Topological aperiodicity for product systems of C^* -correspondences

Bartosz Kwaśniewski, IMADA, Odense

April 23, 2015, Trondheim

based on joint work with Wojciech Szymański, IMADA, Odense

Bartosz Kwaśniewski, IMADA, Odense

Topological aperiodicity for product systems

化口压 化固定 化医压化管

Universal C*-algebras and uniqueness problem

 \mathcal{G} - set of generators, \mathcal{R} - C^* -algebraic relations on \mathcal{G}

< 回 > < 三 > < 三 > <

э

Universal C*-algebras and uniqueness problem

 ${\mathcal G}$ - set of generators, ${\mathcal R}$ - ${\mathcal C}^*$ -algebraic relations on ${\mathcal G}$

Def. Representation of $(\mathcal{G}, \mathcal{R})$ in a C^* -algebra A is $\pi = {\pi(g)}_{g \in \mathcal{G}} \subseteq A$ satisfying the relations \mathcal{R} in A. If $\pi(g) \neq 0$ for all $g \in \mathcal{G}$, π is faithful.

Universal C^* -algebras and uniqueness problem

 ${\mathcal G}$ - set of generators, ${\mathcal R}$ - ${\mathcal C}^*$ -algebraic relations on ${\mathcal G}$

Def. Representation of $(\mathcal{G}, \mathcal{R})$ in a C^* -algebra A is $\pi = {\pi(g)}_{g \in \mathcal{G}} \subseteq A$ satisfying the relations \mathcal{R} in A. If $\pi(g) \neq 0$ for all $g \in \mathcal{G}$, π is faithful.

Def. The universal C*-algebra generated by \mathcal{G} subject to \mathcal{R} is a C*-algebra $C^*(\mathcal{G}, \mathcal{R}) := C^*(\iota(\mathcal{G}))$ where ι is a representation of $(\mathcal{G}, \mathcal{R})$ such that if π is a representation of $(\mathcal{G}, \mathcal{R})$ then

$$\iota(g)\longmapsto \pi(g), \qquad g\in \mathcal{G},$$

extends to an epimorphism $C^*(\mathcal{G}, \mathcal{R}) \to C^*(\pi(\mathcal{G}))$.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Universal C*-algebras and uniqueness problem

 ${\mathcal G}$ - set of generators, ${\mathcal R}$ - ${\mathcal C}^*$ -algebraic relations on ${\mathcal G}$

Def. Representation of $(\mathcal{G}, \mathcal{R})$ in a C^* -algebra A is $\pi = {\pi(g)}_{g \in \mathcal{G}} \subseteq A$ satisfying the relations \mathcal{R} in A. If $\pi(g) \neq 0$ for all $g \in \mathcal{G}$, π is faithful.

Def. The universal C*-algebra generated by \mathcal{G} subject to \mathcal{R} is a C*-algebra $C^*(\mathcal{G}, \mathcal{R}) := C^*(\iota(\mathcal{G}))$ where ι is a representation of $(\mathcal{G}, \mathcal{R})$ such that if π is a representation of $(\mathcal{G}, \mathcal{R})$ then

$$\iota(g)\longmapsto \pi(g), \qquad g\in \mathcal{G},$$

extends to an epimorphism $C^*(\mathcal{G}, \mathcal{R}) \to C^*(\pi(\mathcal{G}))$.

Def. $(\mathcal{G}, \mathcal{R})$ has uniqueness property if for any two faithful representations π_1 , π_2 of $(\mathcal{G}, \mathcal{R})$ the mapping

$$\pi_1(g)\longmapsto \pi_2(g), \qquad g\in \mathcal{G},$$

extends to *-isomorphism *- $Alg(\pi_1(\mathcal{G})) \cong *-Alg(\pi_2(\mathcal{G}))$, which in the presence of 'amenability' is equivalent to $C^*(\pi_1(\mathcal{G})) \cong C^*(\pi_2(\mathcal{G}))$.

Bartosz Kwaśniewski, IMADA, Odense

Topological aperiodicity for product systems

 $\alpha: G \to \operatorname{Aut}(A)$ an action of a discrete group G on a unital C^* -algebra A $A \rtimes_{\alpha} G = C^*(\mathcal{G}, \mathcal{R}),$

イロト 不得 トイヨト イヨト 三日

 $lpha: {\mathcal G}
ightarrow {
m Aut}({\mathcal A})$ an action of a discrete group ${\mathcal G}$ on a unital ${\mathcal C}^*$ -algebra ${\mathcal A}$

$$A\rtimes_{\alpha} G = C^*(\mathcal{G}, \mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}, \ \mathcal{R} = \{ gag^{-1} = \alpha_g(a), \ g^{-1} = g^*, \ *\text{-algebraic relations in } \mathcal{A} \}$

イロト 不得 トイヨト イヨト 三日

 $lpha: \mathcal{G}
ightarrow {
m Aut}(\mathcal{A})$ an action of a discrete group \mathcal{G} on a unital \mathcal{C}^* -algebra \mathcal{A}

$$A\rtimes_{\alpha} G=C^*(\mathcal{G},\mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}$, $\mathcal{R} = \{gag^{-1} = \alpha_g(a), g^{-1} = g^*, *-algebraic relations in A\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection

$$\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G$$

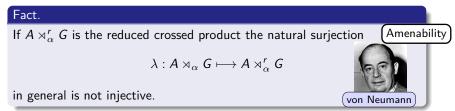
in general is not injective.

イロト 不得 トイヨト イヨト 二日

 $\alpha: {\mathcal G} \to {\rm Aut}({\mathcal A})$ an action of a discrete group ${\mathcal G}$ on a unital ${\mathcal C}^*\text{-algebra }{\mathcal A}$

$$\mathsf{A}\rtimes_{\alpha}\mathsf{G}=\mathsf{C}^*(\mathcal{G},\mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}$, $\mathcal{R} = \{gag^{-1} = \alpha_g(a), g^{-1} = g^*, *-algebraic relations in A\}$



イロト 不得 トイヨト イヨト 二日

 $lpha: \mathcal{G}
ightarrow {
m Aut}(\mathcal{A})$ an action of a discrete group \mathcal{G} on a unital \mathcal{C}^* -algebra \mathcal{A}

$$A\rtimes_{\alpha} G=C^*(\mathcal{G},\mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}$, $\mathcal{R} = \{gag^{-1} = \alpha_g(a), g^{-1} = g^*, *-algebraic relations in A\}$

Fact. If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection Amenability $\lambda : A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G$ in general is not injective.

Fact.

Let $\widehat{\alpha} : \mathcal{G} \to \operatorname{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_g}([\pi]) = [\pi \circ \alpha_g], g \in \mathcal{G}.$

 $lpha: \mathcal{G}
ightarrow {
m Aut}(\mathcal{A})$ an action of a discrete group \mathcal{G} on a unital \mathcal{C}^* -algebra \mathcal{A}

$$A\rtimes_{\alpha} G=C^*(\mathcal{G},\mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}$, $\mathcal{R} = \{ gag^{-1} = \alpha_g(a), \ g^{-1} = g^*, \ *\text{-algebraic relations in } \mathcal{A} \}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection (Amenability)

$$\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G$$

in general is not injective.

Fact.

Let $\widehat{\alpha} : G \to \text{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_g}([\pi]) = [\pi \circ \alpha_g], g \in G$. If α is **topologically free**, i.e. for any $t_1, .., t_n \in G \setminus e$

 $\{[\pi] : \exists_{i=1,\dots,n} \alpha_{t_i}([\pi]) = [\pi]\}$ has empty interior in \widehat{A} .

von Neumann

 $lpha: \mathcal{G}
ightarrow {
m Aut}(\mathcal{A})$ an action of a discrete group \mathcal{G} on a unital \mathcal{C}^* -algebra \mathcal{A}

$$A\rtimes_{\alpha} G=C^*(\mathcal{G},\mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}$, $\mathcal{R} = \{gag^{-1} = \alpha_g(a), g^{-1} = g^*, *-algebraic relations in A\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection (Amenability)

$$\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G$$

in general is not injective.

Fact.

Let $\widehat{\alpha} : G \to \text{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_g}([\pi]) = [\pi \circ \alpha_g], g \in G$. If α is **topologically free**, i.e. for any $t_1, .., t_n \in G \setminus e$

 $\{[\pi] : \exists_{i=1,\dots,n} \alpha_{t_i}([\pi]) = [\pi]\}$ has empty interior in \widehat{A} .

Then $(\mathcal{G}, \mathcal{R})$ has uniqueness property.

von Neumann

 $\alpha: {\mathcal G} \to {\rm Aut}({\mathcal A})$ an action of a discrete group ${\mathcal G}$ on a unital ${\mathcal C}^*\text{-algebra }{\mathcal A}$

$$\mathsf{A}\rtimes_{\alpha}\mathsf{G}=\mathsf{C}^*(\mathcal{G},\mathcal{R}),$$

 $\mathcal{G} = \mathcal{A} \cup \mathcal{G}$, $\mathcal{R} = \{gag^{-1} = \alpha_g(a), g^{-1} = g^*, *-algebraic relations in A\}$

Fact.

If $A \rtimes_{\alpha}^{r} G$ is the reduced crossed product the natural surjection (Amenability)

$$\lambda: A \rtimes_{\alpha} G \longmapsto A \rtimes_{\alpha}^{r} G$$

in general is not injective.

Fact.

Let $\widehat{\alpha} : G \to \text{Homeo}(\widehat{A})$ be the dual action: $\widehat{\alpha_g}([\pi]) = [\pi \circ \alpha_g], g \in G$. If α is **topologically free**, i.e. for any $t_1, .., t_n \in G \setminus e$

 $\{[\pi]: \exists_{i=1,\dots,n} \alpha_{t_i}([\pi]) = [\pi]\}$ has empty interior in \widehat{A} .

Then $(\mathcal{G}, \mathcal{R})$ has uniqueness property.

von Neumann

Aperiodicity

Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

< 回 > < 三 > < 三 > <

3

Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra

 $\mathcal{G} = \{a(f) : f \in H \text{ - Hilbert space}\}, \mathcal{R} \text{ - conj. linear structure of } H \text{ plus}$

$$\begin{aligned} \mathsf{a}(f)^* \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f)^* &= \langle f, h \rangle 1 \\ \mathsf{a}(f) \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f) &= 0 \end{aligned}$$

(四) (日) (日)

Classical examples: quantum statistics

canonical anticommutation relations (CAR) algebra

 $\mathcal{G} = \{a(f) : f \in H \text{ - Hilbert space}\}, \mathcal{R} \text{ - conj. linear structure of } H \text{ plus}$

$$egin{aligned} & \mathsf{a}(f)^* \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f)^* = \langle f, h
angle 1 \ & \mathsf{a}(f) \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f) = 0 \end{aligned}$$

uniqueness property √ (P. Jordan & E. Wigner 1928, I. Segal 1963)

canonical anticommutation relations (CAR) algebra

 $\mathcal{G} = \{a(f) : f \in H \text{ - Hilbert space}\}, \mathcal{R} \text{ - conj. linear structure of } H \text{ plus}$

$$\begin{aligned} \mathsf{a}(f)^* \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f)^* &= \langle f, h \rangle 1 \\ \mathsf{a}(f) \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f) &= 0 \end{aligned}$$

uniqueness property √ (P. Jordan & E. Wigner 1928, I. Segal 1963)

canonical commutation relations (CCR) algebra

 $\mathcal{G} = \{W(f) : f \in H \text{ - Hilbert space}\}, \mathcal{R} \text{ - consists of}$

$$W(-f) = W(f)^*$$
$$W(f)W(h) = e^{-i \ln(f,h)} W(f+h)$$

イロト イヨト イヨト

э

canonical anticommutation relations (CAR) algebra

 $\mathcal{G} = \{a(f) : f \in H \text{ - Hilbert space}\}, \mathcal{R} \text{ - conj. linear structure of } H \text{ plus}$

$$\begin{aligned} \mathsf{a}(f)^* \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f)^* &= \langle f, h \rangle 1 \\ \mathsf{a}(f) \mathsf{a}(h) + \mathsf{a}(h) \mathsf{a}(f) &= 0 \end{aligned}$$

uniqueness property √ (P. Jordan & E. Wigner 1928, I. Segal 1963)

canonical commutation relations (CCR) algebra

$$\mathcal{G} = \{W(f) : f \in H \text{ - Hilbert space}\}, \mathcal{R} \text{ - consists of}$$

$$W(-f) = W(f)^*$$

 $W(f)W(h) = e^{-i \operatorname{Im}\langle f,h \rangle} W(f+h)$

uniqueness property √ (J. Sławny 1971)

イロト イボト イヨト イヨト

ъ

$$S^*S = SS^* = 1$$

no uniqueness property

$$S^*S = SS^* = 1$$

no uniqueness property

Rotation algebras $\mathcal{A}_{\theta} = C^*(S, T), \ \theta \in \mathbb{R}$

イロト イボト イヨト イヨト

э

S, T unitary,
$$ST = e^{2\pi i \theta} TS$$

Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

$$S^*S = SS^* = 1$$

no uniqueness property

Rotation algebras $\mathcal{A}_{\theta} = C^*(S, T), \ \theta \in \mathbb{R}$

イロト 不得 トイヨト イヨト 三日

S, T unitary,
$$ST = e^{2\pi i \theta} TS$$

uniqueness property $\iff \theta \notin \mathbb{Q}$

$$S^*S = SS^* = 1$$

no uniqueness property

Toeplitz algebra = $C^*(S)$

$$S^*S = 1, \qquad SS^* \neq 1$$

Rotation algebras $\mathcal{A}_{\theta} = C^*(S, T), \ \theta \in \mathbb{R}$

イロト イポト イヨト イヨト 三日

S, T unitary,
$$ST = e^{2\pi i \theta} TS$$

uniqueness property $\iff \theta \notin \mathbb{Q}$

$$S^*S = SS^* = 1$$

no uniqueness property

Toeplitz algebra = $C^*(S)$

$$S^*S = 1, \qquad SS^* \neq 1$$

uniqueness property \checkmark

(L. A. Coburn 1969)

Rotation algebras $\mathcal{A}_{\theta} = C^*(S, T)$, $\theta \in \mathbb{R}$

イロト イポト イヨト イヨト 三日

S, T unitary,
$$ST = e^{2\pi i \theta} TS$$

uniqueness property $\iff \theta \notin \mathbb{Q}$

Unitary algebra $C^*(S)$	Rotation algebras $\mathcal{A}_{ heta} = C^*(S,T), heta \in \mathbb{R}$
$S^*S = SS^* = 1$ no uniqueness property	S, T unitary, $ST = e^{2\pi i \theta} TS$ uniqueness property $\iff \theta \notin \mathbb{Q}$
Toeplitz algebra = $C^*(S)$	Cuntz algebras $\mathcal{O}_n = C^*(S_1, S_2,, S_n)$
$S^*S = 1, \qquad SS^* \neq 1$	$S_i^*S_j=\delta_{i,j}1, \sum_{i=1}^nS_iS_i^*=1$
uniqueness property \checkmark	$S_i, S_j = \delta_{i,j}, \qquad \sum_{i=1}^{j} S_i, S_i = 1$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

Unitary algebra $C^*(S)$	Rotation algebras $\mathcal{A}_{ heta} = C^*(S,T), \ heta \in \mathbb{R}$
$S^*S = SS^* = 1$ no uniqueness property	S, T unitary, $ST = e^{2\pi i\theta} TS$ uniqueness property $\iff \theta \notin \mathbb{Q}$
Toeplitz algebra = $C^*(S)$	Cuntz algebras $\mathcal{O}_n = C^*(S_1, S_2,, S_n)$
$S^*S = 1, \qquad SS^* eq 1$ uniqueness property \checkmark	$S_i^*S_j=\delta_{i,j}1, \sum_{i=1}^nS_iS_i^*=1$
(L. A. Coburn 1969)	uniqueness property √ (J. Cuntz 1977)

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

æ

Unitary algebra $C^*(S)$	Rotation algebras $\mathcal{A}_{ heta} = \mathcal{C}^*(S,T), \ heta \in \mathbb{R}$
$S^*S = SS^* = 1$ no uniqueness property	S, T unitary, $ST = e^{2\pi i \theta} TS$ uniqueness property $\iff \theta \notin \mathbb{Q}$
Toeplitz algebra = $C^*(S)$	Cuntz algebras $\mathcal{O}_n = C^*(S_1, S_2,, S_n)$
$S^*S = 1, \qquad SS^* \neq 1$ uniqueness property \checkmark	$S_i^*S_j=\delta_{i,j}1, \sum_{i=1}^n S_iS_i^*=1$
(L. A. Coburn 1969)	uniqueness property √ (J. Cuntz 1977)

Cuntz-Krieger algebras $\mathcal{O}_A = C^*(S_1, S_2, ..., S_n)$

 $\{A(i,j)\}_{i,j=1}^n \in \{0,1\}^{n \times n}$, S_i partial isometries with orthogonal ranges

$$\sum_{j=1}^n A(i,j)S_jS_j^* = S_i^*S_i$$

イロト イヨト イヨト

æ

Unitary algebra $C^*(S)$	Rotation algebras $\mathcal{A}_{ heta} = C^*(S,T)$, $ heta \in \mathbb{R}$
$S^*S = SS^* = 1$ no uniqueness property	S, T unitary, $ST = e^{2\pi i\theta} TS$ uniqueness property $\iff \theta \notin \mathbb{Q}$
Toeplitz algebra = $C^*(S)$	Cuntz algebras $\mathcal{O}_n = C^*(S_1, S_2,, S_n)$
$S^*S = 1, \qquad SS^* \neq 1$	$S_i^*S_j=\delta_{i,j}1, \sum^n S_iS_i^*=1$
uniqueness property \checkmark	$\sum_{i=1}^{n} S_i S_j = S_{i,j} I, \sum_{i=1}^{n} S_i S_i = I$
(L. A. Coburn 1969)	uniqueness property √ (J. Cuntz 1977)

 $\{A(i,j)\}_{i,j=1}^n \in \{0,1\}^{n \times n}$, S_i partial isometries with orthogonal ranges

$$\sum_{j=1}^n A(i,j)S_jS_j^* = S_i^*S_i$$

uniqueness property \iff condition (I) (J. Cuntz, W. Krieger 1980)

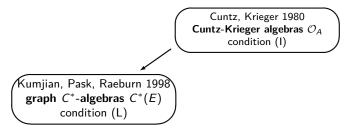
イロト イヨト イヨト

э

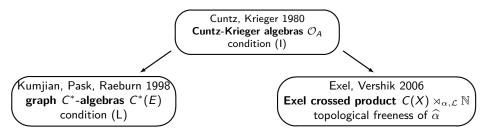
Cuntz, Krieger 1980 Cuntz-Krieger algebras \mathcal{O}_A condition (I)

・ 戸 ト ・ ヨ ト ・ ヨ ト

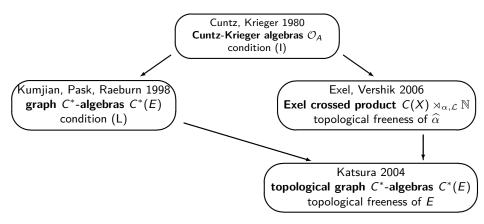
э



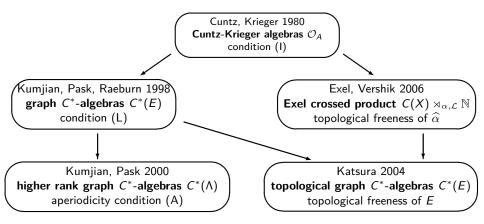
伺下 イヨト イヨト



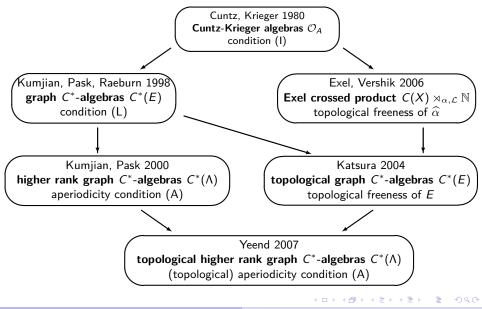
・ 同 ト ・ ヨ ト ・ ヨ ト

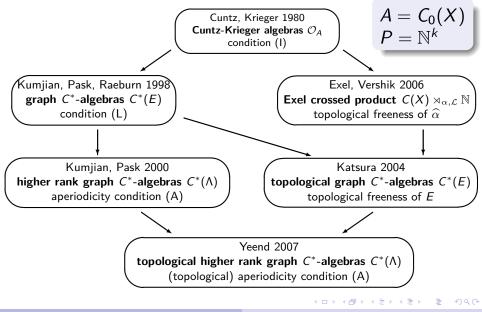


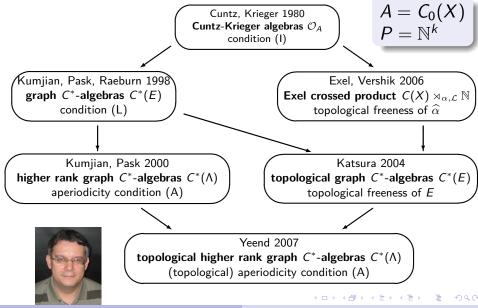
< 同 ト < 三 ト < 三 ト



イロト イボト イヨト イヨト







Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

・ 同 ト ・ 国 ト ・ 国 ト

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト …

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

(人間) シスヨン スヨン ヨ

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

The spectral subspaces $B_g := \{a \in B : \delta(a) = a \otimes g\}$, $g \in G$,

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$
$$\|a_e\| \le \|\sum_{g \in G} a_g\|, \qquad a_g \in B_g, \ g \in G.$$

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$

$$\|a_e\| \leq \|\sum_g a_g\|, \qquad a_g \in B_g, \ g \in G.$$

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$

$$\|a_e\| \leq \|\sum_g a_g\|, \qquad a_g \in B_g, \ g \in G.$$
 Using 199

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$

$$\|a_e\| \le \|\sum_g a_g\|, \qquad a_g \in B_g, \ g \in G.$$

$$J. \text{ Quigg 1996}$$

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$

$$\|a_e\| \le \|\sum_g a_g\|, \qquad a_g \in B_g, \ g \in G.$$

$$J. \text{ Quigg 1996}$$

Def. Let G be a discrete group and $\{z_s\}_{s\in\mathcal{G}} \subseteq C^*(G)$ be such that $\{s \otimes z_s\}_{s\in\mathcal{G}}$ satisfy relations \mathcal{R} & are 'nondegenerate' in $C^*(\mathcal{G},\mathcal{R}) \otimes C^*(G)$.

 $C^*(\mathcal{G},\mathcal{R}) \ni s \longmapsto s \otimes z_s \in C^*(\mathcal{G},\mathcal{R}) \otimes C^*(\mathcal{G})$

defines a gauge coaction of G on $C^*(\mathcal{G}, \mathcal{R})$.

Thm. Suppose *B* is equipped with a *G*-coaction δ .

$$B = \overline{\bigoplus_{g \in G} B_g}, \qquad B_g B_h \subseteq B_{gh}, \quad B_g^* = B_{g^{-1}}$$

$$\|a_e\| \le \|\sum_g a_g\|, \qquad a_g \in B_g, \ g \in G.$$

$$J. \text{ Quigg 1996}$$

$$C^*(\{B_g\}_{g \in G}) \text{ - cross sectional } C^*\text{-algebra of the Fell bundle } \{B_g\}_{g \in G}$$

$$T^*_r(\{B_g\}_{g \in G}) \text{ - reduced cross sectional } C^*\text{-algebra of } \{B_g\}_{g \in G}$$

P - cancellative semigroup with unit e.

イロト イヨト イヨト イヨト

э

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

イロト イヨト イヨト イヨト

э

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

equivalently (P, \leq) is directed.

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

イロト イボト イヨト イヨト

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore \iff P embeds as a semigroup into a group G and

$$G = PP^{-1} = \{ st^{-1} : s, t \in P \}.$$

イロト 不得 トイヨト イヨト 二日

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore \iff P embeds as a semigroup into a group G and

$$G = PP^{-1} = \{st^{-1} : s, t \in P\}.$$

O. Ore

イロト 不得 トイヨト イヨト 二日

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad ext{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore \iff P embeds as a semigroup into a group G and

$$G = PP^{-1} = \{st^{-1} : s, t \in P\}.$$

O. Ore

イロト イボト イヨト イヨト

P - cancellative semigroup with unit e. It is pre-ordered where

$$p \leq q \qquad \stackrel{def}{\Longleftrightarrow} \qquad pr = q \quad \text{for some } r \in P.$$

Def. *P* is a (right) **Ore semigroup** iff $sP \cap tP \neq \emptyset$, for all $s, t \in P$

equivalently (P, \leq) is directed.

Thm. (O. Ore 1931)

P is Ore \iff P embeds as a semigroup into a group G and

$$G = PP^{-1} = \{st^{-1} : s, t \in P\}.$$

O. Ore

イロト イヨト イヨト

Regular C^* -correspondence X over A is a (right) Hilbert A-module with left action being injective *-homomorphism $\phi : A \to \mathcal{K}(X) \subset \mathcal{L}(X)$.

Regular C^* -correspondence X over A is a (right) Hilbert A-module with left action being injective *-homomorphism $\phi : A \to \mathcal{K}(X) \subset \mathcal{L}(X)$.

 $\mathcal{K}(X) := \overline{\operatorname{span}} \{ \Theta_{y,x} : x, y \in X \} \quad \text{where} \quad \Theta_{y,x} \, z := y \cdot \langle x, z \rangle_A, \quad x, y, z \in X$

Regular C^* -correspondence X over A is a (right) Hilbert A-module with left action being injective *-homomorphism $\phi : A \to \mathcal{K}(X) \subset \mathcal{L}(X)$.

 $\mathcal{K}(X) := \overline{\text{span}} \{ \Theta_{y,x} : x, y \in X \} \quad \text{where} \quad \Theta_{y,x} \, z := y \cdot \langle x, z \rangle_A, \quad x, y, z \in X$

Representation of X in a C^{*}-algebra B is a pair (π, ψ) where $\pi : A \to B$ is a *-homomorphism and $\psi : X \to B$ linear s.t.

イロト イヨト イヨト

Regular C^* -correspondence X over A is a (right) Hilbert A-module with left action being injective *-homomorphism $\phi : A \to \mathcal{K}(X) \subset \mathcal{L}(X)$.

$$\mathcal{K}(X) := \overline{\text{span}} \{ \Theta_{y,x} : x, y \in X \} \quad \text{where} \quad \Theta_{y,x} \, z := y \cdot \langle x, z \rangle_A, \quad x, y, z \in X$$

Representation of X in a C*-algebra B is a pair (π, ψ) where $\pi : A \to B$ is a *-homomorphism and $\psi : X \to B$ linear s.t.

 $\psi(\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{b}) = \pi(\mathbf{a})\psi(\mathbf{x})\pi(\mathbf{b}), \qquad \psi(\mathbf{x})^*\psi(\mathbf{y}) = \pi(\langle \mathbf{x}, \mathbf{y} \rangle_A).$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Regular C^* -correspondence X over A is a (right) Hilbert A-module with left action being injective *-homomorphism $\phi : A \to \mathcal{K}(X) \subset \mathcal{L}(X)$.

$$\mathcal{K}(X) := \overline{\text{span}} \{ \Theta_{y,x} : x, y \in X \} \quad \text{where} \quad \Theta_{y,x} \, z := y \cdot \langle x, z \rangle_A, \quad x, y, z \in X$$

Representation of X in a C*-algebra B is a pair (π, ψ) where $\pi : A \to B$ is a *-homomorphism and $\psi : X \to B$ linear s.t.

$$\psi(\mathbf{a}\cdot\mathbf{x}\cdot\mathbf{b})=\pi(\mathbf{a})\psi(\mathbf{x})\pi(\mathbf{b}),\qquad\psi(\mathbf{x})^*\psi(\mathbf{y})=\pi(\langle\mathbf{x},\mathbf{y}\rangle_A).$$

We say (π, ψ) is *covariant representation* if additionally

$$(\pi,\psi)^{(1)}(\phi(a))=\pi(a),\qquad ext{for all }a\in A,$$

where $(\pi, \psi)^{(1)} : \mathcal{K}(X) \to B$ is given by $(\pi, \psi)^{(1)}(\Theta_{x,y}) := \psi(x)\psi(y)^*$.

イロト 不得 トイヨト イヨト 二日

Regular C^* -correspondence X over A is a (right) Hilbert A-module with left action being injective *-homomorphism $\phi : A \to \mathcal{K}(X) \subset \mathcal{L}(X)$.

$$\mathcal{K}(X) := \overline{\text{span}} \{ \Theta_{y,x} : x, y \in X \} \quad \text{where} \quad \Theta_{y,x} \, z := y \cdot \langle x, z \rangle_A, \quad x, y, z \in X$$

Representation of X in a C*-algebra B is a pair (π, ψ) where $\pi : A \to B$ is a *-homomorphism and $\psi : X \to B$ linear s.t.

$$\psi(\mathbf{a}\cdot\mathbf{x}\cdot\mathbf{b})=\pi(\mathbf{a})\psi(\mathbf{x})\pi(\mathbf{b}),\qquad\psi(\mathbf{x})^*\psi(\mathbf{y})=\pi(\langle\mathbf{x},\mathbf{y}\rangle_A).$$

We say (π, ψ) is *covariant representation* if additionally

$$(\pi,\psi)^{(1)}(\phi(a))=\pi(a),\qquad ext{for all }a\in A,$$

where $(\pi, \psi)^{(1)} : \mathcal{K}(X) \to B$ is given by $(\pi, \psi)^{(1)}(\Theta_{x,y}) := \psi(x)\psi(y)^*$.

Cuntz-Pimsner algebra is $\mathcal{O}_X := C^*(i_A(A) \cup i_X(X))$ where (i_A, i_X) is a covariant universal representation of X (M. Pimsner 1997)

・ 同 ト ・ ヨ ト ・ ヨ ト

-

1 $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.

ヘロト 人間 とくほ とくほ とう

-

- **(**) $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.
- 2 X_e is the standard bimodule $_AA_A$

- **(**) $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.
- 2 X_e is the standard bimodule $_AA_A$
- 3 multiplication on X implements isomorphisms X_p ⊗_A X_q ≃ X_{pq} for p, q ∈ P \ {e} and the right and left actions of X_e = A on each X_p.

イロト 不得 トイヨト イヨト 二日

- **(**) $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.
- 2 X_e is the standard bimodule $_AA_A$
- Something in the second se

Covariant representation of X

イロト イボト イヨト イヨト

- **(**) $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.
- 2 X_e is the standard bimodule $_AA_A$
- Somultiplication on X implements isomorphisms X_p ⊗_A X_q ≃ X_{pq} for p, q ∈ P \ {e} and the right and left actions of X_e = A on each X_p.

Covariant representation of X is a semigroup homo. $\psi : X \rightarrow B$ such that

 (ψ_e, ψ_p) is a covariant representation of X_p , for all $p \in P$,

where we put $\psi_p := \psi|_{X_p}$ for all $p \in P$.

イロト 不得 トイヨト イヨト 二日

- **(**) $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.
- 2 X_e is the standard bimodule $_AA_A$
- Somultiplication on X implements isomorphisms X_p ⊗_A X_q ≃ X_{pq} for p, q ∈ P \ {e} and the right and left actions of X_e = A on each X_p.

Covariant representation of X is a semigroup homo. $\psi : X \rightarrow B$ such that

 (ψ_e, ψ_p) is a covariant representation of X_p , for all $p \in P$,

where we put $\psi_p := \psi|_{X_p}$ for all $p \in P$.

Cuntz-Pimsner algebra is $\mathcal{O}_X := C^*(i_X(X))$ where i_X is a universal covariant representation of the product system X (N. Fowler 2002)

- **(**) $X_p := d^{-1}(p)$ is a regular C^* -correspondence over A for each $p \in P$.
- 2 X_e is the standard bimodule $_AA_A$
- Somultiplication on X implements isomorphisms X_p ⊗_A X_q ≃ X_{pq} for p, q ∈ P \ {e} and the right and left actions of X_e = A on each X_p.

Covariant representation of X is a semigroup homo. $\psi : X \rightarrow B$ such that

 (ψ_e, ψ_p) is a covariant representation of X_p , for all $p \in P$,

where we put $\psi_p := \psi|_{X_p}$ for all $p \in P$.

Cuntz-Pimsner algebra is $\mathcal{O}_X := C^*(i_X(X))$ where i_X is a universal covariant representation of the product system X (N. Fowler 2002)

Problem

In general the structure of \mathcal{O}_X is not well understood!

Bartosz Kwaśniewski, IMADA, Odense

Topological aperiodicity for product systems

Doplicher-Roberts picture of Cuntz-Pimsner algebra \mathcal{O}_X

Fix a regular product system X over an Ore semigroup P.

< 回 > < 三 > < 三 > <

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\{\mathcal{K}(X_p, X_q)\}_{q, p \in P}$)

・ 戸 ト ・ ヨ ト ・ ヨ ト

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\{\mathcal{K}(X_p, X_q)\}_{q, p \in P}$)

Let $r \in P$ the maps $\otimes 1_r : \mathcal{K}(X_q, X_p) \to \mathcal{K}(X_{qr}, X_{pr}), \ p, q \in P$, where

・ 戸 ト ・ ヨ ト ・ ヨ ト

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\{\mathcal{K}(X_p,X_q)\}_{q,p\in P})$	
Let $r \in P$ the maps $\otimes 1_r : \mathcal{K}(X_q, X_p) \to \mathcal{K}(X_{qr}, X_{pr}), \ p, q \in P$, where	
$(T\otimes 1_r)(xy):=(Tx)y$	$x \in X_q, y \in X_r, T \in \mathcal{K}(X_q, X_p)$

< 同 > < 回 > < 回 > -

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\{\mathcal{K}(X_p, X_q)\}_{q,p \in P}$) Let $r \in P$ the maps $\otimes 1_r : \mathcal{K}(X_q, X_p) \to \mathcal{K}(X_{qr}, X_{pr}), p, q \in P$, where $(T \otimes 1_r)(xy) := (Tx)y$ $x \in X_q, y \in X_r, T \in \mathcal{K}(X_q, X_p)$ are well defined isometries and such that $(T \otimes 1_r)^* = (T^*) \otimes 1_r, \quad (T \otimes 1_r) \otimes 1_s) = T \otimes 1_{rs},$ $(T \otimes 1_r)(S \otimes 1_r) = (TS) \otimes 1_r, \quad T \in \mathcal{K}(X_p, X_q), S \in \mathcal{K}(X_s, X_p)$

イロト イポト イヨト イヨト 三日

Fix a regular product system X over an Ore semigroup P.

Prop. (Right tensoring structure on $\{\mathcal{K}(X_p, X_q)\}_{q,p \in P}$) Let $r \in P$ the maps $\otimes 1_r : \mathcal{K}(X_q, X_p) \to \mathcal{K}(X_{qr}, X_{pr}), p, q \in P$, where $(T \otimes 1_r)(xy) := (Tx)y$ $x \in X_q, y \in X_r, T \in \mathcal{K}(X_q, X_p)$ are well defined isometries and such that $(T \otimes 1_r)^* = (T^*) \otimes 1_r, \quad (T \otimes 1_r) \otimes 1_s) = T \otimes 1_{rs},$ $(T \otimes 1_r)(S \otimes 1_r) = (TS) \otimes 1_r, \quad T \in \mathcal{K}(X_p, X_q), S \in \mathcal{K}(X_s, X_p)$

Let $G = PP^{-1}$ be the group of fractions and recall that (P, \leq) is directed where $p \leq q \iff pr = q$ for some $r \in P$.

イロト 不得 トイヨト イヨト 二日

For each $g = pq^{-1} \in G$, $p, q \in P$, define the Banach space direct limit

$$B_g := \underline{\lim} \mathcal{K}(X_{qr}, X_{pr})$$

Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

э

For each $g = pq^{-1} \in G$, $p, q \in P$, define the Banach space direct limit

$$B_g := \underline{\lim} \mathcal{K}(X_{qr}, X_{pr})$$

The family $\{B_g\}_{g\in G}$ is naturally a Fell bundle and

 $\mathcal{O}_X \cong C^*(\{B_g\}_{g\in G}).$

For each $g = pq^{-1} \in G$, $p, q \in P$, define the Banach space direct limit

$$B_g := \underline{\lim} \mathcal{K}(X_{qr}, X_{pr})$$

The family $\{B_g\}_{g\in G}$ is naturally a Fell bundle and

$$\mathcal{O}_X \cong C^*(\{B_g\}_{g\in G}).$$

The universal covariant representation $i_X : X \to \mathcal{O}_X$ is injective.

・ 同 ト ・ ヨ ト ・ ヨ ト

For each $g = pq^{-1} \in G$, $p, q \in P$, define the Banach space direct limit

$$B_g := \varinjlim \mathcal{K}(X_{qr}, X_{pr})$$

The family $\{B_g\}_{g\in G}$ is naturally a Fell bundle and

$$\mathcal{O}_X \cong C^*(\{B_g\}_{g\in G}).$$

The universal covariant representation $i_X : X \to \mathcal{O}_X$ is injective.

We define the reduced Cuntz-Pimsner algebra

$$\mathcal{O}_X^r := C_r^*(\{B_g\}_{g \in G})$$

and consider the canonical epimorphism $\lambda : \mathcal{O}_X \to \mathcal{O}_X^r$.

イロト イボト イヨト イヨト

For each $g = pq^{-1} \in G$, $p, q \in P$, define the Banach space direct limit

$$B_g := \varinjlim \mathcal{K}(X_{qr}, X_{pr})$$

The family $\{B_g\}_{g\in G}$ is naturally a Fell bundle and

$$\mathcal{O}_X \cong C^*(\{B_g\}_{g\in G}).$$

The universal covariant representation $i_X : X \to \mathcal{O}_X$ is injective.

We define the reduced Cuntz-Pimsner algebra

$$\mathcal{O}_X^r := C_r^*(\{B_g\}_{g \in G})$$

and consider the canonical epimorphism $\lambda : \mathcal{O}_X \to \mathcal{O}_X^r$.

Problem For which X, for any injective covariant representation ψ of X there is a (unique) epimorphism $\lambda_{\psi} : C^*(\psi(X)) \to \mathcal{O}_X^r$ such that:

$$\mathcal{O}_X \xrightarrow{\prod \psi} C^*(\psi(X)) \xrightarrow{\lambda_\psi} \mathcal{O}_X^r$$

For $\pi : B \to \mathcal{B}(H)$ define $X \operatorname{-Ind}(\pi) : A \to \mathcal{B}(X \otimes_{\pi} H)$ by $X \operatorname{-Ind}(\pi)(a)(x \otimes_{\pi} h) = (ax) \otimes_{\pi} h.$

Then $[X \operatorname{-Ind}] : \widehat{B} \to \widehat{A}$ is a homeomorphism.

Rieffe

For $\pi : B \to \mathcal{B}(H)$ define $X \operatorname{-Ind}(\pi) : A \to \mathcal{B}(X \otimes_{\pi} H)$ by $X \operatorname{-Ind}(\pi)(a)(x \otimes_{\pi} h) = (ax) \otimes_{\pi} h.$

Then $[X \operatorname{-Ind}] : \widehat{B} \to \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$\begin{array}{ll} \langle X,X\rangle_{\mathcal{A}} := \overline{\operatorname{span}}\{\langle x,y\rangle_{\mathcal{A}} : x,y \in X\} \\ {}_{\mathcal{A}}\langle X,X\rangle := \overline{\operatorname{span}}\{{}_{\mathcal{A}}\langle x,y\rangle : x,y \in X\} \end{array} \implies \ \, \textit{ideals in } \mathcal{A} \end{array}$$

Rieffe

・ 同 ト ・ ヨ ト ・ ヨ ト

For
$$\pi: B \to \mathcal{B}(H)$$
 define $X - \operatorname{Ind}(\pi): A \to \mathcal{B}(X \otimes_{\pi} H)$ by
 $X - \operatorname{Ind}(\pi)(a)(x \otimes_{\pi} h) = (ax) \otimes_{\pi} h.$
Then $[X - \operatorname{Ind}]: \widehat{P} \to \widehat{A}$ is a homeomorphism

I hen $[X - Ind] : B \rightarrow A$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$\begin{array}{ll} \langle X,X\rangle_{A}:=\overline{span}\{\langle x,y\rangle_{A}:x,y\in X\}\\ _{A}\langle X,X\rangle:=\overline{span}\{_{A}\langle x,y\rangle:x,y\in X\} \end{array} \implies \ \ ideals \ in \ A\end{array}$$

Rieffe

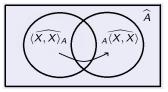
X is a imprimitivity $_A\langle X,X\rangle$ - $\langle X,X\rangle_A$ module and hence

For $\pi : B \to \mathcal{B}(H)$ define $X \operatorname{-Ind}(\pi) : A \to \mathcal{B}(X \otimes_{\pi} H)$ by $X \operatorname{-Ind}(\pi)(a)(x \otimes_{\pi} h) = (ax) \otimes_{\pi} h.$ Then $[X \operatorname{-Ind}] : \widehat{B} \to \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$\begin{array}{l} \langle X,X\rangle_{A}:=\overline{span}\{\langle x,y\rangle_{A}:x,y\in X\}\\ {}_{A}\langle X,X\rangle:=\overline{span}\{{}_{A}\langle x,y\rangle:x,y\in X\} \end{array} \implies \ \ ideals \ in \ A\end{array}$$

X is a imprimitivity $_A\langle X, X\rangle - \langle X, X\rangle_A$ module and hence [X-Ind]: $\langle \widehat{X, X}\rangle_A \rightarrow _A \overline{\langle X, X}\rangle$ is a partial homeomorphism of \widehat{A} .



Rieffe

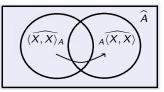
・ 同 ト ・ ヨ ト ・ ヨ ト

For $\pi : B \to \mathcal{B}(H)$ define $X \operatorname{-Ind}(\pi) : A \to \mathcal{B}(X \otimes_{\pi} H)$ by $X \operatorname{-Ind}(\pi)(a)(x \otimes_{\pi} h) = (ax) \otimes_{\pi} h.$ Then $[X \operatorname{-Ind}] : \widehat{B} \to \widehat{A}$ is a homeomorphism.

Suppose X is a Hilbert bimodule over A.

$$\begin{array}{l} \langle X,X\rangle_{A}:=\overline{span}\{\langle x,y\rangle_{A}:x,y\in X\}\\ {}_{A}\langle X,X\rangle:=\overline{span}\{{}_{A}\langle x,y\rangle:x,y\in X\} \end{array} \implies \ \ ideals \ in \ A\end{array}$$

X is a imprimitivity $_A\langle X, X \rangle - \langle X, X \rangle_A$ module and hence [X-Ind]: $\langle \widehat{X, X} \rangle_A \rightarrow _A \overline{\langle X, X \rangle}$ is a partial homeomorphism of \widehat{A} .



Thm. (Kwasniewski 2014)

If [X-Ind] is topologically free, then $A \rtimes_X \mathbb{Z}$ possess uniqueness property

Bartosz Kwaśniewski, IMADA, Odense

Topological aperiodicity for product systems

Rieffe

Let $\widehat{A} = \{ [\pi] : \pi \in Irr(A) \}$ be the spectrum of a C^* -algebra A.

Let $\widehat{A} = \{[\pi] : \pi \in Irr(A)\}$ be the spectrum of a C^* -algebra A. The relation \leq of being a subrepresentation factors through $[\cdot]$.

Let $\widehat{A} = \{[\pi] : \pi \in Irr(A)\}$ be the spectrum of a C^* -algebra A. The relation \leq of being a subrepresentation factors through [·].

Def. Let $\alpha : A \rightarrow B$ be a *-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \to \widehat{A} (\widehat{\alpha}: \widehat{B} \to 2^{\widehat{A}})$ given by

$$\widehat{\alpha}([\pi_B]) := \{ [\pi_A] \in \widehat{A} : \pi_A \le \pi_B \circ \alpha \}.$$

Let $\widehat{A} = \{[\pi] : \pi \in Irr(A)\}$ be the spectrum of a C^* -algebra A. The relation \leq of being a subrepresentation factors through [·].

Def. Let $\alpha : A \rightarrow B$ be a *-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \to \widehat{A} (\widehat{\alpha}: \widehat{B} \to 2^{\widehat{A}})$ given by

$$\widehat{\alpha}([\pi_B]) := \{ [\pi_A] \in \widehat{A} : \pi_A \le \pi_B \circ \alpha \}.$$

Let X be a regular C^* -correspondence over A.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\widehat{A} = \{[\pi] : \pi \in Irr(A)\}$ be the spectrum of a C^* -algebra A. The relation \leq of being a subrepresentation factors through [·].

Def. Let $\alpha : A \rightarrow B$ be a *-homomorphism.

A dual to α is a multivalued map $\widehat{\alpha}: \widehat{B} \to \widehat{A} (\widehat{\alpha}: \widehat{B} \to 2^{\widehat{A}})$ given by

$$\widehat{\alpha}([\pi_B]) := \{ [\pi_A] \in \widehat{A} : \pi_A \le \pi_B \circ \alpha \}.$$

Let X be a regular C^{*}-correspondence over A. We treat X as a $\mathcal{K}(X)$ - $\langle X, X \rangle_A$ -imprimitivity bimodule.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\widehat{A} = \{[\pi] : \pi \in Irr(A)\}$ be the spectrum of a C^* -algebra A. The relation \leq of being a subrepresentation factors through [·].

Def. Let $\alpha : A \rightarrow B$ be a *-homomorphism.

A dual to
$$\alpha$$
 is a multivalued map $\widehat{\alpha}: \widehat{B} \to \widehat{A} \ (\widehat{\alpha}: \widehat{B} \to 2^{\widehat{A}})$ given by

$$\widehat{\alpha}([\pi_B]) := \{ [\pi_A] \in \widehat{A} : \pi_A \le \pi_B \circ \alpha \}.$$

Let X be a regular C^{*}-correspondence over A. We treat X as a $\mathcal{K}(X)$ - $\langle X, X \rangle_A$ -imprimitivity bimodule.

Def.

We define dual map $\widehat{X} : \widehat{A} \to \widehat{A}$ to the regular C^{*}-correspondence X as the composition of multivalued maps

$$\widehat{X} = \widehat{\phi} \circ [X \operatorname{\mathsf{-Ind}}]$$

where $\widehat{\phi}: \widehat{\mathcal{K}(X)} \to \widehat{A}$ is dual to the left action $\phi: A \to \mathcal{K}(X)$ of A on X.

ヘロマ ヘビマ ヘビマ

Prop. The family $\widehat{X} := \{\widehat{X}_p\}_{p \in P}$ is a semigroup of multivalued maps $\widehat{X}_p \circ \widehat{X}_q = \widehat{X}_{pq}, \qquad p, q \in P.$

Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

・ロット (四) (日) (日) (日)

Prop. The family $\widehat{X}:=\{\widehat{X}_{p}\}_{p\in P}$ is a semigroup of multivalued maps

$$\widehat{X}_p \circ \widehat{X}_q = \widehat{X}_{pq}, \qquad p,q \in P.$$

Def. We say X is **topologically aperiodic**, if

Prop. The family $\widehat{X} := \{\widehat{X}_{p}\}_{p \in P}$ is a semigroup of multivalued maps

$$\widehat{X}_p \circ \widehat{X}_q = \widehat{X}_{pq}, \qquad p,q \in P.$$

Def. We say X is **topologically aperiodic**, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \setminus \{q\}$ there is $[\pi] \in U$ such that

(人間) シスヨン スヨン ヨ

Prop. The family $\widehat{X} := \{\widehat{X}_p\}_{p \in P}$ is a semigroup of multivalued maps

$$\widehat{X}_p \circ \widehat{X}_q = \widehat{X}_{pq}, \qquad p,q \in P.$$

Def. We say X is **topologically aperiodic**, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \setminus \{q\}$ there is $[\pi] \in U$ such that for certain enumeration $p_1, ..., p_n$ of elements of F and certain elements $s_1, ..., s_n \in P$ where $q \leq s_1 \leq ... \leq s_n$ and $p_i \leq s_i$ we have

$$[\pi] \notin \widehat{X}_{q^{-1}s_i}(\widehat{X}_{p_i^{-1}s_i}^{-1}([\pi])) \quad \text{for all } i = 1, ..., n.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Prop. The family $\widehat{X} := \{\widehat{X}_p\}_{p \in P}$ is a semigroup of multivalued maps

$$\widehat{X}_p \circ \widehat{X}_q = \widehat{X}_{pq}, \qquad p,q \in P.$$

Def. We say X is **topologically aperiodic**, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \setminus \{q\}$ there is $[\pi] \in U$ such that for certain enumeration $p_1, ..., p_n$ of elements of F and certain elements $s_1, ..., s_n \in P$ where $q \leq s_1 \leq ... \leq s_n$ and $p_i \leq s_i$ we have

$$[\pi] \notin \widehat{X}_{q^{-1}s_i}(\widehat{X}_{p_i^{-1}s_i}^{-1}([\pi])) \qquad \text{for all} \quad i=1,...,n.$$

Prop. If (P, \leq) is linearly ordered, then X is topologically aperiodic iff

Prop. The family $\widehat{X} := \{\widehat{X}_p\}_{p \in P}$ is a semigroup of multivalued maps

$$\widehat{X}_p \circ \widehat{X}_q = \widehat{X}_{pq}, \qquad p,q \in P.$$

Def. We say X is **topologically aperiodic**, if

for any nonempty open set $U \subseteq \widehat{A}$, any $q \in P$ and finite set $F \subseteq P \setminus \{q\}$ there is $[\pi] \in U$ such that for certain enumeration $p_1, ..., p_n$ of elements of F and certain elements $s_1, ..., s_n \in P$ where $q \leq s_1 \leq ... \leq s_n$ and $p_i \leq s_i$ we have

$$[\pi] \notin \widehat{X}_{q^{-1}s_i}(\widehat{X}_{p_i^{-1}s_i}^{-1}([\pi])) \qquad \text{for all} \quad i=1,...,n.$$

Prop. If (P, \leq) is linearly ordered, then X is topologically aperiodic iff

for any open nonempty set $U \subseteq \widehat{A}$ and any finite set $F \subseteq P \setminus \{e\}$, there is $[\pi] \in U$ satisfying

$$[\pi] \notin \widehat{X}_p([\pi])$$
 for all $p \in F$.

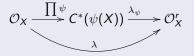
Topological aperiodicity for product systems

Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

イロト イヨト イヨト

э

For any injective covariant representation Ψ of X there is an epimorphism $\lambda_{\psi} : C^*(\psi(X)) \to \mathcal{O}_X^r$ such that the diagram



commutes. In particular, if $\mathcal{O}_X^r \cong \mathcal{O}_X$, then $\mathcal{O}_X \cong C^*(\psi(X))$.

For any injective covariant representation Ψ of X there is an epimorphism $\lambda_{\psi}: C^*(\psi(X)) \to \mathcal{O}_X^r$ such that the diagram

commutes. In particular, if $\mathcal{O}_X^r \cong \mathcal{O}_X$, then $\mathcal{O}_X \cong C^*(\psi(X))$.

Corollary (simplicity of \mathcal{O}_X^r)

Suppose that X is topologically aperiodic and *minimal*, i.e. there are no nontrivial ideals J in A such that

$$\forall_{p\in P} \quad \{a\in A: \langle X_p, aX_p\rangle_p \subseteq J\} = J.$$

Then \mathcal{O}_X^r is simple.

イロト 不得 トイヨト イヨト 二日

For any injective covariant representation Ψ of X there is an epimorphism $\lambda_{\psi}: C^*(\psi(X)) \to \mathcal{O}_X^r$ such that the diagram

commutes. In particular, if $\mathcal{O}_X^r \cong \mathcal{O}_X$, then $\mathcal{O}_X \cong C^*(\psi(X))$.

Corollary (simplicity of \mathcal{O}_X^r)

Suppose that X is topologically aperiodic and *minimal*, i.e. there are no nontrivial ideals J in A such that

$$\forall_{p\in P} \quad \{a\in A: \langle X_p, aX_p\rangle_p \subseteq J\} = J.$$

Then \mathcal{O}_X^r is simple.

Proof: $I \triangleleft \mathcal{O}_X^r$ implies $J := A \cap I$ is either A or $\{0\}$.

Bartosz Kwaśniewski, IMADA, Odense Topological aperiodicity for product systems

ヘロト 人間 とくほ とくほ とう

æ

Saturated Fell bundles (e.g. semigroup twisted crossed products)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- **(**Saturated Fell bundles (e.g. semigroup twisted crossed products)
- 2 Topological graphs (e.g. Exel's crossed product for covering maps)

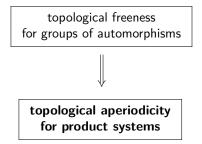
・ 戸 ト ・ ヨ ト ・ ヨ ト

- Saturated Fell bundles (e.g. semigroup twisted crossed products)
- **②** Topological graphs (e.g. Exel's crossed product for covering maps)
- $\textcircled{O} \text{Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)}$

- Saturated Fell bundles (e.g. semigroup twisted crossed products)
- Opological graphs (e.g. Exel's crossed product for covering maps)
- $\textcircled{O} \text{ Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_{\mathbb{N}}$)}$

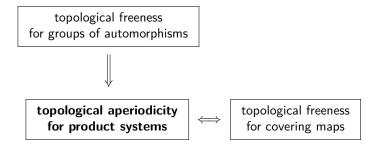
topological aperiodicity for product systems

- Saturated Fell bundles (e.g. semigroup twisted crossed products)
- Opological graphs (e.g. Exel's crossed product for covering maps)
- § Product systems of topological graphs (e.g. the Cuntz algebra $\mathcal{Q}_\mathbb{N})$



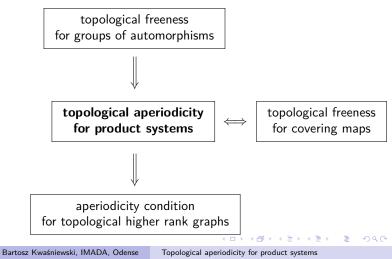
・ 戸 ト ・ ヨ ト ・ ヨ ト

- Saturated Fell bundles (e.g. semigroup twisted crossed products)
- Opposition of the second state of the secon
- ${f 0}$ Product systems of topological graphs (e.g. the Cuntz algebra ${\cal Q}_{\mathbb N})$



< 同 > < 三 > < 三 > -

- Saturated Fell bundles (e.g. semigroup twisted crossed products)
- Opposition of the second state of the secon
- ${f 0}$ Product systems of topological graphs (e.g. the Cuntz algebra ${\cal Q}_{\mathbb N})$



- Saturated Fell bundles (e.g. semigroup twisted crossed products)
- Opposition of the second state of the secon
- ${f 0}$ Product systems of topological graphs (e.g. the Cuntz algebra ${\cal Q}_{\mathbb N})$

