus a_{1} \oplus ... \oplus a_{n}) = a_{1} \oplus a_{2} \oplus ... \oplus q(a_{n}) \oplus \alpha(a_{n})$$

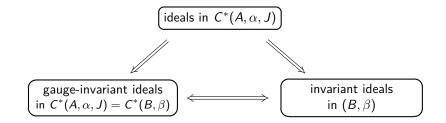
$$B_{n} = q(A_{0}) \oplus ... \oplus q(A_{n-1}) \oplus A_{n}$$

$$\downarrow^{T_{n}} \qquad \downarrow^{id} \qquad \downarrow^{id} \qquad \downarrow^{q} \qquad \stackrel{\alpha}{\longrightarrow} B_{n+1} = q(A_{0}) \oplus ... \oplus q(A_{n-1}) \oplus q(A_{n}) \oplus A_{n+1}$$

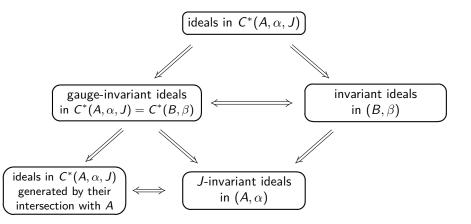
Thm. (B, β) is a well defined reversible C^* -dynamical system and

 $C^*(A, \alpha, J) \cong C^*(B, \beta).$

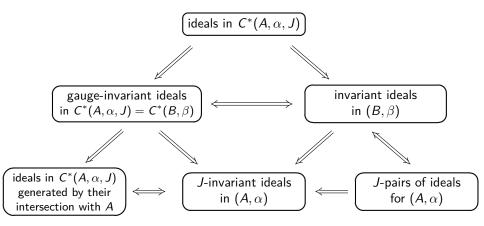
Def. We call (B, β) the natural reversible *J*-extension of (A, α) .

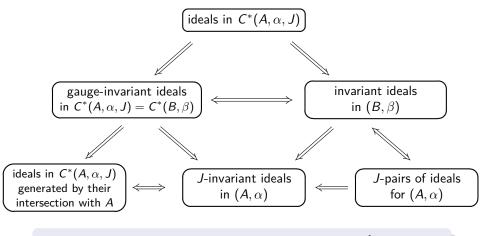


▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

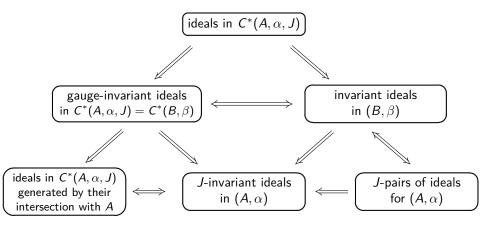


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ろくで





Def. Ideal *I* in *A* is *J*-invariant in (A, α) if $\alpha(I) \subseteq I$ and $J \cap \alpha^{-1}(I) \subseteq I$.



Def. Ideal *I* in *A* is *J*-invariant in (A, α) if $\alpha(I) \subseteq I$ and $J \cap \alpha^{-1}(I) \subseteq I$.

Def. The pair of ideals (I, I') in A is a J-pair in (A, α) if

I is *J*-invariant, $J \subseteq I'$ and $I' \cap \alpha^{-1}(I) = I$.

• A is a $C_0(X)$ -algebra,

• A is a $C_0(X)$ -algebra, equivalently A is the section algebra in an upper semicontinuous C*-bundle $\mathcal{A} = \bigsqcup_{x \in X} A(x)$ where

$$A(x) := A/\Big(C_0(X \setminus \{x\}) \cdot A\Big), \qquad x \in X.$$

• A is a $C_0(X)$ -algebra, equivalently A is the section algebra in an upper semicontinuous C*-bundle $\mathcal{A} = \bigsqcup_{x \in X} A(x)$ where

$$A(x) := A/\Big(C_0(X \setminus \{x\}) \cdot A\Big), \qquad x \in X.$$

A is a continuous $C_0(X)$ -algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^* -bundle

• A is a $C_0(X)$ -algebra, equivalently A is the section algebra in an upper semicontinuous C*-bundle $\mathcal{A} = \bigsqcup_{x \in X} A(x)$ where

$$A(x) := A/\Big(C_0(X \setminus \{x\}) \cdot A\Big), \qquad x \in X.$$

A is a continuous $C_0(X)$ -algebra $\Leftrightarrow \mathcal{A}$ is a continuous C^* -bundle

• there is an endomorphism $\Phi: C_0(X) \to C_0(X)$ satisfying

$$\alpha(f \cdot a) = \Phi(f) \cdot \alpha(a), \qquad f \in C_0(X), \ a \in A.$$

• A is a $C_0(X)$ -algebra, equivalently A is the section algebra in an upper semicontinuous C*-bundle $\mathcal{A} = \bigsqcup_{x \in X} A(x)$ where

$$A(x) := A/\Big(C_0(X \setminus \{x\}) \cdot A\Big), \qquad x \in X.$$

A is a continuous $C_0(X)$ -algebra $\Leftrightarrow A$ is a continuous C^* -bundle

• there is an endomorphism $\Phi: C_0(X) \to C_0(X)$ satisfying

$$\alpha(f \cdot a) = \Phi(f) \cdot \alpha(a), \qquad f \in C_0(X), \ a \in A.$$

Equivalently, there exists a pair $(\varphi, \{\alpha_x\}_{x \in \Delta})$ consisting of

- 1) a continuous proper map $\varphi : \Delta \to X$ where $\Delta \subset X$ is open,
- 2) a 'continuous' bundle of homomorphisms $\{\alpha_x\}_{x \in \Delta}$ where $\alpha_x : A(\varphi(x)) \to A(x)$ for each $x \in \Delta$

• A is a $C_0(X)$ -algebra, equivalently A is the section algebra in an upper semicontinuous C*-bundle $\mathcal{A} = \bigsqcup_{x \in X} A(x)$ where

$$A(x) := A/\Big(C_0(X \setminus \{x\}) \cdot A\Big), \qquad x \in X.$$

A is a continuous $C_0(X)$ -algebra $\Leftrightarrow A$ is a continuous C^* -bundle

• there is an endomorphism $\Phi: C_0(X) \to C_0(X)$ satisfying

$$\alpha(f \cdot a) = \Phi(f) \cdot \alpha(a), \qquad f \in C_0(X), \ a \in A.$$

Equivalently, there exists a pair $(\varphi, \{\alpha_x\}_{x \in \Delta})$ consisting of

- 1) a continuous proper map $\varphi : \Delta \to X$ where $\Delta \subset X$ is open,
- 2) a 'continuous' bundle of homomorphisms $\{\alpha_x\}_{x \in \Delta}$ where $\alpha_x : A(\varphi(x)) \to A(x)$ for each $x \in \Delta$

such that treating A as the section algebra of A we have

$$\alpha(\mathbf{a})(x) = \begin{cases} \alpha_x(\mathbf{a}(\varphi(x))), & x \in \Delta, \\ 0_x, & x \notin \Delta, \end{cases} \quad \mathbf{a} \in A, \ x \in X.$$

<□> <□> <□> <□> <=> <=> <=> <=> <<

• A is a $C_0(X)$ -algebra, equivalently A is the section algebra in an upper semicontinuous C*-bundle $\mathcal{A} = \bigsqcup_{x \in X} A(x)$ where

$$A(x) := A/\Big(C_0(X \setminus \{x\}) \cdot A\Big), \qquad x \in X.$$

A is a continuous $C_0(X)$ -algebra $\Leftrightarrow A$ is a continuous C^* -bundle

• there is an endomorphism $\Phi: C_0(X) \to C_0(X)$ satisfying

$$\alpha(f \cdot a) = \Phi(f) \cdot \alpha(a), \qquad f \in C_0(X), \ a \in A.$$

Equivalently, there exists a pair $(\varphi, \{\alpha_x\}_{x \in \Delta})$ consisting of

- 1) a continuous proper map $\varphi : \Delta \to X$ where $\Delta \subset X$ is open,
- 2) a 'continuous' bundle of homomorphisms $\{\alpha_x\}_{x \in \Delta}$ where $\alpha_x : A(\varphi(x)) \to A(x)$ for each $x \in \Delta$

such that treating A as the section algebra of \mathcal{A} we have

$$\alpha(\mathbf{a})(x) = \begin{cases} \alpha_x(\mathbf{a}(\varphi(x))), & x \in \Delta, \\ 0_x, & x \notin \Delta, \end{cases} \quad \mathbf{a} \in A, \ x \in X.$$

We say (A, α) is induced by $(\varphi, \{\alpha_x\}_{x \in \Delta})$ - a morphism of C^* -bundle A.

Proposition. B is a natural $C_0(X)$ -algebra in such a way that

i) β is induced by $(\widetilde{\varphi}, \{\beta_x\}_{x \in \widetilde{\Lambda}})$ where $\widetilde{\varphi}$ is a partial homeomorphism

ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ .

Proposition. B is a natural $C_0(X)$ -algebra in such a way that

i) β is induced by $(\widetilde{\varphi}, \{\beta_x\}_{x \in \widetilde{\Delta}})$ where $\widetilde{\varphi}$ is a partial homeomorphism

ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ .

Corollary. (Uniqueness theorem)

If φ is topologically free outside $Y := \overline{\sigma_A(\operatorname{Prim}(A/J))}$ and B is a continuous $C_0(\widetilde{X})$ -algebra,

のマの 同一 《川を《川を》 《四》 《日》

Proposition. B is a natural $C_0(X)$ -algebra in such a way that

i) β is induced by $(\widetilde{\varphi}, \{\beta_x\}_{x \in \widetilde{\Lambda}})$ where $\widetilde{\varphi}$ is a partial homeomorphism

ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ .

Corollary. (Uniqueness theorem)

If φ is topologically free outside $Y := \sigma_A(\operatorname{Prim}(A/J))$ and B is a continuous $C_0(\widetilde{X})$ -algebra, then for every faithful representation (π, U) of (A, α) such that $J = \{a \in A : U^*U\pi(a) = \pi(a)\}$ we have

 $C^*(A, \alpha, J) \cong C^*(\pi(A) \cup \pi(A)U)$

Proposition. B is a natural $C_0(X)$ -algebra in such a way that

i) β is induced by $(\widetilde{\varphi}, \{\beta_x\}_{x \in \widetilde{\Lambda}})$ where $\widetilde{\varphi}$ is a partial homeomorphism

ii) there is a continuous surjection $\widetilde{X} \mapsto X$ that intertwines $\widetilde{\varphi}$ and φ .

Corollary. (Uniqueness theorem)

If φ is topologically free outside $Y := \overline{\sigma_A(\operatorname{Prim}(A/J))}$ and B is a continuous $C_0(\widetilde{X})$ -algebra, then for every faithful representation (π, U) of (A, α) such that $J = \{a \in A : U^*U\pi(a) = \pi(a)\}$ we have

$$C^*(A, \alpha, J) \cong C^*(\pi(A) \cup \pi(A)U)$$

Corollary. (Ideal lattice description)

If φ is free, then all ideals in $C^*(A, \alpha, J)$ are gauge-invariant – we have a lattice isomorphism between ideals in $C^*(A, \alpha, J)$ and J-pairs for (A, α) .

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x).

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□ ● ●

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property.

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

・ロン ・回 と ・ ヨ と ・

(i) $C^*(B,\beta)$ is purely infinite.

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

- (i) $C^*(B,\beta)$ is purely infinite.
- (ii) Every non-zero hereditary C^* -subalgebra in any quotient $C^*(B,\beta)$ contains an infinite projection.

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

- (i) $C^*(B,\beta)$ is purely infinite.
- (ii) Every non-zero hereditary C^* -subalgebra in any quotient $C^*(B,\beta)$ contains an infinite projection.
- (iii) Every element in $B^+ \setminus \{0\}$ is properly infinite in $C^*(B,\beta)$.

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

- (i) $C^*(B,\beta)$ is purely infinite.
- (ii) Every non-zero hereditary C^* -subalgebra in any quotient $C^*(B,\beta)$ contains an infinite projection.
- (iii) Every element in $B^+ \setminus \{0\}$ is properly infinite in $C^*(B,\beta)$.
- If B is of real rank zero, each of the above conditions is equivalent to
- (iii') Every non-zero projection in *B* is properly infinite in $C^*(B,\beta)$.

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

- (i) $C^*(B,\beta)$ is purely infinite.
- (ii) Every non-zero hereditary C^* -subalgebra in any quotient $C^*(B,\beta)$ contains an infinite projection.
- (iii) Every element in $B^+ \setminus \{0\}$ is properly infinite in $C^*(B,\beta)$.
- If B is of real rank zero, each of the above conditions is equivalent to
- (iii) Every non-zero projection in *B* is properly infinite in $C^*(B,\beta)$.

In particular, if B is purely infinite then $C^*(B,\beta)$ is purely infinite.

Suppose that $\tilde{\varphi}$ is free and for each $x \in \tilde{\Delta}$ the range of β_x is full in B(x). Assume also that B has the ideal property. Then $C^*(B,\beta)$ has the ideal property and the following statements are equivalent:

- (i) $C^*(B,\beta)$ is purely infinite.
- (ii) Every non-zero hereditary C^* -subalgebra in any quotient $C^*(B,\beta)$ contains an infinite projection.
- (iii) Every element in $B^+ \setminus \{0\}$ is properly infinite in $C^*(B,\beta)$.
- If B is of real rank zero, each of the above conditions is equivalent to
- (iii) Every non-zero projection in B is properly infinite in $C^*(B,\beta)$.

In particular, if B is purely infinite then $C^*(B,\beta)$ is purely infinite.

Theorem. (Pure infiniteness II)

Suppose that φ is free and for each $x \in \Delta$ the range of α_x is full in A(x).

A is purely infinite and has the ideal property \implies the same is true for $C^*(A, \alpha, J)$. Assume:

Example 1: systems on C*-algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C*-algebra with X := Prim(A) being Hausdorff space. Then A is a continuous C(X)-algebra (with $\sigma_A = id$) Example 1: systems on C^* -algebras with Hausdorff primitive ideal space

Assume:

1) A is a unital C*-algebra with X := Prim(A) being Hausdorff space. Then A is a continuous C(X)-algebra (with $\sigma_A = id$)

2) $\alpha : A \to A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A)\alpha(1)$. Then (A, α) is induced by a morphism $(\varphi, \{\alpha_x\}_{x \in \Delta})$ Example 1: systems on C*-algebras with Hausdorff primitive ideal space

Assume:

- 1) A is a unital C*-algebra with X := Prim(A) being Hausdorff space. Then A is a continuous C(X)-algebra (with $\sigma_A = id$)
- 2) $\alpha : A \to A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A)\alpha(1)$. Then (A, α) is induced by a morphism $(\varphi, \{\alpha_x\}_{x \in \Delta})$

Thm. (Pasnicu 2006)

A has the ideal property $\iff X$ is zero dimensional

Example 1: systems on C*-algebras with Hausdorff primitive ideal space

Assume:

- 1) A is a unital C*-algebra with X := Prim(A) being Hausdorff space. Then A is a continuous C(X)-algebra (with $\sigma_A = id$)
- 2) $\alpha : A \to A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A)\alpha(1)$. Then (A, α) is induced by a morphism $(\varphi, \{\alpha_x\}_{x \in \Delta})$

Thm. (Pasnicu 2006)

A has the ideal property $\iff X$ is zero dimensional

Corollary.

If X is zero dimensional, φ is free, and A is purely infinite, then

 $C^*(A, \alpha, J)$ is purely infinite and has the ideal property

Example 1: systems on C*-algebras with Hausdorff primitive ideal space

Assume:

- 1) A is a unital C*-algebra with X := Prim(A) being Hausdorff space. Then A is a continuous C(X)-algebra (with $\sigma_A = id$)
- 2) $\alpha : A \to A$ is an endomorphism with $\alpha(Z(A)) \subseteq Z(A)\alpha(1)$. Then (A, α) is induced by a morphism $(\varphi, \{\alpha_x\}_{x \in \Delta})$

Thm. (Pasnicu 2006)

A has the ideal property $\iff X$ is zero dimensional

Corollary.

If X is zero dimensional, φ is free, and A is purely infinite, then

 $C^*(A, \alpha, J)$ is purely infinite and has the ideal property

and ideal lattice in $C^*(A, \alpha, J)$ is described by J-pairs for (A, α) .

Assume:

Assume:

1) (A_0, α_0) is any C^* -dynamical system

Assume:

- 1) (A_0, α_0) is any C^* -dynamical system
- 2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Assume:

1) (A_0, α_0) is any C^* -dynamical system

2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Consider (A, α) where $A := C_0(X) \otimes A_0 = C_0(X, A_0)$ and

 $\alpha(a)(x) := \alpha_0(a(\varphi(x)) \quad \text{for } x \in \Delta, \quad \alpha(a)(x) = 0 \quad \text{for } x \notin \Delta.$

Assume:

- 1) (A_0, α_0) is any C^{*}-dynamical system
- 2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Consider (A, α) where $A := C_0(X) \otimes A_0 = C_0(X, A_0)$ and

 $\alpha(a)(x) := \alpha_0(a(\varphi(x)))$ for $x \in \Delta$, $\alpha(a)(x) = 0$ for $x \notin \Delta$.

Prop. (Pasnicu, Rørdam 2007)

 A_0 is purely infinite and $A := C_0(X) \otimes A_0$ has the ideal property, \implies is purely infinite and X is zero dimensional

has the ideal property

Assume:

- 1) (A_0, α_0) is any C^{*}-dynamical system
- 2) (X, φ) is a partial dynamical system with $\Delta \subseteq X$ clopen.

Consider (A, α) where $A := C_0(X) \otimes A_0 = C_0(X, A_0)$ and

 $\alpha(a)(x) := \alpha_0(a(\varphi(x)))$ for $x \in \Delta$, $\alpha(a)(x) = 0$ for $x \notin \Delta$.

Prop. (Pasnicu, Rørdam 2007)

 A_0 is purely infinite and $A := C_0(X) \otimes A_0$ has the ideal property, \implies is purely infinite and X is zero dimensional

has the ideal property

Corollary.

Suppose X is zero dimensional, φ is free, and $\alpha_0(A_0)$ is full in A_0 .

 A_0 is purely infinite and has the ideal property

 \implies the same is true for $C^*(A, \alpha, J)$.

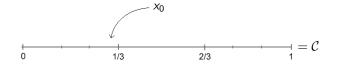
Let (A, α) be as in the previous slide where

Let (A, α) be as in the previous slide where

1) A_0 is your favorite Kirchberg algebra, α_0 arbitrary (non-zero)

Let (A, α) be as in the previous slide where

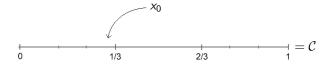
- 1) A_0 is your favorite Kirchberg algebra, α_0 arbitrary (non-zero)
- 2) (X, φ) is a partial dynamical with $X := \mathcal{C} \cup \{x_0\}$ where



 $\varphi:\mathcal{C}\to\mathcal{C}$ is your favorite minimal homeomorphism on the Cantor set

Let (A, α) be as in the previous slide where

- 1) A_0 is your favorite Kirchberg algebra, α_0 arbitrary (non-zero)
- 2) (X, φ) is a partial dynamical with $X := \mathcal{C} \cup \{x_0\}$ where



 $\varphi:\mathcal{C}\to\mathcal{C}$ is your favorite minimal homeomorphism on the Cantor set

Corollary.

 $C^*(A, \alpha)$ is strongly purely infinite, nuclear, separable and

 $Prim(C^*(A, \alpha))$ has two points and is non-Hausdorff.

Moreover, both $C^*(A, \alpha)$ and its non-trivial quotient satisfy UCT.