Pure infiniteness of *C**-algebras associated to Fell bundles

Bartosz Kwaśniewski, University of Southern Denmark, Odense

based on joint work with Wojciech Szymański (arXiv:1505.05202) modulo 'work in progress'

- 1) Introduction
- 2) Fell bundles and reduced cross-sectional C^* -algebras
- 3) Pure infiniteness criterion
- 4) Dynamical conditions implying pure infiniteness

- 1) Introduction
- 2) Fell bundles and reduced cross-sectional C^* -algebras
- 3) Pure infiniteness criterion
- 4) Dynamical conditions implying pure infiniteness

Cuntz comparison and properly infinite elements

Let A be a C^* -algebra. Notation: $a \approx_{\varepsilon} b \stackrel{def}{\iff} ||a - b|| < \varepsilon$.

Def. For $a, b \in A^+$ we write

$$a \lesssim b \ (Cuntz1978)ow \ \forall_{\varepsilon>0} \ \exists_{x \in A} \quad x^*bx \approx_{\varepsilon} a.$$

We say that $a, b \in A^+$ are **Cuntz equivalent** if both $a \lesssim b$ and $b \lesssim a$ holds.

Def. (Rørdam, Kirchberg 2000) For $a \in A^+ \setminus \{0\}$ we say

a is infinite if there is $b \in A^+ \setminus \{0\}$ such that $a \oplus b \preceq a \oplus 0$ in $M_2(A)$, *a* is properly infinite if $a \oplus a \preceq a \oplus 0$ in $M_2(A)$.

Lem. Let $a \in A^+ \setminus \{0\}$.

 $a \text{ is infinite } \Longleftrightarrow \exists_{b \in A^+ \setminus \{0\}} \forall_{\varepsilon > 0} \ \exists_{x,y \in aA} \quad x^*x \approx_{\varepsilon} a, \quad y^*y \approx_{\varepsilon} b, \quad x^*y \approx_{\varepsilon} 0,$ $a \text{ is properly infinite } \Longleftrightarrow \forall_{\varepsilon > 0} \ \exists_{x,y \in aA} \quad x^*x \approx_{\varepsilon} a, \quad y^*y \approx_{\varepsilon} a, \quad x^*y \approx_{\varepsilon} 0.$

Prop. $a \in A^+ \setminus \{0\}$ is properly infinite if and only if

for every ideal I in A the image of a in A/I is either zero or infinite.

Purely infinite C^* -algebras

Def. (Cuntz 1981)

simple C^* -algebra A is **purely infinite** \iff every non-zero hereditary C^* -subalgebra of A contains an infinite projection.

Def. (Rørdam, Kirchberg 2000)

 C^* -algebra A is **purely infinite** \iff every $a \in A^+ \setminus \{0\}$ is properly infinite.

Def. (Rørdam, Kirchberg 2002)

 C^* -algebra A is **strongly purely infinite** \iff every pair $a,b\in A^+\setminus\{0\}$ satisfies

$$\forall_{\varepsilon>0} \exists_{x\in aA, y\in bA} \qquad x^*x \approx_{\varepsilon} a, \qquad y^*y \approx_{\varepsilon} b, \qquad x^*y \approx_{\varepsilon} 0$$

A has the ideal property (IP) if projections in A separate ideals in A

Thm. (Pasnicu, Rørdam 2007) The following conditions are equivalent:

- i) A is purely infinite and has (IP)
- ii) A is strongly purely infinite and has (IP)
- iii) for every ideal I in A every non-zero hereditary C^* -subalgebra in A/I contains an infinite projection

Purely infinite crossed products (overview)

Crossed products $A \rtimes_{\alpha} \mathbb{N}$ by an endomorphism

Authors	Date	Algebra <i>A</i>	Dynamics
Rørdam	1995	simple, real rank zero, comparability property	corner endomorphism
Ortega,Pardo	2014	separable, real rank zero	residual Rokhlin* property residually contracts projections

Reduced crossed products $A \rtimes_{\alpha,r} G$ by group actions

Authors	Date	Algebra A	Dynamics	
Laca	1996	A = C(X)	topologically free,	
Spielberg			strong boundary action	
Jolissaint	2000	unital with infinite corners	properly outer	
Robertson		separable	<i>n</i> -filling	
Rørdam	2012	$A = C_0(X)$ real rank zero	residually topologically free,	
Sierakowski			exact, paradoxical	
Giordano	2014	as above but for partial actions		
Sierakowski	2014	as above but for partial actions		
Kirchberg	2015	separable or commutative	residually properly outer,	
Sierakowski	preprint		exact, <i>G</i> -separating	

Jeong, Kodaka, Osaka 1995,1996, and Pasnicu, Phillips 2015 considered conditions implying that pure infiniteness passes to crossed products

Purely infinite crossed products (overview)

Crossed products $A \rtimes_{\alpha} \mathbb{N}$ by an endomorphism

Authors	Date	Algebra <i>A</i>	Dynamics
Rørdam	1995	simple, real rank zero, comparability property	corner endomorphism
Ortega,Pardo	2014	separable, real rank zero	residual Rokhlin* property residually contracts projections

Reduced crossed products $A \rtimes_{\alpha,r} G$ by group actions

Authors	Date	Algebra <i>A</i>	Dynamics	
Laca	1996	A = C(X)	topologically free,	
Spielberg			strong boundary action	
Jolissaint	2000	unital with infinite corners	properly outer	
Robertson		separable	n-filling	
Rørdam	2012	$A = C_0(X)$ real rank zero	residually topologically free,	
Sierakowski			exact, paradoxical	
Giordano	2014	as above but for partial actions		
Sierakowski	2014	as above but for partial actions		
Kirchberg	2015 preprint	separable or commutative	residually properly outer,	
Sierakowski			exact, G-separating	

Jeong, Kodaka, Osaka 1995,1996, and Pasnicu, Phillips 2015 considered conditions implying that pure infiniteness passes to crossed products

- 1) Introduction
- 2) Fell bundles and reduced cross-sectional C^* -algebras
- 3) Pure infiniteness criterion
- 4) Dynamical conditions implying pure infiniteness

Fell bundles (throughout *G* is a discrete group)

Def. (Fell 1969)

A **Fell bundle** \mathcal{B} over G is consists of Banach spaces $\{B_g\}_{g\in G}$ equipped with

$$\cdot: B_g \times B_h \longmapsto B_{gh}, \qquad *: B_g \longmapsto B_{g^{-1}}, \qquad g,h \in G,$$

such that $\bigoplus_{g \in G} B_g$ becomes a *-algebra admitting a C^* -norm.

Any completion $B = \overline{\bigoplus_{g \in G} B_g}$ in a C^* -norm is called a \mathcal{B} -graded algebra.

The full cross sectional C^* -algebra of \mathcal{B} is $C^*(\mathcal{B}) = \overline{\bigoplus_{g \in \mathcal{G}} B_g}^{\|\cdot\|_{max}}$

Def. (Exel, Quigg 1996)

The **reduced cross sectional** C^* -algebra of \mathcal{B} is $C^*_r(\mathcal{B}) = \overline{\bigoplus_{g \in G} B_g}^{\|\cdot\|_{min}}$ where $\|\cdot\|_{min}$ is the minimal C^* -norm on $\bigoplus_{g \in G} B_g$ such that

$$\|a_e\| \leq \|\sum_{g \in G} a_g\|$$
 for all $\sum_{g \in G} a_g \in \bigoplus_{g \in G} B_g$.

Rem. $C_r^*(\mathcal{B})$ is a unique \mathcal{B} -graded C^* -algebra equipped with a faithful conditional expectation $E: C_r^*(\mathcal{B}) \to B_e$ onto the unit fiber C^* -algebra B_e .

Various ideals

Def. Fix a Fell bundle $\mathcal{B} = \{B_g\}_{g \in G}$.

An **ideal** in \mathcal{B} is $\mathcal{J} = \{J_g\}_{g \in G}$ where J_g is a closed subspace of B_g , and

$$B_g J_h \subseteq J_{gh}$$
 $J_g B_h \subseteq J_{gh}$, for all $g, h \in G$.

An ideal I in B_e is \mathcal{B} -invariant if $B_gIB_g^* \subseteq I$ for every $g \in G$.

An ideal J in $C_r^*(\mathcal{B})$ is **graded** if it is generated by $J \cap B_e$.

Prop. The following relations:

$$J = \overline{\bigoplus_{g \in G} J_g}, \qquad J_g = J \cap B_g = B_g I = IB_g, \qquad I = J \cap B_e$$

establish bijective correspondences between

- ullet ideals $\mathcal{J}=\{J_g\}_{g\in G}$ in \mathcal{B} ,
- \mathcal{B} -invariant ideals I in B_e ,
- graded ideals J in $C_r^*(\mathcal{B})$.

$$\mathcal{I}^{\mathcal{B}}(B_{\mathrm{e}}) := \{ I \triangleleft B_{\mathrm{e}} : B_{\mathrm{g}} I B_{\sigma^{-1}} \subseteq I, \, g \in G \}$$
 - \mathcal{B} -invariant ideals in B_{e}

Exactness and intersection property (Sierakowski 2010, Abadie-Abadie)

If $\mathcal{J} = \{J_t\}_{t \in G}$ is an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$, then $\mathcal{B}/\mathcal{J} := \{B_g/J_g\}_{g \in G}$ is a Fell bundle and

$$0 \longrightarrow C^*_r(\mathcal{J}) \longrightarrow C^*_r(\mathcal{B}) \longrightarrow C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Rem. G is exact $\Longrightarrow \mathcal{B}$ is exact \mathcal{B} is amenable, i.e. $C_r^*(\mathcal{B}) = C^*(\mathcal{B}) \Longrightarrow \mathcal{B}$ is exact

Def. \mathcal{B} has the intersection property if every non-zero ideal in $C_r^*(\mathcal{B})$ has a non-zero intersection with B_e . \mathcal{B} has the **residual intersection property** if \mathcal{B}/\mathcal{J} has the intersection property for every ideal \mathcal{J} in \mathcal{B} .

Thm.

Every ideal in $C_r^*(\mathcal{B})$ is graded, that is

$$C_r^*(\mathcal{B}) \triangleright J \longrightarrow J \cap B_e \in \mathcal{I}^{\mathcal{B}}(B_e)$$

is a bijection $\iff \mathcal{B}$ is exact and has the residual intersection property.

- 1) Introduction
- 2) Fell bundles and reduced cross-sectional C^* -algebras
- 3) Pure infiniteness criterion
- 4) Dynamical conditions implying pure infiniteness

Aperiodicity

Concept abstracted from the work of: Connes 1976, Elliot, 1980, Kishimoto 1981, Olesen-Pedersen, 1982, Muhly-Solel 2000, Giordano-Sierakowski 2014

Def.

A Fell bundle $\mathcal{B} = \{B_g\}_{g \in G}$ is **aperiodic** if for each $g \in G \setminus \{e\}$, each $b_g \in B_g$ and every hereditary subalgebra D of B_e ,

$$\inf\{\|ab_ga\|: a\in D^+, \ \|a\|=1\}=0.$$

 \mathcal{B} is **residually aperiodic** if \mathcal{B}/\mathcal{J} is aperiodic for any ideal \mathcal{J} in \mathcal{B} .

Prop. Suppose that $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic.

For every $b \in C_r^*(\mathcal{B})^+ \setminus \{0\}$ there is $a \in B_e^+ \setminus \{0\}$ such that $a \lesssim b$.

Cor.

If $\mathcal B$ is (residually) aperiodic, then $\mathcal B$ has the (residual) intersection property.

Pure infiniteness criterion

Thm. Suppose that \mathcal{B} is exact and residually aperiodic.

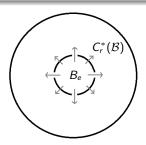
$$C_r^*(\mathcal{B}) \triangleright J \longrightarrow J \cap B_e \in \mathcal{I}^{\mathcal{B}}(B_e)$$
 is a bijection.

If either B_e has (IP) or $\mathcal B$ is minimal, i.e. are no non-trivial $\mathcal B$ -invariant ideals in B_e , then the following statements are equivalent:

- (i) $C_r^*(\mathcal{B})$ is purely infinite.
- (ii) Every element in $B_e^+ \setminus \{0\}$ is properly infinite in $C_r^*(\mathcal{B})$.

If $RR(B_e) = 0$, each of the above conditions is equivalent to

(ii') Every non-zero projection in B_e is properly infinite in $C_r^*(\mathcal{B})$.



- 1) Introduction
- 2) Fell bundles and reduced cross-sectional C^* -algebras
- 3) Pure infiniteness criterion
- 4) Dynamical conditions implying pure infiniteness

Paradoxicality

Def. (Banach-Tarski 1924, Sierakowski-Rørdam 2012)

Let $\Theta = \{\theta_{\sigma}\}_{{\sigma} \in G}$ be a group action on a locally compact Hausdorff Ω . A non-empty open set $V \subseteq \Omega$ is called Θ -paradoxical if there are open sets $V_1, ..., V_{n+m}$ and elements $t_1, ..., t_{n+m} \in G$, such that

$$V = \bigcup_{i=1}^n V_i = \bigcup_{i=n}^{n+m} V_i, \quad \theta_{t_i}(V_i) \subseteq V \quad \text{and} \quad \theta_{t_i}(V_{t_i}) \cap \theta_{t_j}(V_{t_j}) = \emptyset \text{ for all } i \neq j.$$

Def. Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be a Fell bundle.

An element $a \in B_e^+ \setminus \{0\}$ is \mathcal{B} -paradoxical if for every $\varepsilon > 0$ there are elements $a_i \in aB_{t_i}$, where $t_i \in G$ for i = 1, ..., n + m, such that

$$a \approx_{\varepsilon} \sum_{i=1}^{n} a_i^* a_i, \quad a \approx_{\varepsilon} \sum_{i=n+1}^{n+m} a_i^* a_i, \quad \text{and} \quad \|a_i^* a_j\| < \varepsilon / \max\{n^2, m^2\} \quad \text{for } i \neq j.$$

If the above holds for $\varepsilon = 0$ we call a strictly \mathcal{B} -paradoxical.

Prop. Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be the Fell bundle associated to $\Theta = \{\theta_g\}_{g \in \mathcal{G}}$.

An element $a \in B_e^+ = C_0(\Omega)^+$ is strictly \mathcal{B} -paradoxical if and only if the set $V := \{x \in \Omega : a(x) > 0\}$ is Θ -paradoxical.

Paradoxicality

Def. (Banach-Tarski 1924, Sierakowski-Rørdam 2012)

Let $\Theta = \{\theta_{\sigma}\}_{{\sigma} \in G}$ be a group action on a locally compact Hausdorff Ω . A non-empty open set $V \subseteq \Omega$ is called Θ -paradoxical if there are open sets $V_1, ..., V_{n+m}$ and elements $t_1, ..., t_{n+m} \in G$, such that

$$V = \bigcup_{i=1}^n V_i = \bigcup_{i=n}^{n+m} V_i, \quad \theta_{t_i}(V_i) \subseteq V \quad \text{and} \quad \theta_{t_i}(V_{t_i}) \cap \theta_{t_j}(V_{t_j}) = \emptyset \text{ for all } i \neq j.$$

Def. Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be a Fell bundle.

An element $a \in B_e^+ \setminus \{0\}$ is \mathcal{B} -paradoxical if for every $\varepsilon > 0$ there are elements $a_i \in aB_{t_i}$, where $t_i \in G$ for i = 1, ..., n + m, such that

$$a pprox_{arepsilon} \sum_{i=1}^n a_i^* a_i, \quad a pprox_{arepsilon} \sum_{i=n+1}^{n+m} a_i^* a_i, \quad ext{and} \quad \|a_i^* a_j\| < arepsilon / \max\{n^2, m^2\} \quad ext{for } i
eq j.$$

Rem. Let $B = \bigoplus_{g \in G} B_g$ be a \mathcal{B} -graded C^* -algebra.

If $a \in B_e^+$ is \mathcal{B} -paradoxical then for $x := \sum_{i=1}^n a_i$ and $y := \sum_{i=n+1}^{n+m} a_i$ we get $a \approx_{2\varepsilon} x^* x$, $a \approx_{2\varepsilon} y^* y$, $x^* y \approx_{\varepsilon} 0$.

Residual Infiniteness

Def. Let $\mathcal{B} = \{B_{\varepsilon}\}_{{\varepsilon} \in \mathcal{G}}$ be a Fell bundle.

An element $a \in B_e^+ \setminus \{0\}$ is \mathcal{B} -infinite if there is $b \in B_e^+ \setminus \{0\}$ such that for every $\varepsilon > 0$ there are elements $a_i \in aB_{t_i}$, where $t_i \in G$ for i = 1, ..., n + m, and

$$a pprox_{arepsilon} \sum_{i=1}^n a_i^* a_i, \quad b pprox_{arepsilon} \sum_{i=n+1}^{n+m} a_i^* a_i, \quad ext{and} \quad \|a_i^* a_j\| < arepsilon / \max\{n^2, m^2\} \quad ext{for } i
eq j.$$

If the above holds for $\varepsilon = 0$ we say a is **strictly** B-**infinite**

We say a is **residually** \mathcal{B} -infinite if for every ideal $\mathcal{J} = \{J_{\varrho}\}_{\varrho \in \mathcal{G}}$ in \mathcal{B} , the element $a + J_e$ is either zero in B_e/J_e or it is \mathcal{B}/\mathcal{J} -infinite.

Prop. Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be the Fell bundle associated to $\Theta = \{\theta_g\}_{g \in \mathcal{G}}$.

An element $a \in B_e^+ = C_0(\Omega)^+$ is strictly \mathcal{B} -infinite if and only if the set $V := \{x \in \Omega : a(x) > 0\}$ is Θ -infinite, i.e., there are open sets $V_1, ..., V_n$ and elements $t_1, ..., t_n \in G$, such that

$$V = igcup_{i=1}^n V_i, \quad igcup_{i=1}^n heta_{t_i}(V_i) \subsetneq V \ \ ext{and} \ \ heta_{t_i}(V_{t_i}) \cap heta_{t_j}(V_{t_j}) = \emptyset \ ext{for} \ i
eq j.$$

The main result

Thm. Suppose that $\mathcal{B} = \{B_g\}_{g \in G}$ is an exact, residually aperiodic Fell bundle.

 $\mathcal{C}_r^*(\mathcal{B})$ is purely infinite and has (IP) whenever one of the following conditions holds:

- (i) B_e has (IP) and every element in $B_e^+ \setminus \{0\}$ is Cuntz equivalent to a residually \mathcal{B} -infinite element,
- (i') $RR(B_e) = 0$ and every non-zero projection in B_e is Cuntz equivalent to a residually \mathcal{B} -infinite element,
- (ii) there no non-trivial \mathcal{B} -invariant ideals in B_e and every element in $B_e^+ \setminus \{0\}$ is Cuntz equivalent to a \mathcal{B} -infinite element.

Cor. (Sierakowski-Rørdam)

Let α be an exact group action on $C_0(\Omega)$ induced by residually topologically free action $\Theta = \{\theta_g\}_{g \in G}$ on a totally disconnected space Ω . If every non-empty compact and open set is paradoxical, then $A \rtimes_{\alpha,r} G$ is purely infinite.

Strong boundary and *n*-filling actions

Def. (Laca-Spielberg 1996)

A group action $\Theta = \{\theta_t\}_{t \in G}$ on a compact Hausdorff space Ω is **strong** boundary action if for every two nonempty open subsets U_1 , U_2 of Ω there are $g_1, g_2 \in G$ such that $\theta_{g_1}(U_1) \cup \theta_{g_2}(U_2) = \Omega$.

Def. (Jolissaint-Robertson 2000)

A group action $\alpha = \{\alpha_t\}_{t \in G}$ on a unital C^* -algebra A with infinite dimensional corners is called n-filling, for $n \geq 2$, if, for all elements $b_1, ..., b_n \in A^+$ of norm one, and for all $\varepsilon > 0$, there exist $g_1, ..., g_n \in G$ such that $\sum_{i=1}^n \alpha_{g_i}(b_i) \geq 1 - \varepsilon$.

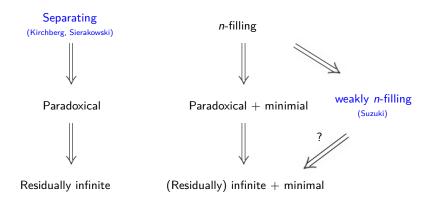
Lem.

Let α be an *n*-filling action and $\mathcal B$ the corresponding Fell bundle. Then $\mathcal B$ is minimal and any element $a \in A^+ \setminus \{0\}$ is strictly residually $\mathcal B$ -infinite.

Cor. (Laca-Spielberg, Jollisaint-Robertson)

Let α be an *n*-filling action on A and suppose that either $A=C(\Omega)$ and the dual action is topologically free, or that A is separable and α is a properly outer action. Then $A\rtimes_{\alpha,r}G$ is simple and purely infinite.

General relationship between various actions



Question:

Our theorem works for $A \rtimes_{\alpha}^{r} G$ with A being G-simple or for A with (IP). **To what extent can we extend it?**

Separating actions (Kirchberg-Sierakowski 2015 preprint)

Def.

A group action $\alpha=\{\alpha_t\}_{t\in G}$ on a C^* -algebra A is called G-separating if for every $a,b\in A_+$, $c\in A$, $\varepsilon>0$, there exist $s,t\in A$ and $g,h\in G$ such that

$$\|s^*as - \sigma_g(a)\| < \varepsilon, \quad \|t^*at - \sigma_h(a)\| < \varepsilon, \quad \|s^*ct\| < \varepsilon.$$

Lem.

A group action $\alpha = \{\alpha_t\}_{t \in G}$ on a commutative C^* -algebra $A = C_0(\Omega)$ is G-separating if and only if for every $U_1, U_2 \subseteq \Omega$ and compact $K_1, K_2 \subseteq \Omega$ with $K_1 \subseteq U_1, K_2 \subseteq U_2$, there exist $g, h \in G$ such that

$$\theta_g(K_1) \subseteq U_1, \qquad \theta_h(K_2) \subseteq U_2, \qquad \theta_g(K_1) \cap \theta_h(K_2) = \emptyset,$$

where $\Theta = \{\theta_t\}_{t \in G}$ is the action dual to α .

Thm.

Let α be a G-separating action on A and suppose that either $A=C_0(\Omega)$ and the dual action is residually topologically free, or that A is separable and α is residually properly outer action. Then $A \rtimes_{\alpha,r} G$ is strongly purely infinite.