
SEMINÁRIO DE ÁLGEBRAS DE OPERADORES

Topological aperiodicity for product systems of
C ∗-correspondences

Bartosz Kwaśniewski, IMADA, Odense /IMUwB

Novembro 17, 2014, Florianopolis

based on joint work with Wojciech Szymański, IMADA, Odense

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Universal C ∗-algebras and uniqueness problem
G - set of generators, R - C∗-algebraic relations on G

Def. Representation of (G,R) in a C∗-algebra A is π = {π(g)}g∈G ⊆ A
satisfying the relations R in A. If π(g) 6= 0 for all g ∈ G, π is faithful.

Def. The universal C∗-algebra generated by G subject to R is a
C∗-algebra C∗(G,R) := C∗(ι(G)) where ι is a representation of (G,R)
such that if π is a representation of (G,R) then

ι(g) 7−→ π(g), g ∈ G,

extends to an epimorphism C∗(G,R)→ C∗(π(G)).

Def. (G,R) has uniqueness property if for any two faithful
representations π1, π2 of (G,R) the mapping

π1(g) 7−→ π2(g), g ∈ G,

extends to ∗-isomorphism ∗-Alg(π1(G)) ∼= ∗-Alg(π2(G)), which in the
presence of ‘amenability’ is equivalent to C∗(π1(G)) ∼= C∗(π2(G)).
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Crossed products by group actions
α : G → Aut(A) an action of a discrete group G on a unital C∗-algebra A

A oα G = C∗(G,R),

G = A ∪ G , R = {gag−1 = αg (a), g−1 = g∗, ∗-algebraic relations in A}

Fact.
If A or

α G is the reduced crossed product the natural surjection

λ : A oα G 7−→ A or
α G

in general is not injective. von Neumann

Amenability

Fact.

Let α̂ : G → Homeo(Â) be the dual action: α̂g ([π]) = [π ◦ αg ], g ∈ G .
If α is topologically free, i.e. for any t1, .., tn ∈ G \ e

{[π] : ∃i=1,...,n αti ([π]) = [π]} has empty interior in Â.

Then (G,R) has uniqueness property.
Arveson

Aperiodicity
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Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra
G = {a(f ) : f ∈ H - Hilbert space}, R - conj. linear structure of H plus

a(f )∗a(h) + a(h)a(f )∗ = 〈f , h〉1
a(f )a(h) + a(h)a(f ) = 0

uniqueness property X (P. Jordan & E. Wigner 1928, I. Segal 1963)

canonical commutation relations (CCR) algebra
G = {W (f ) : f ∈ H - Hilbert space}, R - consists of

W (−f ) = W (f )∗

W (f )W (h) = e−i Im〈f ,h〉W (f + h)

uniqueness property X (J. Sławny 1971)
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Unitary algebra C∗(S)

S∗S = SS∗ = 1
no uniqueness property

Rotation algebras Aθ = C∗(S,T ), θ ∈ R

S, T unitary, ST = e2πiθTS
uniqueness property ⇐⇒ θ /∈ Q

Toeplitz algebra = C∗(S)

S∗S = 1, SS∗ 6= 1

uniqueness property X

(L. A. Coburn 1969)

Cuntz algebras On = C∗(S1,S2, ...,Sn)

S∗i Sj = δi,j1,
n∑

i=1
SiS∗i = 1

uniqueness property X (J. Cuntz 1977)

Cuntz-Krieger algebras OA = C∗(S1,S2, ...,Sn)

{A(i , j)}n
i,j=1 ∈ {0, 1}n×n, Si partial isometries with orthogonal ranges

n∑
j=1

A(i , j)SjS∗j = S∗i Si

uniqueness property ⇐⇒ condition (I) (J. Cuntz, W. Krieger 1980)
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Regular C ∗-correspondences and their product systems

Regular C∗-correspondence X over A is a (right) Hilbert A-module
with left action being injective ∗-homomorphism φ : A→ K(X ) ⊂ L(X ).

K(X) := span{Θy,x : x , y ∈ X} where Θy,x z := y · 〈x , z〉A, x , y , z ∈ X

Representation of X in a C∗-algebra B is a pair (π, ψ) where π : A→ B
is a ∗-homomorphism and ψ : X → B linear s.t.

ψ(a · x · b) = π(a)ψ(x)π(b), ψ(x)∗ψ(y) = π(〈x , y〉A).

We say (π, ψ) is covariant representation if additionally

(π, ψ)(1)(φ(a)) = π(a), for all a ∈ A.

where (π, ψ)(1) : K(X )→ B is given by (π, ψ)(1)(Θx ,y ) := ψ(x)ψ(y)∗.

Cuntz-Pimsner algebra is OX := C∗(iA(A) ∪ iX (X )) where (iA, iX ) is a
covariant universal representation of X (M. Pimsner 1997)
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Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X

is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Regular product system over a semigroup P with coefficients in a C∗-algebra
A is a semigroup X with a semigroup homomorphism d : X → P s.t.

1 Xp := d−1(p) is a regular C∗-correspondence over A for each p ∈ P.
(left action of A on Xp is injective and by ‘compacts’)

2 Xe is the standard bimodule AAA

3 multiplication on X implements isomorphisms Xp ⊗A Xq ∼= Xpq for
p, q ∈ P \ {e} and the right and left actions of Xe = A on each Xp.

Covariant representation of X is a semigroup homo. ψ : X → B such that

(ψe , ψp) is a covariant representation of Xp, for all p ∈ P,

where we put ψp := ψ|Xp for all p ∈ P.

Cuntz-Pimsner algebra is OX := C∗(iX (X )) where iX is a universal
covariant representation of the product system X (N. Fowler 2002)

Problem
In general the structure of OX is not well understood!

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Doplicher-Roberts picture of Cuntz-Pimsner algebra OX

Fix a regular product system X over a semigroup P.

Prop. (Right tensoring structure on {K(Xp,Xq)}q,p∈P)
Let r ∈ P the maps ⊗1r : K(Xq,Xp)→ K(Xqr ,Xpr ), p, q ∈ P, where

(T ⊗ 1r )(xy) := (Tx)y x ∈ Xq, y ∈ Xr , T ∈ K(Xq,Xp)

are well defined isometries and such that

(T ⊗ 1r )∗ = (T ∗)⊗ 1r , (T ⊗ 1r )⊗ 1s) = T ⊗ 1rs ,

(T ⊗ 1r )(S ⊗ 1r ) = (TS)⊗ 1r , T ∈ K(Xp,Xq), S ∈ K(Xs ,Xp)

Assume P is an Ore semigroup and let G = PP−1 be the group of
fractions. Then (P,≤) is directed where

p ≤ q ⇐⇒ pr = q for some r ∈ P.
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Thm. (Doplicher-Roberts picture of Cuntz-Pimsner algebra OX )
For each g = pq−1 ∈ G , p, q ∈ P, define the Banach space direct limit

Bg := lim−−→K(Xqr ,Xpr )

The family {Bg}g∈G is naturally a Fell bundle and

OX ∼= C∗({Bg}g∈G ).

The universal covariant representation iX : X → OX is injective.

We define the reduced Cuntz-Pimsner algebra
Or

X := C∗r ({Bg}g∈G )

and consider the canonical epimorphism λ : OX → Or
X .

Problem For which X , for any injective covariant representation ψ of X
there is a (unique) epimorphism λψ : C∗(ψ(X ))→ Or

X such that:

OX

λ

::

∏
ψ
// C∗(ψ(X ))

λψ // Or
X
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Thm. Suppose X is an imprimitivity A− B-bimodule
For π : B → B(H) define X -Ind(π) : A→ B(X ⊗π H) by

X -Ind(π)(a)(x ⊗π h) = (ax)⊗π h.

Then [X -Ind] : B̂ → Â is a homeomorphism. Rieffel

Suppose X is a Hilbert bimodule over A.
〈X ,X 〉A := span{〈x , y〉A : x , y ∈ X}
A〈X ,X 〉 := span{A〈x , y〉 : x , y ∈ X} =⇒ ideals in A

X is a imprimitivity A〈X ,X 〉-〈X ,X 〉A module and hence
[X -Ind] : ̂〈X ,X 〉A → ̂A〈X ,X 〉 is a partial homeomorphism of Â.

Â
̂〈X , X〉A ̂A〈X , X〉

Thm. (Kwasniewski 2014)
If [X -Ind] is topologically free, then A oX Z possess uniqueness property
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Multivalued maps dual to regular C ∗-correspondences
Let Â = {[π] : π ∈ Irr(A)} be the spectrum of a C∗-algebra A.

The relation ≤ of being a subrepresentation factors through to Â.

Def. Let α : A→ B be a ∗-homomorphism.

A dual to α is a multivalued map α̂ : B̂ → Â (α̂ : B̂ → 2Â) given by

α̂([πB]) := {[πA] ∈ Â : πA ≤ πB ◦ α}.

Let X be a regular C∗-correspondence over A. We treat X as a
K(X )-〈X ,X 〉A-imprimitivity bimodule.

Def.

We define dual map X̂ : Â→ Â to the regular C∗-correspondence X as
the composition of multivalued maps

X̂ = φ̂ ◦ [X -Ind]

where φ̂ : K̂(X )→ Â is dual to the left action φ : A→ K(X ) of A on X .
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α̂([πB]) := {[πA] ∈ Â : πA ≤ πB ◦ α}.
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Topological aperiodicity for a regular product system X =
⊔

p∈P Xp

Prop. The family X̂ := {X̂p}p∈P is a semigroup of multivalued maps

X̂p ◦ X̂q = X̂pq, p, q ∈ P.

Def. We say X is topologically aperiodic, if

for any nonempty open set U ⊆ Â, any q ∈ P and finite set F ⊆ P \ {q}
there is [π] ∈ U such that for certain enumeration p1, ..., pn of elements
of F and certain elements s1, ..., sn ∈ P where q ≤ s1 ≤ ... ≤ sn and
pi ≤ si we have

[π] /∈ X̂q−1si (X̂
−1
p−1

i si
([π])) for all i = 1, ..., n.

Prop. If (P,≤) is linearly ordered, then X is topologically aperiodic iff

for any open nonempty set U ⊆ Â and any finite set F ⊆ P \ {e}, there
is [π] ∈ U satisfying

[π] /∈ X̂p([π]) for all p ∈ F .
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for any open nonempty set U ⊆ Â and any finite set F ⊆ P \ {e}, there
is [π] ∈ U satisfying

[π] /∈ X̂p([π]) for all p ∈ F .

Bartosz Kwaśniewski, IMADA, Odense /IMUwB Topological aperiodicity for product systems



Topological aperiodicity for a regular product system X =
⊔

p∈P Xp

Prop. The family X̂ := {X̂p}p∈P is a semigroup of multivalued maps

X̂p ◦ X̂q = X̂pq, p, q ∈ P.

Def. We say X is topologically aperiodic, if
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Uniqueness Theorem for OX . Suppose X is topologically aperiodic.

For any injective covariant representation Ψ of X there is an epimorphism
λψ : C∗(ψ(X ))→ Or

X such that the diagram

OX

λ

::

∏
ψ
// C∗(ψ(X ))

λψ // Or
X

commutes. In particular, if Or
X
∼= OX , then OX ∼= C∗(ψ(X )).

Corollary (simplicity of Or
X )

Suppose that X is topologically aperiodic and minimal, i.e. there are no
nontrivial ideals J in A such that

∀p∈P {a ∈ A : 〈Xp, aXp〉p ⊆ J} = J .

Then Or
X is simple.

Proof: I /Or
X implies J := A ∩ I is either A or {0}.
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Applications and examples

1 Saturated Fell bundles (e.g. semigroup twisted crossed products)
2 Topological graphs (e.g. Exel’s crossed product for covering maps)
3 Product systems of topological graphs (e.g. the Cuntz algebra QN)

topological aperiodicity
for product systems

��

topological freeness
for groups of automorphisms

⇐⇒ topological freeness
for covering maps

��

aperiodicity condition
for topological higher rank graphs

⇐=
simplicity of
Cuntz’s QN
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