16th Danish-Norwegian Operator Algebra Workshop

Pure infiniteness and ideal structure of C^* -algebras associated with Fell bundles and product systems

Bartosz Kwaśniewski, IMADA, Odense

ongoing joint work with Wojciech Szymański, IMADA, Odense

Lysebu, December 9, 2014

< 同 ト < 三 ト < 三 ト

• Amenability

<ロ> (日) (日) (日) (日) (日)

æ

Bartosz Kwaśniewski, IMADA, Odense Pure infiniteness, ideal structure, Fell bundles

ヘロト 人間 とくほ とくほ とう

Ξ.

• Exactness,

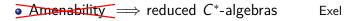
Bartosz Kwaśniewski, IMADA, Odense Pure infiniteness, ideal structure, Fell bundles

ヘロト ヘロト ヘビト ヘビト

• Exactness, intersection property "Sierakowski"

イロト 不得 トイヨト イヨト

э



- Exactness, intersection property "Sierakowski"
- Ideal structure via dual system "Archbold, Spielberg"

イロト イボト イヨト イヨト

• Exactness, intersection property

• Ideal structure via dual system

"Archbold, Spielberg" "Kwaśniewski + Rieffel"

イロト イヨト イヨト

"Sierakowski"

• Exactness, intersection property

• Ideal structure via dual system

"Archbold, Spielberg" "Kwaśniewski + Rieffel"

< 同 > < 国 > < 国 >

"Sierakowski"

Aperiodicity
 "Muhly, Solel"

 Amenability => reduced C*-algebras Exel
 Exactness, intersection property "Sierakowski"
 Ideal structure via dual system "Archbold, Spielberg" "Kwaśniewski + Rieffel"
 Aperiodicity + Paradoxicality => Pure infiniteness "Rørdam, Sierakowski"

イロト イヨト イヨト

A C*-algebra B is said to be **graded** over G if $B = \overline{\bigoplus_{g \in G} B_g}$ where $\mathcal{B} = \{B_g\}_{g \in G}$ is a family of closed subspaces such that

$$B_g^* = B_{g^{-1}}$$
 and $B_g B_h \subseteq B_{gh}$, for all $g, h \in G$.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

A C*-algebra B is said to be **graded** over G if $B = \overline{\bigoplus_{g \in G} B_g}$ where $\mathcal{B} = \{B_g\}_{g \in G}$ is a family of closed subspaces such that

$$B_g^*=B_{g^{-1}}$$
 and $B_gB_h\subseteq B_{gh},$ for all $g,h\in G.$

Then $\mathcal{B} = \{B_g\}_{g \in G}$ is a **Fell bundle** (every Fell bundle arise in this way)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

A C*-algebra B is said to be **graded** over G if $B = \overline{\bigoplus_{g \in G} B_g}$ where $\mathcal{B} = \{B_g\}_{g \in G}$ is a family of closed subspaces such that

$$B_g^*=B_{g^{-1}}$$
 and $B_gB_h\subseteq B_{gh},$ for all $g,h\in G.$

Then $\mathcal{B} = \{B_g\}_{g \in G}$ is a **Fell bundle** (every Fell bundle arise in this way)

The C*-algebra $B = \overline{\bigoplus_{g \in G} B_g}$ is said to be **topologically graded** if $\|a_e\| \le \|\sum_{g \in G} a_g\|$ for all $\sum_{g \in G} a_g \in \bigoplus_{g \in G} B_g$. Then we have contractive projections $F_g : B \to B_g$, $g \in G$.

イロト イポト イヨト イヨト 三日

A C*-algebra B is said to be **graded** over G if $B = \overline{\bigoplus_{g \in G} B_g}$ where $\mathcal{B} = \{B_g\}_{g \in G}$ is a family of closed subspaces such that

$$B_g^*=B_{g^{-1}}$$
 and $B_gB_h\subseteq B_{gh},$ for all $g,h\in G.$

Then $\mathcal{B} = \{B_g\}_{g \in G}$ is a **Fell bundle** (every Fell bundle arise in this way)

The C*-algebra $B = \overline{\bigoplus_{g \in G} B_g}$ is said to be **topologically graded** if $\|a_e\| \le \|\sum_{g \in G} a_g\|$ for all $\sum_{g \in G} a_g \in \bigoplus_{g \in G} B_g$. Then we have contractive projections $F_g : B \to B_g$, $g \in G$.

For any Fell bundle $\mathcal{B} = \{B_g\}_{g \in G}$ the direct sum $\bigoplus_{g \in G} B_g$ is naturally a *-algebra, and we put

$$C^*(\mathcal{B}) := \overline{\bigoplus_{g \in G} B_g}^{\|\cdot\|_{max}} \qquad C^*_r(\mathcal{B}) := \overline{\bigoplus_{g \in G} B_g}^{\|\cdot\|_{min}}$$

where $\|\cdot\|_{min}$ the minimal topologically graded C^* -norm on $\bigoplus_{g\in G} B_g$.

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

An ideal in \mathcal{B} is $\mathcal{J} = \{J_g\}_{g \in G}$ where J_g is a closed subspace of B_g , and

 $B_g J_h \subseteq J_{gh}$ $J_g B_h \subseteq J_{gh}$, for all $g, h \in G$.

An **ideal** in \mathcal{B} is $\mathcal{J} = \{J_g\}_{g \in G}$ where J_g is a closed subspace of B_g , and

 $B_g J_h \subseteq J_{gh} \qquad J_g B_h \subseteq J_{gh}, \qquad \text{for all } g,h \in G.$

An ideal I in B_e is \mathcal{B} -invariant if $B_g I B_g^* \subseteq I$ for every $g \in G$.

An ideal in $\mathcal B$ is $\mathcal J=\{J_g\}_{g\in G}$ where J_g is a closed subspace of $B_g,$ and

 $B_g J_h \subseteq J_{gh}$ $J_g B_h \subseteq J_{gh}$, for all $g, h \in G$.

An ideal *I* in B_e is \mathcal{B} -invariant if $B_g I B_g^* \subseteq I$ for every $g \in G$.

Let J be an ideal in $C_r^*(\mathcal{B})$ we say that J is **induced**, if it is generated (as an ideal) by $J \cap B_e$ J is **Fourier**, if $F_g(J) \subseteq J$ for all $g \in G$

イロト 不得 トイヨト イヨト 三日

An ideal in \mathcal{B} is $\mathcal{J} = \{J_g\}_{g \in G}$ where J_g is a closed subspace of B_g , and $B_g J_h \subseteq J_{gh}$ $J_g B_h \subseteq J_{gh}$, for all $g, h \in G$. An ideal I in B_e is \mathcal{B} -invariant if $B_g I B_{\sigma}^* \subseteq I$ for every $g \in G$.

Let J be an ideal in $C_r^*(\mathcal{B})$ we say that J is **induced**, if it is generated (as an ideal) by $J \cap B_e$ J is **Fourier**, if $F_g(J) \subseteq J$ for all $g \in G$

Prop. Relations $J = \overline{\bigoplus_{g \in G} J_g}$, $J_g = J \cap B_g = F_g(J) = B_g I = IB_g$,

establish bijections between: induced ideals J in $C_r^*(\mathcal{B})$, ideals $\mathcal{J} = \{J_t\}_{t \in G}$ in \mathcal{B} , and \mathcal{B} -invariant ideals I in B_e .

イロト 不得 トイヨト イヨト 三日

An ideal in \mathcal{B} is $\mathcal{J} = \{J_g\}_{g \in G}$ where J_g is a closed subspace of B_g , and $B_g J_h \subseteq J_{gh}$ $J_g B_h \subseteq J_{gh}$, for all $g, h \in G$. An ideal I in B_e is \mathcal{B} -invariant if $B_g I B_g^* \subseteq I$ for every $g \in G$.

Let J be an ideal in $C_r^*(\mathcal{B})$ we say that J is **induced**, if it is generated (as an ideal) by $J \cap B_e$ J is **Fourier**, if $F_g(J) \subseteq J$ for all $g \in G$

Prop. Relations
$$J = \overline{\bigoplus_{g \in G} J_g}$$
, $J_g = J \cap B_g = F_g(J) = B_g I = IB_g$.

establish bijections between: induced ideals J in $C_r^*(\mathcal{B})$, ideals $\mathcal{J} = \{J_t\}_{t \in G}$ in \mathcal{B} , and \mathcal{B} -invariant ideals I in B_e .

Problem

When all ideals in $C_r^*(\mathcal{B})$ are induced?

Bartosz Kwaśniewski, IMADA, Odense Pure infiniteness, ideal structure, Fell bundles

Let
$$\mathcal{J} = \{J_t\}_{t \in G}$$
 be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then
 $0 \longrightarrow C_r^*(\mathcal{J}) \xrightarrow{\iota_r} C_r^*(\mathcal{B}) \xrightarrow{\kappa_r} C_r^*(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$

イロト イヨト イヨト イヨト

Let
$$\mathcal{J} = \{J_t\}_{t \in G}$$
 be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then
 $0 \longrightarrow C_r^*(\mathcal{J}) \xrightarrow{\iota_r} C_r^*(\mathcal{B}) \xrightarrow{\kappa_r} C_r^*(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let
$$\mathcal{J} = \{J_t\}_{t \in G}$$
 be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0 \longrightarrow C^*_r(\mathcal{J}) \stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B}) \stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Prop.

 \mathcal{B} is exact \iff the sets of induced and Fourier ideals in $C_r^*(\mathcal{B})$ coincide

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let
$$\mathcal{J} = \{J_t\}_{t \in G}$$
 be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0 \longrightarrow C^*_r(\mathcal{J}) \stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B}) \stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Prop.

 \mathcal{B} is exact \iff the sets of induced and Fourier ideals in $C_r^*(\mathcal{B})$ coincide

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e .

< 同 > < 国 > < 国 >

Let
$$\mathcal{J} = \{J_t\}_{t \in G}$$
 be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0 \longrightarrow C^*_r(\mathcal{J}) \stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B}) \stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Prop.

 \mathcal{B} is exact \iff the sets of induced and Fourier ideals in $C_r^*(\mathcal{B})$ coincide

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

Let
$$\mathcal{J} = \{J_t\}_{t \in G}$$
 be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0 \longrightarrow C^*_r(\mathcal{J}) \stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B}) \stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Prop.

 \mathcal{B} is exact \iff the sets of induced and Fourier ideals in $C_r^*(\mathcal{B})$ coincide

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

Lem.

 \mathcal{B} has the intersection property \iff any graded C^* -algebra $B = \overline{\bigoplus_{g \in G} B_g}$ is topologically graded.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let $\mathcal{J} = \{J_t\}_{t \in G}$ be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0 \longrightarrow C^*_r(\mathcal{J}) \stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B}) \stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Let $\mathcal{J} = \{J_t\}_{t \in G}$ be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0 \longrightarrow C^*_r(\mathcal{J}) \stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B}) \stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

 $\mathcal{I}deal(C_r^*(\mathcal{B})) := \{J \triangleleft C_r^*(\mathcal{B})\}$ $\mathcal{I}deal^{\mathcal{B}}(B_e) := \{I \triangleleft B_e : B_g I B_{g^{-1}} \subseteq I, g \in G\}$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Let $\mathcal{J} = \{J_t\}_{t \in G}$ be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0\longrightarrow C^*_r(\mathcal{J})\stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B})\stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J})\longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

 $\mathcal{I}deal(C_r^*(\mathcal{B})) := \{J \triangleleft C_r^*(\mathcal{B})\}$ $\mathcal{I}deal^{\mathcal{B}}(B_e) := \{I \triangleleft B_e : B_g I B_{g^{-1}} \subseteq I, g \in G\}$

Thm. For any Fell bundle \mathcal{B} we have a surjection

 $\mathcal{I}deal(C^*_r(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e).$

Let $\mathcal{J} = \{J_t\}_{t \in G}$ be an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$. Then

$$0\longrightarrow C^*_r(\mathcal{J})\stackrel{\iota_r}{\longrightarrow} C^*_r(\mathcal{B})\stackrel{\kappa_r}{\longrightarrow} C^*_r(\mathcal{B}/\mathcal{J})\longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Def. \mathcal{B} has the **intersection property** if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

 $\mathcal{I}deal(C_r^*(\mathcal{B})) := \{J \triangleleft C_r^*(\mathcal{B})\}$ $\mathcal{I}deal^{\mathcal{B}}(B_e) := \{I \triangleleft B_e : B_g I B_{g^{-1}} \subseteq I, g \in G\}$

Thm. For any Fell bundle \mathcal{B} we have a surjection

 $\mathcal{I}deal(C^*_r(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e).$

It is a lattice isomorphism $\Longleftrightarrow \mathcal{B}$ is exact and has the residual intersection property

Bartosz Kwaśniewski, IMADA, Odense Pure infiniteness, ideal structure, Fell bundles

 B_g is a D_g - $D_{g^{-1}}$ -imprimitivity bimodule where $D_g := \overline{B_g B_g^*} \triangleleft B_e$.

イロト イポト イヨト イヨト

э

 B_g is a $D_g\text{-}D_{g^{-1}}\text{-}\text{imprimitivity}$ bimodule where $D_g:=\overline{B_gB_g^*}\triangleleft B_e.$ Hence

$$\widehat{h}_{g} := [B_{g}\operatorname{-Ind}_{D_{g}}^{D_{g-1}}]$$

is a homeomorphism $\widehat{h}_g:\widehat{D}_{g^{-1}}\to \widehat{D}_g$ (a partial homeomorphism of $\widehat{B}_e).$

 B_g is a $D_g\text{-}D_{g^{-1}}\text{-}\text{imprimitivity}$ bimodule where $D_g:=\overline{B_gB_g^*}\triangleleft B_e.$ Hence

$$\widehat{h}_g := [B_g \operatorname{-Ind}_{D_g}^{D_{g-1}}]$$

is a homeomorphism $\widehat{h}_g:\widehat{D}_{g^{-1}}\to \widehat{D}_g$ (a partial homeomorphism of $\widehat{B}_e).$

Prop. $({\widehat{D}_g}_{g\in G}, {\widehat{h}_g}_{g\in G})$ is a partial action of G on $\widehat{B_e}$.

 B_g is a $D_g\text{-}D_{g^{-1}}\text{-}\text{imprimitivity}$ bimodule where $D_g:=\overline{B_gB_g^*}\triangleleft B_e.$ Hence

$$\widehat{h}_g := [B_g \operatorname{-Ind}_{D_g}^{D_{g-1}}]$$

is a homeomorphism $\widehat{h}_g:\widehat{D}_{g^{-1}}\to \widehat{D}_g$ (a partial homeomorphism of $\widehat{B}_e).$

Prop. $({\widehat{D}_g}_{g\in G}, {\widehat{h}_g}_{g\in G})$ is a partial action of G on $\widehat{B_e}$.

Thm. If $({\widehat{D}_g}_{g\in G}, {\widehat{h}_g}_{g\in G})$ is topologically free, i.e.

 $\forall_{t_1,\dots,t_n\in G} \quad \bigcap_{i=1}^n \{x \in \widehat{D}_{t_i^{-1}} : \widehat{h}_{t_i}(x) = x\} \text{ has empty interior in } \widehat{B}_e,$ then $\mathcal{B} = \{B_g\}_{g \in G}$ has the intersection property.

 B_g is a $D_g\text{-}D_{g^{-1}}\text{-}\text{imprimitivity}$ bimodule where $D_g:=\overline{B_gB_g^*}\triangleleft B_e.$ Hence

$$\widehat{h}_g := [B_g \operatorname{-Ind}_{D_g}^{D_g-1}]$$

is a homeomorphism $\widehat{h}_g:\widehat{D}_{g^{-1}}\to \widehat{D}_g$ (a partial homeomorphism of $\widehat{B}_e).$

Prop. $({\widehat{D}_g}_{g\in G}, {\widehat{h}_g}_{g\in G})$ is a partial action of G on $\widehat{B_e}$.

Thm. If $({\widehat{D}_g}_{g\in G}, {\widehat{h}_g}_{g\in G})$ is topologically free, i.e.

 $\forall_{t_1,\dots,t_n\in G} \quad \bigcap_{i=1}^n \{x \in \widehat{D}_{t_i^{-1}} : \widehat{h}_{t_i}(x) = x\} \text{ has empty interior in } \widehat{B}_e,$ then $\mathcal{B} = \{B_g\}_{g \in G}$ has the intersection property.

Cor. Suppose $({\widehat{D}_g}_{g\in G}, {\widehat{h}_g}_{g\in G})$ is residually topologically free.

If $\ensuremath{\mathcal{B}}$ is exact then

$$\mathcal{I}$$
deal $(C^*_r(\mathcal{B})) \ni J \to \widehat{J \cap B_e}$

is a bijection onto the set of all open invariant subsets in $\widehat{B_e}$.

Aperiodicity

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

 $\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$

イロト イヨト イヨト

э

Aperiodicity

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

Lem. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic \iff for any $b = \bigoplus_{g \in G} b_g \in \bigoplus_{g \in G} B_g$, $b_e \ge 0$, and any $\varepsilon > 0$ there is $x \in \overline{b_e B_e b_e}$ such that $x \ge 0$, ||x|| = 1 and

 $\|xb_ex - xbx\| < \varepsilon, \qquad \|xb_ex\| > \|b_e\| - \varepsilon$

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is **aperiodic** if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

 \mathcal{B} is **residually aperiodic** if \mathcal{B}/\mathcal{J} is aperiodic for any ideal \mathcal{J} in \mathcal{B} .

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

 $\mathcal B$ is **residually aperiodic** if $\mathcal B/\mathcal J$ is aperiodic for any ideal $\mathcal J$ in $\mathcal B$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

 $\mathcal{I}deal(C_r^*(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e)$ is a lattice-isomorphism.

イロト イヨト イヨト イヨト

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

 $\mathcal B$ is **residually aperiodic** if $\mathcal B/\mathcal J$ is aperiodic for any ideal $\mathcal J$ in $\mathcal B$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

 $\mathcal{I}deal(C_r^*(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e)$ is a lattice-isomorphism.

 B_e has the ideal property $\implies C_r^*(\mathcal{B})$ has the ideal property and the following conditions are equivalent:

イロト イヨト イヨト イヨト

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

 $\mathcal B$ is **residually aperiodic** if $\mathcal B/\mathcal J$ is aperiodic for any ideal $\mathcal J$ in $\mathcal B$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

 $\mathcal{I}deal(C_r^*(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e)$ is a lattice-isomorphism.

 B_e has the ideal property $\implies C_r^*(\mathcal{B})$ has the ideal property and the following conditions are equivalent:

(i) $C_r^*(\mathcal{B})$ is purely infinite.

イロト イポト イヨト イヨト

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

 $\mathcal B$ is **residually aperiodic** if $\mathcal B/\mathcal J$ is aperiodic for any ideal $\mathcal J$ in $\mathcal B$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

 $\mathcal{I}deal(C_r^*(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e)$ is a lattice-isomorphism.

 B_e has the ideal property $\implies C_r^*(\mathcal{B})$ has the ideal property and the following conditions are equivalent:

- (i) $C_r^*(\mathcal{B})$ is purely infinite.
- (ii) Every element in $B_e^+ \setminus \{0\}$ is properly infinite in $C_r^*(\mathcal{B})$.

イロト イヨト イヨト イヨト

Def. $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic if for each $b_g \in B_g$, $g \in G \setminus \{e\}$, and every hereditary subalgebra A of B_e ,

$$\inf\{\|ab_ga\|: a \in A, \ a \ge 0, \ \|a\| = 1\} = 0.$$

 $\mathcal B$ is **residually aperiodic** if $\mathcal B/\mathcal J$ is aperiodic for any ideal $\mathcal J$ in $\mathcal B$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

 $\mathcal{I}deal(C_r^*(\mathcal{B})) \ni J \longrightarrow J \cap B_e \in \mathcal{I}deal^{\mathcal{B}}(B_e)$ is a lattice-isomorphism.

 B_e has the ideal property $\implies C_r^*(\mathcal{B})$ has the ideal property and the following conditions are equivalent:

- (i) $C_r^*(\mathcal{B})$ is purely infinite.
- (ii) Every element in $B_e^+ \setminus \{0\}$ is properly infinite in $C_r^*(\mathcal{B})$.
- If B_e is of real rank zero, the above conditions are equivalent to

(ii') Every non-zero projection in B_e is properly infinite in $C_r^*(\mathcal{B})$.

イロト イヨト イヨト

Def. (Rørdam, Sierakowski; Giordano, Sierakowski)

Let $({\Omega_g}_{g \in G}, {\theta_g}_{g \in G})$ be a partial action on a topological space Ω . A non-empty compact open set $V \subseteq \Omega$ is called *G*-**paradoxical** if there are open sets $V_1, ..., V_{n+m}$ and elements $t_1, ..., t_{n+m} \in G$, such that

(1)
$$V = \bigcup_{i=1}^{n} V_i = \bigcup_{i=n+1}^{n+m} V_i$$
,
(2) $V_i \subseteq \Omega_{t_i^{-1}}$ and $\theta_{t_i}(V_i) \subseteq V$ for all $i = 1, ..., n + m_i$
(3) $\theta_{t_i}(V_{t_i}) \cap \theta_{t_j}(V_{t_j}) = \emptyset$ for all $i \neq j$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Def. (Rørdam, Sierakowski; Giordano, Sierakowski)

Let $({\Omega_g}_{g \in G}, {\theta_g}_{g \in G})$ be a partial action on a topological space Ω . A non-empty compact open set $V \subseteq \Omega$ is called *G*-**paradoxical** if there are open sets $V_1, ..., V_{n+m}$ and elements $t_1, ..., t_{n+m} \in G$, such that

(1)
$$V = \bigcup_{i=1}^{n} V_i = \bigcup_{i=n+1}^{n+m} V_i$$
,
(2) $V_i \subseteq \Omega_{t_i^{-1}}$ and $\theta_{t_i}(V_i) \subseteq V$ for all $i = 1, ..., n + m$
(3) $\theta_{t_i}(V_{t_i}) \cap \theta_{t_j}(V_{t_j}) = \emptyset$ for all $i \neq j$.

Def. (BKK, Szymański) Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be a Fell bundle.

An element $a \in B_e^+ \setminus \{0\}$ is *B*-paradoxical if for any $\varepsilon > 0$ there are elements $a_1, ..., a_{n+m} \in B_e^+$ such that for all $\delta > 0$ there are $b_i \in B_{t_i}$, $\|b_i\| \le 1$, $t_i \in G$, for i = 1, ..., n + m, such that (1) $a \approx_{\varepsilon} \sum_{i=1}^{n} a_i \approx_{\varepsilon} \sum_{i=n+1}^{n+m} a_i$, (2) $b_i^* b_i a_i \approx_{\delta} a_i$ and $b_i a_i \in aB_{t_i}$ for all i = 1, ..., n + m, (3) $b_i^* b_i \approx_{\delta} 0$ for all $i \neq j$.

Bartosz Kwaśniewski, IMADA, Odense

Pure infiniteness, ideal structure, Fell bundles

 $\mathcal{O} \land \mathcal{O}$

Lem. Let $(\{\Omega_g\}_{g\in G}, \{\theta_g\}_{g\in G})$ be a partial action and $\mathcal{B} = \{B_g\}_{g\in \mathcal{G}}$ associated Fell bundle. For any non-zero projection $p \in B_e = C_0(\Omega_e)$ $V = \{x \in \Omega_e : p(x) > 0\}$ is *G*-paradoxical $\implies p$ is *B*-paradoxical.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Lem. Let $({\Omega_g}_{g \in G}, {\theta_g}_{g \in G})$ be a partial action and $\mathcal{B} = {B_g}_{g \in G}$ associated Fell bundle. For any non-zero projection $p \in B_e = C_0(\Omega_e)$ $V = \{x \in \Omega_e : p(x) > 0\}$ is *G*-paradoxical $\implies p$ is *B*-paradoxical.

Lem. Every properly infinite positive element *a* in B_e is \mathcal{B} -paradoxical

イロト イボト イヨト イヨト

Lem. Let $({\Omega_g}_{g \in G}, {\theta_g}_{g \in G})$ be a partial action and $\mathcal{B} = {B_g}_{g \in G}$ associated Fell bundle. For any non-zero projection $p \in B_e = C_0(\Omega_e)$ $V = \{x \in \Omega_e : p(x) > 0\}$ is *G*-paradoxical $\implies p$ is *B*-paradoxical.

Lem. Every properly infinite positive element *a* in B_e is \mathcal{B} -paradoxical

Prop. Every \mathcal{B} -paradoxical element $a \in B_e$ is properly infinite in every \mathcal{B} -graded C^* -algebra $B = \overline{\bigoplus_{g \in G} B_g}$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Lem. Let $({\Omega_g}_{g \in G}, {\theta_g}_{g \in G})$ be a partial action and $\mathcal{B} = {B_g}_{g \in G}$ associated Fell bundle. For any non-zero projection $p \in B_e = C_0(\Omega_e)$ $V = \{x \in \Omega_e : p(x) > 0\}$ is *G*-paradoxical $\implies p$ is *B*-paradoxical.

Lem. Every properly infinite positive element a in B_e is \mathcal{B} -paradoxical

Prop. Every \mathcal{B} -paradoxical element $a \in B_e$ is properly infinite in every \mathcal{B} -graded C^* -algebra $B = \overline{\bigoplus_{g \in G} B_g}$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

If either of the conditions hold

Lem. Let $({\Omega_g}_{g \in G}, {\theta_g}_{g \in G})$ be a partial action and $\mathcal{B} = {B_g}_{g \in G}$ associated Fell bundle. For any non-zero projection $p \in B_e = C_0(\Omega_e)$ $V = \{x \in \Omega_e : p(x) > 0\}$ is *G*-paradoxical $\implies p$ is *B*-paradoxical.

Lem. Every properly infinite positive element a in B_e is \mathcal{B} -paradoxical

Prop. Every \mathcal{B} -paradoxical element $a \in B_e$ is properly infinite in every \mathcal{B} -graded C^* -algebra $B = \overline{\bigoplus_{g \in G} B_g}$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

If either of the conditions hold

(i) B_e has the ideal property and every element in $B_e^+ \setminus \{0\}$ is *B*-paradoxical.

Lem. Let $(\{\Omega_g\}_{g\in G}, \{\theta_g\}_{g\in G})$ be a partial action and $\mathcal{B} = \{B_g\}_{g\in G}$ associated Fell bundle. For any non-zero projection $p \in B_e = C_0(\Omega_e)$ $V = \{x \in \Omega_e : p(x) > 0\}$ is *G*-paradoxical $\implies p$ is *B*-paradoxical.

Lem. Every properly infinite positive element a in B_e is \mathcal{B} -paradoxical

Prop. Every \mathcal{B} -paradoxical element $a \in B_e$ is properly infinite in every \mathcal{B} -graded C^* -algebra $B = \overline{\bigoplus_{g \in G} B_g}$.

Thm. Suppose \mathcal{B} is exact and residually aperiodic.

If either of the conditions hold

- (i) B_e has the ideal property and every element in $B_e^+ \setminus \{0\}$ is *B*-paradoxical.
- (ii) B_e is of real rank zero and non-zero projection in B_e is \mathcal{B} -paradoxical.

then $C^*_r(\mathcal{B})$ is purely infinite and has the ideal property.

Motivation: Cuntz-Pimsner algebra \mathcal{O}_X of a product system

Fix a regular product system $X = \bigsqcup_{p \in P} X_p$ over a left Ore semigroup PLet $G = PP^{-1}$ be the group of fractions.

Thm. (BKK, Szymanski) Doplicher-Roberts picture of \mathcal{O}_X

- The C*-(pre)category $\{\mathcal{K}(X_p, X_q)\}_{q,p \in P}$ is naturally equipped with a right tensoring structure $\{\otimes 1_r\}_{p \in P}$.
- For each $g = pq^{-1} \in G$, $p, q \in P$, the direct limit

$$B_g := \underbrace{\lim}_{r \leq s} \left(\{ \mathcal{K}(pr, qr) \}_{r \in P}, \{ \otimes_{r^{-1}s} 1\}_{r \leq s} \right)$$

is well defined and the family $\{B_g\}_{g\in G}$ is naturally a Fell bundle.

We have

$$\mathcal{O}_X \cong C^*(\{B_g\}_{g\in G}).$$

The universal covariant representation $i_X : X \to \mathcal{O}_X$ is injective.

イロト 不得 トイヨト イヨト 二日