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Plan

Amenability

=⇒ reduced C ∗-algebras Exel

Exactness, intersection property "Sierakowski"

Ideal structure via dual system "Archbold, Spielberg"
"Kwaśniewski + Rieffel"

Aperiodicity
"Muhly, Solel" +

Paradoxicality =⇒ Pure infiniteness
"Rørdam, Sierakowski"
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Preliminaries (throughout G is a discrete group)

A C∗-algebra B is said to be graded over G if B =
⊕

g∈G Bg where
B = {Bg}g∈G is a family of closed subspaces such that

B∗g = Bg−1 and BgBh ⊆ Bgh, for all g , h ∈ G .

Then B = {Bg}g∈G is a Fell bundle (every Fell bundle arise in this way)

The C∗-algebra B =
⊕

g∈G Bg is said to be topologically graded if

‖ae‖ ≤ ‖
∑

g∈G ag‖ for all
∑

g∈G ag ∈
⊕

g∈G Bg .

Then we have contractive projections Fg : B → Bg , g ∈ G .

For any Fell bundle B = {Bg}g∈G the direct sum
⊕

g∈G Bg is naturally a
∗-algebra, and we put

C∗(B) :=
⊕

g∈G Bg
‖·‖max C∗r (B) :=

⊕
g∈G Bg

‖·‖min

where ‖ · ‖min the minimal topologically graded C∗-norm on
⊕

g∈G Bg .
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Fix a Fell bundle B = {Bg}g∈G .

An ideal in B is J = {Jg}g∈G where Jg is a closed subspace of Bg , and

BgJh ⊆ Jgh JgBh ⊆ Jgh, for all g , h ∈ G .

An ideal I in Be is B-invariant if Bg IB∗g ⊆ I for every g ∈ G .

Let J be an ideal in C∗r (B) we say that

J is induced, if it is generated (as an ideal) by J ∩ Be

J is Fourier, if Fg (J) ⊆ J for all g ∈ G

Prop. Relations J =
⊕

g∈G Jg , Jg = J ∩ Bg = Fg (J) = Bg I = IBg ,

establish bijections between: induced ideals J in C∗r (B),
ideals J = {Jt}t∈G in B, and B-invariant ideals I in Be .

Problem
When all ideals in C∗r (B) are induced?
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Exactness and intersection property

Let J = {Jt}t∈G be an ideal in B = {Bg}g∈G . Then

0 −→ C∗r (J )
ιr−→ C∗r (B)

κr−→ C∗r (B/J ) −→ 0.

Def. B is exact if the above sequence is exact for every ideal J in B.

Prop.
B is exact ⇐⇒ the sets of induced and Fourier ideals in C∗r (B) coincide

Def. B has the intersection property if every non-zero ideal in C∗r (B)
has a non-zero intersection with Be . B has the residual intersection
property if B/J has the intersection property for every ideal J in B.

Lem.
B has the intersection property ⇐⇒ any graded C∗-algebra
B =

⊕
g∈G Bg is topologically graded.
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Exactness and intersection property
Let J = {Jt}t∈G be an ideal in B = {Bg}g∈G . Then

0 −→ C∗r (J )
ιr−→ C∗r (B)

κr−→ C∗r (B/J ) −→ 0.

Def. B is exact if the above sequence is exact for every ideal J in B.

Def. B has the intersection property if every non-zero ideal in C∗r (B)
has a non-zero intersection with Be . B has the residual intersection
property if B/J has the intersection property for every ideal J in B.

Ideal(C∗r (B)) := {J / C∗r (B)}
IdealB(Be) := {I / Be : Bg IBg−1 ⊆ I, g ∈ G}

Thm. For any Fell bundle B we have a surjection

Ideal(C∗r (B)) 3 J −→ J ∩ Be ∈ IdealB(Be).

It is a lattice isomorphism ⇐⇒ B is exact and has the residual
intersection property
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Dual partial dynamical system
Bg is a Dg -Dg−1-imprimitivity bimodule where Dg := BgB∗g / Be .

Hence

ĥg := [Bg -IndDg−1

Dg
]

is a homeomorphism ĥg : D̂g−1 → D̂g (a partial homeomorphism of B̂e).

Prop. ({D̂g}g∈G , {ĥg}g∈G ) is a partial action of G on B̂e .

Thm. If ({D̂g}g∈G , {ĥg}g∈G ) is topologically free, i.e.

∀t1,...,tn∈G
⋂n

i=1{x ∈ D̂t−1
i

: ĥti (x) = x} has empty interior in B̂e ,

then B = {Bg}g∈G has the intersection property.

Cor. Suppose ({D̂g}g∈G , {ĥg}g∈G ) is residually topologically free.
If B is exact then

Ideal(C∗r (B)) 3 J → Ĵ ∩ Be

is a bijection onto the set of all open invariant subsets in B̂e .
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If B is exact then

Ideal(C∗r (B)) 3 J → Ĵ ∩ Be

is a bijection onto the set of all open invariant subsets in B̂e .
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: ĥti (x) = x} has empty interior in B̂e ,

then B = {Bg}g∈G has the intersection property.
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Aperiodicity

Def. B = {Bg}g∈G is aperiodic if for each bg ∈ Bg , g ∈ G \ {e}, and
every hereditary subalgebra A of Be ,

inf{‖abga‖ : a ∈ A, a ≥ 0, ‖a‖ = 1} = 0.

Lem. B = {Bg}g∈G is aperiodic ⇐⇒ for any b = ⊕g∈Gbg ∈
⊕

g∈G Bg ,
be ≥ 0, and any ε > 0 there is x ∈ beBebe such that x ≥ 0, ‖x‖ = 1 and

‖xbex − xbx‖ < ε, ‖xbex‖ > ‖be‖ − ε
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Aperiodicity

Def. B = {Bg}g∈G is aperiodic if for each bg ∈ Bg , g ∈ G \ {e}, and
every hereditary subalgebra A of Be ,

inf{‖abga‖ : a ∈ A, a ≥ 0, ‖a‖ = 1} = 0.

B is residually aperiodic if B/J is aperiodic for any ideal J in B.

Thm. Suppose B is exact and residually aperiodic.
Ideal(C∗r (B)) 3 J −→ J ∩ Be ∈ IdealB(Be) is a lattice-isomorphism.

Be has the ideal property =⇒ C∗r (B) has the ideal property and the
following conditions are equivalent:

(i) C∗r (B) is purely infinite.

(ii) Every element in B+
e \ {0} is properly infinite in C∗r (B).

If Be is of real rank zero, the above conditions are equivalent to

(ii’) Every non-zero projection in Be is properly infinite in C∗r (B).
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Paradoxicality - pure infiniteness

Def. (Rørdam, Sierakowski; Giordano, Sierakowski)
Let ({Ωg}g∈G , {θg}g∈G ) be a partial action on a topological space Ω. A
non-empty compact open set V ⊆ Ω is called G-paradoxical if there are
open sets V1, ...,Vn+m and elements t1, ..., tn+m ∈ G , such that

(1) V =
⋃n

i=1 Vi =
⋃n+m

i=n+1 Vi ,

(2) Vi ⊆ Ωt−1
i

and θti (Vi ) ⊆ V for all i = 1, ..., n + m,

(3) θti (Vti ) ∩ θtj (Vtj ) = ∅ for all i 6= j .

Def. (BKK, Szymański) Let B = {Bg}g∈G be a Fell bundle.
An element a ∈ B+

e \ {0} is B-paradoxical if for any ε > 0 there are
elements a1, ..., an+m ∈ B+

e such that for all δ > 0 there are bi ∈ Bti ,
‖bi‖ ≤ 1, ti ∈ G , for i = 1, ..., n + m, such that

(1) a ≈ε
∑n

i=1 ai ≈ε
∑n+m

i=n+1 ai ,

(2) b∗i biai ≈δ ai and biai ∈ aBti for all i = 1, ..., n + m,

(3) b∗i bj ≈δ 0 for all i 6= j .
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Paradoxicality - pure infiniteness

Lem. Let ({Ωg}g∈G , {θg}g∈G ) be a partial action and B = {Bg}g∈G
associated Fell bundle. For any non-zero projection p ∈ Be = C0(Ωe)

V = {x ∈ Ωe : p(x) > 0} is G-paradoxical =⇒ p is B-paradoxical.

Lem. Every properly infinite positive element a in Be is B-paradoxical

Prop. Every B-paradoxical element a ∈ Be is properly infinite in every
B-graded C∗-algebra B =

⊕
g∈G Bg .

Thm. Suppose B is exact and residually aperiodic.
If either of the conditions hold

(i) Be has the ideal property and every element in B+
e \ {0} is

B-paradoxical.

(ii) Be is of real rank zero and non-zero projection in Be is
B-paradoxical.

then C∗r (B) is purely infinite and has the ideal property.
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Motivation: Cuntz-Pimsner algebra OX of a product system

Fix a regular product system X =
⊔

p∈P Xp over a left Ore semigroup P
Let G = PP−1 be the group of fractions.

Thm. (BKK, Szymanski) Doplicher-Roberts picture of OX

The C∗-(pre)category {K(Xp,Xq)}q,p∈P is naturally equipped with
a right tensoring structure {⊗1r}p∈P .

For each g = pq−1 ∈ G , p, q ∈ P, the direct limit

Bg := lim−−→
(
{K(pr , qr)}r∈P , {⊗r−1s1} r,s∈P

r≤s

)
is well defined and the family {Bg}g∈G is naturally a Fell bundle.

We have
OX ∼= C∗({Bg}g∈G ).

The universal covariant representation iX : X → OX is injective.
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