Topological aperiodicity for product systems of C^{*}-correspondences

Bartosz Kwaśniewski, IMADA, Odense

March 4, 2015, Oslo
based on joint work with Wojciech Szymański, IMADA, Odense

Universal C^{*}-algebras and uniqueness problem

\mathcal{G} - set of generators, $\quad \mathcal{R}-\mathcal{C}^{*}$-algebraic relations on \mathcal{G}

Universal C^{*}-algebras and uniqueness problem

\mathcal{G} - set of generators, $\quad \mathcal{R}-C^{*}$-algebraic relations on \mathcal{G}
Def. Representation of $(\mathcal{G}, \mathcal{R})$ in a C^{*}-algebra A is $\pi=\{\pi(g)\}_{g \in \mathcal{G}} \subseteq A$ satisfying the relations \mathcal{R} in A. If $\pi(g) \neq 0$ for all $g \in \mathcal{G}, \pi$ is faithful.

Universal C^{*}-algebras and uniqueness problem

\mathcal{G} - set of generators, $\quad \mathcal{R}-\mathcal{C}^{*}$-algebraic relations on \mathcal{G}
Def. Representation of $(\mathcal{G}, \mathcal{R})$ in a C^{*}-algebra A is $\pi=\{\pi(g)\}_{g \in \mathcal{G}} \subseteq A$ satisfying the relations \mathcal{R} in A. If $\pi(g) \neq 0$ for all $g \in \mathcal{G}, \pi$ is faithful.

Def. The universal C^{*}-algebra generated by \mathcal{G} subject to \mathcal{R} is a C^{*}-algebra $C^{*}(\mathcal{G}, \mathcal{R}):=C^{*}(\iota(\mathcal{G}))$ where ι is a representation of $(\mathcal{G}, \mathcal{R})$ such that if π is a representation of $(\mathcal{G}, \mathcal{R})$ then

$$
\iota(g) \longmapsto \pi(g), \quad g \in \mathcal{G}
$$

extends to an epimorphism $C^{*}(\mathcal{G}, \mathcal{R}) \rightarrow C^{*}(\pi(\mathcal{G}))$.

Universal C^{*}-algebras and uniqueness problem

\mathcal{G} - set of generators, $\quad \mathcal{R}-\mathcal{C}^{*}$-algebraic relations on \mathcal{G}
Def. Representation of $(\mathcal{G}, \mathcal{R})$ in a C^{*}-algebra A is $\pi=\{\pi(g)\}_{g \in \mathcal{G}} \subseteq A$ satisfying the relations \mathcal{R} in A. If $\pi(g) \neq 0$ for all $g \in \mathcal{G}, \pi$ is faithful.

Def. The universal C^{*}-algebra generated by \mathcal{G} subject to \mathcal{R} is a C^{*}-algebra $C^{*}(\mathcal{G}, \mathcal{R}):=C^{*}(\iota(\mathcal{G}))$ where ι is a representation of $(\mathcal{G}, \mathcal{R})$ such that if π is a representation of $(\mathcal{G}, \mathcal{R})$ then

$$
\iota(g) \longmapsto \pi(g), \quad g \in \mathcal{G}
$$

extends to an epimorphism $C^{*}(\mathcal{G}, \mathcal{R}) \rightarrow C^{*}(\pi(\mathcal{G}))$.
Def. $(\mathcal{G}, \mathcal{R})$ has uniqueness property if for any two faithful representations π_{1}, π_{2} of $(\mathcal{G}, \mathcal{R})$ the mapping

$$
\pi_{1}(g) \longmapsto \pi_{2}(g), \quad g \in \mathcal{G}
$$

extends to $*$-isomorphism $*-\operatorname{Alg}\left(\pi_{1}(\mathcal{G})\right) \cong *-\operatorname{Alg}\left(\pi_{2}(\mathcal{G})\right)$, which in the presence of 'amenability' is equivalent to $C^{*}\left(\pi_{1}(\mathcal{G})\right) \cong C^{*}\left(\pi_{2}(\mathcal{G})\right)$.

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
\begin{gathered}
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}), \\
\mathcal{G}=A \cup G, \mathcal{R}=\left\{\mathrm{gag}^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, \text {-algebraic relations in } A\right\}
\end{gathered}
$$

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

$\mathcal{G}=A \cup G, \mathcal{R}=\left\{g^{\prime} g^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, *\right.$-algebraic relations in $\left.A\right\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection

$$
\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G
$$

in general is not injective.

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

$\mathcal{G}=A \cup G, \mathcal{R}=\left\{g^{\prime} g^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, *\right.$-algebraic relations in $\left.A\right\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection Amenability

$$
\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G
$$

in general is not injective.

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

$\mathcal{G}=A \cup G, \mathcal{R}=\left\{g^{\prime} g^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, *\right.$-algebraic relations in $\left.A\right\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection Amenability

$$
\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G
$$

in general is not injective.

Fact.

Let $\widehat{\alpha}: G \rightarrow \operatorname{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_{g}}([\pi])=\left[\pi \circ \alpha_{g}\right], g \in G$.

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

$\mathcal{G}=A \cup G, \mathcal{R}=\left\{g^{\prime} g^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, *\right.$-algebraic relations in $\left.A\right\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection Amenability

$$
\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G
$$

in general is not injective.

Fact.

Let $\widehat{\alpha}: G \rightarrow \operatorname{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_{g}}([\pi])=\left[\pi \circ \alpha_{g}\right], g \in G$. If α is topologically free, i.e. for any $t_{1}, . ., t_{n} \in G \backslash e$

$$
\left\{[\pi]: \exists_{i=1, \ldots, n} \alpha_{t_{i}}([\pi])=[\pi]\right\} \quad \text { has empty interior in } \widehat{A} .
$$

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

$\mathcal{G}=A \cup G, \mathcal{R}=\left\{g^{\prime} g^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, *\right.$-algebraic relations in $\left.A\right\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection

$$
\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G
$$

in general is not injective.

Fact.

Let $\widehat{\alpha}: G \rightarrow \operatorname{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_{g}}([\pi])=\left[\pi \circ \alpha_{g}\right], g \in G$. If α is topologically free, i.e. for any $t_{1}, . ., t_{n} \in G \backslash e$

$$
\left\{[\pi]: \exists_{i=1, \ldots, n} \alpha_{t_{i}}([\pi])=[\pi]\right\} \quad \text { has empty interior in } \widehat{A} .
$$

Then $(\mathcal{G}, \mathcal{R})$ has uniqueness property.

Crossed products by group actions

$\alpha: G \rightarrow \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^{*}-algebra A

$$
A \rtimes_{\alpha} G=C^{*}(\mathcal{G}, \mathcal{R}),
$$

$\mathcal{G}=A \cup G, \mathcal{R}=\left\{g^{\prime} g^{-1}=\alpha_{g}(a), g^{-1}=g^{*}, *\right.$-algebraic relations in $\left.A\right\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection

$$
\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G
$$

in general is not injective.

Fact.

Let $\widehat{\alpha}: G \rightarrow \operatorname{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_{g}}([\pi])=\left[\pi \circ \alpha_{g}\right], g \in G$. If α is topologically free, i.e. for any $t_{1}, . ., t_{n} \in G \backslash e$

$$
\left\{[\pi]: \exists_{i=1, \ldots, n} \alpha_{t_{i}}([\pi])=[\pi]\right\} \quad \text { has empty interior in } \widehat{A} .
$$

Then $(\mathcal{G}, \mathcal{R})$ has uniqueness property.

Classical examples: quantum statistics

Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra
$\mathcal{G}=\{a(f): f \in H$ - Hilbert space $\}$, \mathcal{R} - conj. linear structure of H plus

$$
\begin{aligned}
a(f)^{*} a(h)+a(h) a(f)^{*} & =\langle f, h\rangle 1 \\
a(f) a(h)+a(h) a(f) & =0
\end{aligned}
$$

Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra
$\mathcal{G}=\{a(f): f \in H$ - Hilbert space $\}$, \mathcal{R} - conj. linear structure of H plus

$$
\begin{aligned}
a(f)^{*} a(h)+a(h) a(f)^{*} & =\langle f, h\rangle 1 \\
a(f) a(h)+a(h) a(f) & =0
\end{aligned}
$$

uniqueness property \checkmark (P. Jordan \& E. Wigner 1928, I. Segal 1963)

Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra

$\mathcal{G}=\{a(f): f \in H$ - Hilbert space $\}$, \mathcal{R} - conj. linear structure of H plus

$$
\begin{aligned}
a(f)^{*} a(h)+a(h) a(f)^{*} & =\langle f, h\rangle 1 \\
a(f) a(h)+a(h) a(f) & =0
\end{aligned}
$$

uniqueness property \checkmark (P. Jordan \& E. Wigner 1928, I. Segal 1963)
canonical commutation relations (CCR) algebra
$\mathcal{G}=\{W(f): f \in H$ - Hilbert space $\}, \mathcal{R}$ - consists of

$$
\begin{aligned}
W(-f) & =W(f)^{*} \\
W(f) W(h) & =e^{-i \operatorname{lm}\langle f, h\rangle} W(f+h)
\end{aligned}
$$

Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra

$\mathcal{G}=\{a(f): f \in H$ - Hilbert space $\}$, \mathcal{R} - conj. linear structure of H plus

$$
\begin{aligned}
a(f)^{*} a(h)+a(h) a(f)^{*} & =\langle f, h\rangle 1 \\
a(f) a(h)+a(h) a(f) & =0
\end{aligned}
$$

uniqueness property \checkmark (P. Jordan \& E. Wigner 1928, I. Segal 1963)
canonical commutation relations (CCR) algebra
$\mathcal{G}=\{W(f): f \in H$ - Hilbert space $\}, \mathcal{R}$ - consists of

$$
\begin{aligned}
W(-f) & =W(f)^{*} \\
W(f) W(h) & =e^{-i l m\langle f, h\rangle} W(f+h)
\end{aligned}
$$

uniqueness property \checkmark (J. Sławny 1971)

Unitary algebra $C^{*}(S)$
 $S^{*} S=S S^{*}=1$

```
Unitary algebra C*(S)
    S*S = SS* = 1
no uniqueness property
```


Unitary algebra $C^{*}(S)$
 $S^{*} S=S S^{*}=1$
 no uniqueness property

Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$

S, T unitary, $S T=e^{2 \pi i \theta} T S$

```
Unitary algebra C*(S)
    S*S = SS* = 1
no uniqueness property
```

Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$ uniqueness property $\Longleftrightarrow \theta \notin \mathbb{Q}$

Unitary algebra $C^{*}(S)$
 $$
S^{*} S=S S^{*}=1
$$
 no uniqueness property

Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$ uniqueness property $\Longleftrightarrow \theta \notin \mathbb{Q}$

Toeplitz algebra $=C^{*}(S)$

$$
S^{*} S=1, \quad S S^{*} \neq 1
$$

Unitary algebra $C^{*}(S)$
 $$
S^{*} S=S S^{*}=1
$$
 no uniqueness property

Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$ uniqueness property $\Longleftrightarrow \theta \notin \mathbb{Q}$

Toeplitz algebra $=C^{*}(S)$

$$
S^{*} S=1, \quad S S^{*} \neq 1
$$

uniqueness property \checkmark
(L. A. Coburn 1969)

Unitary algebra $C^{*}(S)$

$$
S^{*} S=S S^{*}=1
$$

no uniqueness property
Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$ uniqueness property $\Longleftrightarrow \theta \notin \mathbb{Q}$

Cuntz algebras $\mathcal{O}_{n}=C^{*}\left(S_{1}, S_{2}, \ldots, S_{n}\right)$

$$
S^{*} S=1, \quad S S^{*} \neq 1
$$

uniqueness property \checkmark
(L. A. Coburn 1969)

$$
S_{i}^{*} S_{j}=\delta_{i, j} 1, \quad \sum_{i=1}^{n} S_{i} S_{i}^{*}=1
$$

Unitary algebra $C^{*}(S)$

$$
S^{*} S=S S^{*}=1
$$

no uniqueness property
Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$
uniqueness property $\Longleftrightarrow \theta \notin \mathbb{Q}$
Cuntz algebras $\mathcal{O}_{n}=C^{*}\left(S_{1}, S_{2}, \ldots, S_{n}\right)$

$$
S^{*} S=1, \quad S S^{*} \neq 1
$$

uniqueness property \checkmark
(L. A. Coburn 1969)

$$
S_{i}^{*} S_{j}=\delta_{i, j} 1, \quad \sum_{i=1}^{n} S_{i} S_{i}^{*}=1
$$

uniqueness property \checkmark (J. Cuntz 1977)

Unitary algebra $C^{*}(S)$

$$
S^{*} S=S S^{*}=1
$$

no uniqueness property

Toeplitz algebra $=C^{*}(S)$

$$
S^{*} S=1, \quad S S^{*} \neq 1
$$

uniqueness property \checkmark
(L. A. Coburn 1969)

Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$

$$
\text { uniqueness property } \Longleftrightarrow \theta \notin \mathbb{Q}
$$

Cuntz algebras $\mathcal{O}_{n}=C^{*}\left(S_{1}, S_{2}, \ldots, S_{n}\right)$

$$
S_{i}^{*} S_{j}=\delta_{i, j} 1, \quad \sum_{i=1}^{n} S_{i} S_{i}^{*}=1
$$

uniqueness property \checkmark (J. Cuntz 1977)

Cuntz-Krieger algebras $\mathcal{O}_{A}=C^{*}\left(S_{1}, S_{2}, \ldots, S_{n}\right)$
$\{A(i, j)\}_{i, j=1}^{n} \in\{0,1\}^{n \times n}, S_{i}$ partial isometries with orthogonal ranges

$$
\sum_{j=1}^{n} A(i, j) S_{j} S_{j}^{*}=S_{i}^{*} S_{i}
$$

Unitary algebra $C^{*}(S)$

$$
S^{*} S=S S^{*}=1
$$

no uniqueness property

Toeplitz algebra $=C^{*}(S)$

$$
S^{*} S=1, \quad S S^{*} \neq 1
$$

uniqueness property \checkmark
(L. A. Coburn 1969)

Rotation algebras $\mathcal{A}_{\theta}=C^{*}(S, T), \theta \in \mathbb{R}$
S, T unitary, $S T=e^{2 \pi i \theta} T S$

$$
\text { uniqueness property } \Longleftrightarrow \theta \notin \mathbb{Q}
$$

Cuntz algebras $\mathcal{O}_{n}=C^{*}\left(S_{1}, S_{2}, \ldots, S_{n}\right)$

$$
S_{i}^{*} S_{j}=\delta_{i, j} 1, \quad \sum_{i=1}^{n} S_{i} S_{i}^{*}=1
$$

uniqueness property \checkmark (J. Cuntz 1977)

Cuntz-Krieger algebras $\mathcal{O}_{A}=C^{*}\left(S_{1}, S_{2}, \ldots, S_{n}\right)$

$\{A(i, j)\}_{i, j=1}^{n} \in\{0,1\}^{n \times n}, S_{i}$ partial isometries with orthogonal ranges

$$
\sum_{j=1}^{n} A(i, j) S_{j} S_{j}^{*}=S_{i}^{*} S_{i}
$$

uniqueness property \Longleftrightarrow condition (I) (J. Cuntz, W. Krieger 1980)

Cuntz-Krieger uniqueness theorem industry

Cuntz, Krieger 1980

Cuntz-Krieger algebras \mathcal{O}_{A}
condition (I)

Cuntz-Krieger uniqueness theorem industry

Ore semigroups

P - cancellative semigroup with unit e.

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$ equivalently (P, \leq) is directed.

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$ equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$ equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore $\Longleftrightarrow P$ embeds as a semigroup into a group G and

$$
G=P P^{-1}=\left\{s t^{-1}: s, t \in P\right\} .
$$

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$ equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore $\Longleftrightarrow P$ embeds as a semigroup into a group G and

$$
G=P P^{-1}=\left\{s t^{-1}: s, t \in P\right\} .
$$

Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$ equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore $\Longleftrightarrow P$ embeds as a semigroup into a group G and

$$
G=P P^{-1}=\left\{s t^{-1}: s, t \in P\right\} .
$$

[^0]
Ore semigroups

P - cancellative semigroup with unit e. It is pre-ordered where

$$
p \leq q \quad \stackrel{\text { def }}{\Longrightarrow} \quad p r=q \quad \text { for some } r \in P .
$$

Def. P is a (right) Ore semigroup iff $s P \cap t P \neq \emptyset$, for all $s, t \in P$ equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore $\Longleftrightarrow P$ embeds as a semigroup into a group G and

$$
G=P P^{-1}=\left\{s t^{-1}: s, t \in P\right\} .
$$

E. Noether

Regular C^{*}-correspondences and their product systems

Regular C^{*}-correspondence X over A is a (right) Hilbert A-module with left action being injective $*$-homomorphism $\phi: A \rightarrow \mathcal{K}(X) \subset \mathcal{L}(X)$.

Regular C^{*}-correspondences and their product systems

Regular C^{*}-correspondence X over A is a (right) Hilbert A-module with left action being injective $*$-homomorphism $\phi: A \rightarrow \mathcal{K}(X) \subset \mathcal{L}(X)$.
$\mathcal{K}(X):=\overline{\operatorname{span}}\left\{\Theta_{y, x}: x, y \in X\right\} \quad$ where $\Theta_{y, x} z:=y \cdot\langle x, z\rangle_{A}, \quad x, y, z \in X$

Regular C^{*}-correspondences and their product systems

Regular C^{*}-correspondence X over A is a (right) Hilbert A-module with left action being injective $*$-homomorphism $\phi: A \rightarrow \mathcal{K}(X) \subset \mathcal{L}(X)$.
$\mathcal{K}(X):=\overline{\operatorname{span}}\left\{\Theta_{y, x}: x, y \in X\right\} \quad$ where $\Theta_{y, x} z:=y \cdot\langle x, z\rangle_{A}, \quad x, y, z \in X$
Representation of X in a C^{*}-algebra B is a pair (π, ψ) where $\pi: A \rightarrow B$ is a $*$-homomorphism and $\psi: X \rightarrow B$ linear s.t.

Regular C^{*}-correspondences and their product systems

Regular C^{*}-correspondence X over A is a (right) Hilbert A-module with left action being injective $*$-homomorphism $\phi: A \rightarrow \mathcal{K}(X) \subset \mathcal{L}(X)$.
$\mathcal{K}(X):=\overline{\operatorname{span}}\left\{\Theta_{y, x}: x, y \in X\right\} \quad$ where $\quad \Theta_{y, x} z:=y \cdot\langle x, z\rangle_{A}, \quad x, y, z \in X$
Representation of X in a C^{*}-algebra B is a pair (π, ψ) where $\pi: A \rightarrow B$ is a $*$-homomorphism and $\psi: X \rightarrow B$ linear s.t.

$$
\psi(a \cdot x \cdot b)=\pi(a) \psi(x) \pi(b), \quad \psi(x)^{*} \psi(y)=\pi\left(\langle x, y\rangle_{A}\right) .
$$

Regular C^{*}-correspondences and their product systems

Regular C^{*}-correspondence X over A is a (right) Hilbert A-module with left action being injective $*$-homomorphism $\phi: A \rightarrow \mathcal{K}(X) \subset \mathcal{L}(X)$.
$\mathcal{K}(X):=\overline{\operatorname{span}}\left\{\Theta_{y, x}: x, y \in X\right\} \quad$ where $\Theta_{y, x} z:=y \cdot\langle x, z\rangle_{A}, \quad x, y, z \in X$
Representation of X in a C^{*}-algebra B is a pair (π, ψ) where $\pi: A \rightarrow B$ is a $*$-homomorphism and $\psi: X \rightarrow B$ linear s.t.

$$
\psi(a \cdot x \cdot b)=\pi(a) \psi(x) \pi(b), \quad \psi(x)^{*} \psi(y)=\pi\left(\langle x, y\rangle_{A}\right) .
$$

We say (π, ψ) is covariant representation if additionally

$$
(\pi, \psi)^{(1)}(\phi(a))=\pi(a), \quad \text { for all } a \in A,
$$

where $(\pi, \psi)^{(1)}: \mathcal{K}(X) \rightarrow B$ is given by $(\pi, \psi)^{(1)}\left(\Theta_{x, y}\right):=\psi(x) \psi(y)^{*}$.

Regular C^{*}-correspondences and their product systems

Regular C^{*}-correspondence X over A is a (right) Hilbert A-module with left action being injective $*$-homomorphism $\phi: A \rightarrow \mathcal{K}(X) \subset \mathcal{L}(X)$.
$\mathcal{K}(X):=\overline{\operatorname{span}}\left\{\Theta_{y, x}: x, y \in X\right\} \quad$ where $\Theta_{y, x} z:=y \cdot\langle x, z\rangle_{A}, \quad x, y, z \in X$
Representation of X in a C^{*}-algebra B is a pair (π, ψ) where $\pi: A \rightarrow B$ is a $*$-homomorphism and $\psi: X \rightarrow B$ linear s.t.

$$
\psi(a \cdot x \cdot b)=\pi(a) \psi(x) \pi(b), \quad \psi(x)^{*} \psi(y)=\pi\left(\langle x, y\rangle_{A}\right) .
$$

We say (π, ψ) is covariant representation if additionally

$$
(\pi, \psi)^{(1)}(\phi(a))=\pi(a), \quad \text { for all } a \in A,
$$

where $(\pi, \psi)^{(1)}: \mathcal{K}(X) \rightarrow B$ is given by $(\pi, \psi)^{(1)}\left(\Theta_{x, y}\right):=\psi(x) \psi(y)^{*}$.

Cuntz-Pimsner algebra is $\mathcal{O}_{X}:=C^{*}\left(i_{A}(A) \cup i_{X}(X)\right)$ where $\left(i_{A}, i_{X}\right)$ is a covariant universal representation of X (M. Pimsner 1997)

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.
(2) X_{e} is the standard bimodule ${ }_{A} A_{A}$

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.
(2) X_{e} is the standard bimodule ${ }_{A} A_{A}$
(3) multiplication on X implements isomorphisms $X_{p} \otimes_{A} X_{q} \cong X_{p q}$ for $p, q \in P \backslash\{e\}$ and the right and left actions of $X_{e}=A$ on each X_{p}.

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.
(2) X_{e} is the standard bimodule ${ }_{A} A_{A}$
(3) multiplication on X implements isomorphisms $X_{p} \otimes_{A} X_{q} \cong X_{p q}$ for $p, q \in P \backslash\{e\}$ and the right and left actions of $X_{e}=A$ on each X_{p}.

Covariant representation of X

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.
(2) X_{e} is the standard bimodule ${ }_{A} A_{A}$
(3) multiplication on X implements isomorphisms $X_{p} \otimes_{A} X_{q} \cong X_{p q}$ for $p, q \in P \backslash\{e\}$ and the right and left actions of $X_{e}=A$ on each X_{p}.

Covariant representation of X is a semigroup homo. $\psi: X \rightarrow B$ such that
$\left(\psi_{e}, \psi_{p}\right)$ is a covariant representation of X_{p}, for all $p \in P$,
where we put $\psi_{p}:=\left.\psi\right|_{x_{p}}$ for all $p \in P$.

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.
(2) X_{e} is the standard bimodule ${ }_{A} A_{A}$
(3) multiplication on X implements isomorphisms $X_{p} \otimes_{A} X_{q} \cong X_{p q}$ for $p, q \in P \backslash\{e\}$ and the right and left actions of $X_{e}=A$ on each X_{p}.

Covariant representation of X is a semigroup homo. $\psi: X \rightarrow B$ such that $\left(\psi_{e}, \psi_{p}\right)$ is a covariant representation of X_{p}, for all $p \in P$, where we put $\psi_{p}:=\left.\psi\right|_{x_{p}}$ for all $p \in P$.

Cuntz-Pimsner algebra is $\mathcal{O}_{X}:=C^{*}\left(i_{X}(X)\right)$ where i_{X} is a universal covariant representation of the product system X (N. Fowler 2002)

Regular product system over a semigroup P with coefficients in a C^{*}-algebra A is a semigroup X with a semigroup homomorphism $d: X \rightarrow P$ s.t.
(1) $X_{p}:=d^{-1}(p)$ is a regular C^{*}-correspondence over A for each $p \in P$.
(2) X_{e} is the standard bimodule ${ }_{A} A_{A}$
(3) multiplication on X implements isomorphisms $X_{p} \otimes_{A} X_{q} \cong X_{p q}$ for $p, q \in P \backslash\{e\}$ and the right and left actions of $X_{e}=A$ on each X_{p}.

Covariant representation of X is a semigroup homo. $\psi: X \rightarrow B$ such that $\left(\psi_{e}, \psi_{p}\right)$ is a covariant representation of X_{p}, for all $p \in P$, where we put $\psi_{p}:=\left.\psi\right|_{x_{p}}$ for all $p \in P$.

Cuntz-Pimsner algebra is $\mathcal{O}_{X}:=C^{*}\left(i_{X}(X)\right)$ where i_{X} is a universal covariant representation of the product system X (N. Fowler 2002)

Problem

In general the structure of \mathcal{O}_{X} is not well understood!

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X}

Fix a regular product system X over an Ore semigroup P.

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X}

Fix a regular product system X over an Ore semigroup P.
Prop. (Right tensoring structure on $\left.\left\{\mathcal{K}\left(X_{p}, X_{q}\right)\right\}_{q, p \in P}\right)$

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X}

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\left.\left\{\mathcal{K}\left(X_{p}, X_{q}\right)\right\}_{q, p \in P}\right)$

Let $r \in P$ the maps $\otimes 1_{r}: \mathcal{K}\left(X_{q}, X_{p}\right) \rightarrow \mathcal{K}\left(X_{q r}, X_{p r}\right), p, q \in P$, where

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X}

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\left.\left\{\mathcal{K}\left(X_{p}, X_{q}\right)\right\}_{q, p \in P}\right)$

Let $r \in P$ the maps $\otimes 1_{r}: \mathcal{K}\left(X_{q}, X_{p}\right) \rightarrow \mathcal{K}\left(X_{q r}, X_{p r}\right), p, q \in P$, where

$$
\left(T \otimes 1_{r}\right)(x y):=(T x) y \quad x \in X_{q}, y \in X_{r}, T \in \mathcal{K}\left(X_{q}, X_{p}\right)
$$

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X}

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\left.\left\{\mathcal{K}\left(X_{p}, X_{q}\right)\right\}_{q, p \in P}\right)$

Let $r \in P$ the maps $\otimes 1_{r}: \mathcal{K}\left(X_{q}, X_{p}\right) \rightarrow \mathcal{K}\left(X_{q r}, X_{p r}\right), p, q \in P$, where

$$
\left(T \otimes 1_{r}\right)(x y):=(T x) y \quad x \in X_{q}, y \in X_{r}, T \in \mathcal{K}\left(X_{q}, X_{p}\right)
$$

are well defined isometries and such that

$$
\begin{gathered}
\left.\left(T \otimes 1_{r}\right)^{*}=\left(T^{*}\right) \otimes 1_{r}, \quad\left(T \otimes 1_{r}\right) \otimes 1_{s}\right)=T \otimes 1_{r s}, \\
\left(T \otimes 1_{r}\right)\left(S \otimes 1_{r}\right)=(T S) \otimes 1_{r}, \quad T \in \mathcal{K}\left(X_{p}, X_{q}\right), S \in \mathcal{K}\left(X_{s}, X_{p}\right)
\end{gathered}
$$

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X}

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\left.\left\{\mathcal{K}\left(X_{p}, X_{q}\right)\right\}_{q, p \in P}\right)$

Let $r \in P$ the maps $\otimes 1_{r}: \mathcal{K}\left(X_{q}, X_{p}\right) \rightarrow \mathcal{K}\left(X_{q r}, X_{p r}\right), p, q \in P$, where

$$
\left(T \otimes 1_{r}\right)(x y):=(T x) y \quad x \in X_{q}, y \in X_{r}, T \in \mathcal{K}\left(X_{q}, X_{p}\right)
$$

are well defined isometries and such that

$$
\begin{gathered}
\left.\left(T \otimes 1_{r}\right)^{*}=\left(T^{*}\right) \otimes 1_{r}, \quad\left(T \otimes 1_{r}\right) \otimes 1_{s}\right)=T \otimes 1_{r s}, \\
\left(T \otimes 1_{r}\right)\left(S \otimes 1_{r}\right)=(T S) \otimes 1_{r}, \quad T \in \mathcal{K}\left(X_{p}, X_{q}\right), S \in \mathcal{K}\left(X_{s}, X_{p}\right)
\end{gathered}
$$

Let $G=P P^{-1}$ be the group of fractions and recall that (P, \leq) is directed where $p \leq q \quad \Longleftrightarrow \quad p r=q$ for some $r \in P$.

Thm. (Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{x})
For each $g=p q^{-1} \in G, p, q \in P$, define the Banach space direct limit

$$
B_{g}:=\underset{\longrightarrow}{\lim } \mathcal{K}\left(X_{q r}, X_{p r}\right)
$$

Thm. (Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{x})
For each $g=p q^{-1} \in G, p, q \in P$, define the Banach space direct limit

$$
B_{g}:=\underset{\longrightarrow}{\lim } \mathcal{K}\left(X_{q r}, X_{p r}\right)
$$

The family $\left\{B_{g}\right\}_{g \in G}$ is naturally a Fell bundle and

$$
\mathcal{O}_{X} \cong C^{*}\left(\left\{B_{g}\right\}_{g \in G}\right)
$$

Thm. (Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{X})
For each $g=p q^{-1} \in G, p, q \in P$, define the Banach space direct limit

$$
B_{g}:=\underset{\longrightarrow}{\lim } \mathcal{K}\left(X_{q r}, X_{p r}\right)
$$

The family $\left\{B_{g}\right\}_{g \in G}$ is naturally a Fell bundle and

$$
\mathcal{O}_{X} \cong C^{*}\left(\left\{B_{g}\right\}_{g \in G}\right)
$$

The universal covariant representation $i_{X}: X \rightarrow \mathcal{O}_{X}$ is injective.

Thm. (Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{x})

For each $g=p q^{-1} \in G, p, q \in P$, define the Banach space direct limit

$$
B_{g}:=\underset{\longrightarrow}{\lim } \mathcal{K}\left(X_{q r}, X_{p r}\right)
$$

The family $\left\{B_{g}\right\}_{g \in G}$ is naturally a Fell bundle and

$$
\mathcal{O}_{X} \cong C^{*}\left(\left\{B_{g}\right\}_{g \in G}\right)
$$

The universal covariant representation $i_{X}: X \rightarrow \mathcal{O}_{X}$ is injective.
We define the reduced Cuntz-Pimsner algebra

$$
\mathcal{O}_{X}^{r}:=C_{r}^{*}\left(\left\{B_{g}\right\}_{g \in G}\right)
$$

and consider the canonical epimorphism $\lambda: \mathcal{O}_{X} \rightarrow \mathcal{O}_{x}^{r}$.

Thm. (Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_{x})

For each $g=p q^{-1} \in G, p, q \in P$, define the Banach space direct limit

$$
B_{g}:=\underset{\longrightarrow}{\lim } \mathcal{K}\left(X_{q r}, X_{p r}\right)
$$

The family $\left\{B_{g}\right\}_{g \in G}$ is naturally a Fell bundle and

$$
\mathcal{O}_{X} \cong C^{*}\left(\left\{B_{g}\right\}_{g \in G}\right)
$$

The universal covariant representation $i_{X}: X \rightarrow \mathcal{O}_{X}$ is injective.
We define the reduced Cuntz-Pimsner algebra

$$
\mathcal{O}_{X}^{r}:=C_{r}^{*}\left(\left\{B_{g}\right\}_{g \in G}\right)
$$

and consider the canonical epimorphism $\lambda: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{r}$.
Problem For which X, for any injective covariant representation ψ of X there is a (unique) epimorphism $\lambda_{\psi}: C^{*}(\psi(X)) \rightarrow \mathcal{O}_{X}^{r}$ such that:

$$
\mathcal{O}_{X} \stackrel{\prod_{\lambda}^{\psi}}{\xrightarrow{\longrightarrow}} C^{*}(\psi(X)) \xrightarrow{\lambda_{\psi}} \mathcal{O}_{X}^{r}
$$

Thm. Suppose X is an imprimitivity $A-B$-bimodule
For $\pi: B \rightarrow \mathcal{B}(H)$ define $X-\operatorname{Ind}(\pi): A \rightarrow \mathcal{B}\left(X \otimes_{\pi} H\right)$ by

$$
X-\operatorname{lnd}(\pi)(a)\left(x \otimes_{\pi} h\right)=(a x) \otimes_{\pi} h .
$$

Then [X-Ind] : $\widehat{B} \rightarrow \widehat{A}$ is a homeomorphism.

Thm. Suppose X is an imprimitivity $A-B$-bimodule
For $\pi: B \rightarrow \mathcal{B}(H)$ define $X-\operatorname{Ind}(\pi): A \rightarrow \mathcal{B}\left(X \otimes_{\pi} H\right)$ by

$$
X-\operatorname{lnd}(\pi)(a)\left(x \otimes_{\pi} h\right)=(a x) \otimes_{\pi} h
$$

Then [X-Ind] : $\widehat{B} \rightarrow \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$
\begin{aligned}
& \langle X, X\rangle_{A}:=\overline{\operatorname{span}}\left\{\langle x, y\rangle_{A}: x, y \in X\right\} \quad \Longrightarrow \quad \text { ideals in } A \\
& A\langle X, X\rangle:=\overline{\operatorname{span}}\{A\langle x, y\rangle: x, y \in X\}
\end{aligned}
$$

Thm. Suppose X is an imprimitivity $A-B$-bimodule
For $\pi: B \rightarrow \mathcal{B}(H)$ define $X-\operatorname{Ind}(\pi): A \rightarrow \mathcal{B}\left(X \otimes_{\pi} H\right)$ by

$$
X-\operatorname{lnd}(\pi)(a)\left(x \otimes_{\pi} h\right)=(a x) \otimes_{\pi} h
$$

Then [X-Ind] : $\widehat{B} \rightarrow \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$
\begin{aligned}
& \langle X, X\rangle_{A}:=\frac{\operatorname{span}\left\{\langle x, y\rangle_{A}: x, y \in X\right\}}{} \quad \Longrightarrow \quad \text { ideals in } A \\
& A X, X\rangle:=\overline{\operatorname{span}}\{A\langle x, y\rangle: x, y \in X\}
\end{aligned}
$$

X is a imprimitivity ${ }_{A}\langle X, X\rangle-\langle X, X\rangle_{A}$ module and hence

Thm. Suppose X is an imprimitivity $A-B$-bimodule

For $\pi: B \rightarrow \mathcal{B}(H)$ define $X-\operatorname{Ind}(\pi): A \rightarrow \mathcal{B}\left(X \otimes_{\pi} H\right)$ by

$$
X-\operatorname{Ind}(\pi)(a)\left(x \otimes_{\pi} h\right)=(a x) \otimes_{\pi} h
$$

Then [X-Ind] : $\widehat{B} \rightarrow \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$
\begin{aligned}
& \langle X, X\rangle_{A}:=\overline{\operatorname{span}\left\{\langle x, y\rangle_{A}: x, y \in X\right\}} \\
& A\langle X, X\rangle:=\overline{\operatorname{span}}\{A\langle x, y\rangle: x, y \in X\}
\end{aligned} \quad \Longrightarrow \quad \text { ideals in } A
$$

X is a imprimitivity ${ }_{A}\langle X, X\rangle-\langle X, X\rangle_{A}$ module and hence [X-Ind] : $\left\langle\widehat{X, X\rangle_{A}} \rightarrow_{A} \widehat{\langle X, X}\right\rangle$ is a partial homeomorphism of \widehat{A}.

Thm. Suppose X is an imprimitivity $A-B$-bimodule

For $\pi: B \rightarrow \mathcal{B}(H)$ define $X-\operatorname{Ind}(\pi): A \rightarrow \mathcal{B}\left(X \otimes_{\pi} H\right)$ by

$$
X-\operatorname{lnd}(\pi)(a)\left(x \otimes_{\pi} h\right)=(a x) \otimes_{\pi} h .
$$

Then [X-Ind] : $\widehat{B} \rightarrow \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$
\begin{aligned}
& \langle X, X\rangle_{A}:=\overline{\operatorname{span}\left\{\langle x, y\rangle_{A}: x, y \in X\right\}} \\
& A\langle X, X\rangle:=\overline{\operatorname{span}}\{A\langle x, y\rangle: x, y \in X\}
\end{aligned} \quad \Longrightarrow \quad \text { ideals in } A
$$

X is a imprimitivity ${ }_{A}\langle X, X\rangle-\langle X, X\rangle_{A}$ module and hence [X-Ind]: $\left\langle\widehat{X, X\rangle_{A}} \rightarrow_{A} \widehat{\langle X, X}\right\rangle$ is a partial homeomorphism of \widehat{A}.

Thm. (Kwasniewski 2014)

If $[X$-Ind] is topologically free, then $A \rtimes x \mathbb{Z}$ possess uniqueness property

Multivalued maps dual to regular C^{*}-correspondences

Let $\widehat{A}=\{[\pi]: \pi \in \operatorname{lrr}(A)\}$ be the spectrum of a C^{*}-algebra A.

Multivalued maps dual to regular C^{*}-correspondences

Let $\widehat{A}=\{[\pi]: \pi \in \operatorname{lrr}(A)\}$ be the spectrum of a C^{*}-algebra A. The relation \leq of being a subrepresentation factors through [•].

Multivalued maps dual to regular C^{*}-correspondences

Let $\widehat{A}=\{[\pi]: \pi \in \operatorname{lrr}(A)\}$ be the spectrum of a C^{*}-algebra A.
The relation \leq of being a subrepresentation factors through [•].

Def. Let $\alpha: A \rightarrow B$ be a $*$-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \rightarrow \widehat{A}\left(\widehat{\alpha}: \widehat{B} \rightarrow 2^{\widehat{A}}\right.$) given by

$$
\widehat{\alpha}\left(\left[\pi_{B}\right]\right):=\left\{\left[\pi_{A}\right] \in \widehat{A}: \pi_{A} \leq \pi_{B} \circ \alpha\right\} .
$$

Multivalued maps dual to regular C^{*}-correspondences

Let $\widehat{A}=\{[\pi]: \pi \in \operatorname{lrr}(A)\}$ be the spectrum of a C^{*}-algebra A.
The relation \leq of being a subrepresentation factors through [•].

Def. Let $\alpha: A \rightarrow B$ be a $*$-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \rightarrow \widehat{A}\left(\widehat{\alpha}: \widehat{B} \rightarrow 2^{\widehat{A}}\right.$) given by

$$
\widehat{\alpha}\left(\left[\pi_{B}\right]\right):=\left\{\left[\pi_{A}\right] \in \widehat{A}: \pi_{A} \leq \pi_{B} \circ \alpha\right\} .
$$

Let X be a regular C^{*}-correspondence over A.

Multivalued maps dual to regular C^{*}-correspondences

Let $\widehat{A}=\{[\pi]: \pi \in \operatorname{lrr}(A)\}$ be the spectrum of a C^{*}-algebra A.
The relation \leq of being a subrepresentation factors through [•].

Def. Let $\alpha: A \rightarrow B$ be a $*$-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \rightarrow \widehat{A}\left(\widehat{\alpha}: \widehat{B} \rightarrow 2^{\widehat{A}}\right.$) given by

$$
\widehat{\alpha}\left(\left[\pi_{B}\right]\right):=\left\{\left[\pi_{A}\right] \in \widehat{A}: \pi_{A} \leq \pi_{B} \circ \alpha\right\} .
$$

Let X be a regular C^{*}-correspondence over A. We treat X as a $\mathcal{K}(X)-\langle X, X\rangle_{A}$-imprimitivity bimodule.

Multivalued maps dual to regular C^{*}-correspondences

Let $\widehat{A}=\{[\pi]: \pi \in \operatorname{lrr}(A)\}$ be the spectrum of a C^{*}-algebra A.
The relation \leq of being a subrepresentation factors through [•].

Def. Let $\alpha: A \rightarrow B$ be a $*$-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \rightarrow \widehat{A}\left(\widehat{\alpha}: \widehat{B} \rightarrow 2^{\widehat{A}}\right.$) given by

$$
\widehat{\alpha}\left(\left[\pi_{B}\right]\right):=\left\{\left[\pi_{A}\right] \in \widehat{A}: \pi_{A} \leq \pi_{B} \circ \alpha\right\} .
$$

Let X be a regular C^{*}-correspondence over A. We treat X as a $\mathcal{K}(X)-\langle X, X\rangle_{A}$-imprimitivity bimodule.

Def.

We define dual map $\widehat{X}: \widehat{A} \rightarrow \widehat{A}$ to the regular C^{*}-correspondence X as the composition of multivalued maps

$$
\widehat{X}=\widehat{\phi} \circ[X-\ln d]
$$

where $\widehat{\phi}: \widehat{\mathcal{K}(X)} \rightarrow \widehat{A}$ is dual to the left action $\phi: A \rightarrow \mathcal{K}(X)$ of A on X.

Topological aperiodicity for a regular product system $X=\bigsqcup_{p \in P} X_{p}$

$$
\begin{aligned}
& \text { Prop. The family } \widehat{X}:=\left\{\widehat{X}_{p}\right\}_{p \in P} \text { is a semigroup of multivalued maps } \\
& \qquad \widehat{X}_{p} \circ \widehat{X}_{q}=\widehat{X}_{p q}, \quad p, q \in P .
\end{aligned}
$$

Topological aperiodicity for a regular product system $X=\bigsqcup_{p \in P} X_{p}$

$$
\begin{aligned}
\text { Prop. The family } \widehat{X}:= & \left\{\widehat{X}_{p}\right\}_{p \in P} \text { is a semigroup of multivalued maps } \\
& \widehat{X}_{p} \circ \widehat{X}_{q}=\widehat{X}_{p q}, \quad p, q \in P .
\end{aligned}
$$

Def. We say X is topologically aperiodic, if

Topological aperiodicity for a regular product system $X=\bigsqcup_{p \in P} X_{p}$
Prop. The family $\widehat{X}:=\left\{\widehat{X}_{p}\right\}_{p \in P}$ is a semigroup of multivalued maps

$$
\widehat{X}_{p} \circ \widehat{X}_{q}=\widehat{X}_{p q}, \quad p, q \in P .
$$

Def. We say X is topologically aperiodic, if
for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \backslash\{q\}$ there is $[\pi] \in U$ such that

Topological aperiodicity for a regular product system $X=\bigsqcup_{p \in P} X_{p}$
Prop. The family $\widehat{X}:=\left\{\widehat{X}_{p}\right\}_{p \in P}$ is a semigroup of multivalued maps

$$
\widehat{X}_{p} \circ \widehat{X}_{q}=\widehat{X}_{p q}, \quad p, q \in P .
$$

Def. We say X is topologically aperiodic, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \backslash\{q\}$ there is $[\pi] \in U$ such that for certain enumeration p_{1}, \ldots, p_{n} of elements of F and certain elements $s_{1}, \ldots, s_{n} \in P$ where $q \leq s_{1} \leq \ldots \leq s_{n}$ and $p_{i} \leq s_{i}$ we have

$$
[\pi] \notin \widehat{X}_{q^{-1} s_{i}}\left(\widehat{X}_{p_{i}-1 s_{i}}^{-1}([\pi])\right) \quad \text { for all } \quad i=1, \ldots, n .
$$

Topological aperiodicity for a regular product system $X=\bigsqcup_{p \in P} X_{p}$
Prop. The family $\hat{X}:=\left\{\widehat{X}_{p}\right\}_{p \in P}$ is a semigroup of multivalued maps

$$
\widehat{X}_{p} \circ \widehat{X}_{q}=\widehat{X}_{p q}, \quad p, q \in P .
$$

Def. We say X is topologically aperiodic, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \backslash\{q\}$ there is $[\pi] \in U$ such that for certain enumeration p_{1}, \ldots, p_{n} of elements of F and certain elements $s_{1}, \ldots, s_{n} \in P$ where $q \leq s_{1} \leq \ldots \leq s_{n}$ and $p_{i} \leq s_{i}$ we have

$$
[\pi] \notin \widehat{X}_{q^{-1} s_{i}}\left(\widehat{X}_{p_{i}-1 s_{i}}^{-1}([\pi])\right) \quad \text { for all } \quad i=1, \ldots, n .
$$

Prop. If (P, \leq) is linearly ordered, then X is topologically aperiodic iff

Topological aperiodicity for a regular product system $X=\bigsqcup_{p \in P} X_{p}$
Prop. The family $\hat{X}:=\left\{\widehat{X}_{p}\right\}_{p \in P}$ is a semigroup of multivalued maps

$$
\widehat{X}_{p} \circ \widehat{X}_{q}=\widehat{X}_{p q}, \quad p, q \in P .
$$

Def. We say X is topologically aperiodic, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \backslash\{q\}$ there is $[\pi] \in U$ such that for certain enumeration p_{1}, \ldots, p_{n} of elements of F and certain elements $s_{1}, \ldots, s_{n} \in P$ where $q \leq s_{1} \leq \ldots \leq s_{n}$ and $p_{i} \leq s_{i}$ we have

$$
[\pi] \notin \widehat{X}_{q^{-1} s_{i}}\left(\widehat{X}_{p_{i}-1 s_{i}}^{-1}([\pi])\right) \quad \text { for all } \quad i=1, \ldots, n .
$$

Prop. If (P, \leq) is linearly ordered, then X is topologically aperiodic iff
for any open nonempty set $U \subseteq \widehat{A}$ and any finite set $F \subseteq P \backslash\{e\}$, there is $[\pi] \in U$ satisfying

$$
[\pi] \notin \widehat{X}_{p}([\pi]) \quad \text { for all } p \in F
$$

Uniqueness Theorem for \mathcal{O}_{X}. Suppose X is topologically aperiodic.

Uniqueness Theorem for \mathcal{O}_{X}. Suppose X is topologically aperiodic.

For any injective covariant representation Ψ of X there is an epimorphism $\lambda_{\psi}: C^{*}(\psi(X)) \rightarrow \mathcal{O}_{X}^{r}$ such that the diagram

$$
\mathcal{O}_{X} \stackrel{\prod_{\lambda}^{\psi}}{\xrightarrow{\longrightarrow}} C^{*}(\psi(X)) \xrightarrow{\lambda_{\psi}} \mathcal{O}_{X}^{r}
$$

commutes. In particular, if $\mathcal{O}_{X}^{r} \cong \mathcal{O}_{X}$, then $\mathcal{O}_{X} \cong C^{*}(\psi(X))$.

Uniqueness Theorem for \mathcal{O}_{X}. Suppose X is topologically aperiodic.

For any injective covariant representation Ψ of X there is an epimorphism $\lambda_{\psi}: C^{*}(\psi(X)) \rightarrow \mathcal{O}_{X}^{r}$ such that the diagram

$$
\mathcal{O}_{X} \stackrel{\prod_{\lambda} \psi}{\longrightarrow} C^{*}(\psi(X)) \xrightarrow{\lambda_{\psi}} \mathcal{O}_{X}^{r}
$$

commutes. In particular, if $\mathcal{O}_{X}^{r} \cong \mathcal{O}_{X}$, then $\mathcal{O}_{X} \cong C^{*}(\psi(X))$.

Corollary (simplicity of \mathcal{O}_{x}^{r})

Suppose that X is topologically aperiodic and minimal, i.e. there are no nontrivial ideals J in A such that

$$
\forall_{p \in P} \quad\left\{a \in A:\left\langle X_{p}, a X_{p}\right\rangle_{p} \subseteq J\right\}=J
$$

Then \mathcal{O}_{X}^{r} is simple.

Uniqueness Theorem for \mathcal{O}_{X}. Suppose X is topologically aperiodic.

For any injective covariant representation Ψ of X there is an epimorphism $\lambda_{\psi}: C^{*}(\psi(X)) \rightarrow \mathcal{O}_{X}^{r}$ such that the diagram

$$
\mathcal{O}_{X} \stackrel{\prod_{\lambda} \psi}{\longrightarrow} C^{*}(\psi(X)) \xrightarrow{\lambda_{\psi}} \mathcal{O}_{X}^{r}
$$

commutes. In particular, if $\mathcal{O}_{X}^{r} \cong \mathcal{O}_{X}$, then $\mathcal{O}_{X} \cong C^{*}(\psi(X))$.

Corollary (simplicity of \mathcal{O}_{x}^{r})

Suppose that X is topologically aperiodic and minimal, i.e. there are no nontrivial ideals J in A such that

$$
\forall_{p \in P} \quad\left\{a \in A:\left\langle X_{p}, a X_{p}\right\rangle_{p} \subseteq J\right\}=J .
$$

Then \mathcal{O}_{X}^{r} is simple.

Proof: $I \triangleleft \mathcal{O}_{X}^{r}$ implies $J:=A \cap I$ is either A or $\{0\}$.

Applications and examples

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)
(3) Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)
(3) Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)

$$
\begin{aligned}
& \text { topological aperiodicity } \\
& \text { for product systems }
\end{aligned}
$$

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)
(3) Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)

> topological freeness
> for groups of automorphisms

$$
\begin{aligned}
& \text { topological aperiodicity } \\
& \text { for product systems }
\end{aligned}
$$

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)
(3) Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)

> topological freeness
> for groups of automorphisms

topological aperiodicity for product systems

topological freeness for covering maps

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)
(3) Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)

topological freeness
for groups of automorphisms

topological aperiodicity for product systems

topological freeness for covering maps
aperiodicity condition for topological higher rank graphs

Applications and examples

(1) Saturated Fell bundles (e.g. semigroup twisted crossed products)
(2) Topological graphs (e.g. Exel's crossed product for covering maps)
(3) Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)

> topological freeness
> for groups of automorphisms
simplicity of
Cuntz's $\mathcal{Q}_{\mathbb{N}}$
topological aperiodicity for product systems
topological freeness for covering maps
aperiodicity condition for topological higher rank graphs

[^0]: E. Noether

