Purely infinite *C**-algebras associated to Fell bundles over discrete groups

Bartosz Kwaśniewski, University of Southern Denmark, Odense

based on joint work with Wojciech Szymański (arXiv:1505.05202)

'Pure infiniteness and ideal structure of C^* -algebras associated to Fell bundles'

modulo 'work in progress'

Purely infinite C^* -algebras

Let A be a C^{*}-algebra. Notation: $a \approx_{\varepsilon} b \iff ||a - b|| < \varepsilon$.

Def. (Rørdam, Kirchberg 2000) For $a \in A^+ \setminus \{0\}$ we say

 $a \text{ is infinite } \iff \exists_{b \in A^+ \setminus \{0\}} \forall_{\varepsilon > 0} \ \exists_{x, y \in aA} \quad x^* x \approx_{\varepsilon} a, \quad y^* y \approx_{\varepsilon} b, \quad x^* y \approx_{\varepsilon} 0$

 $a \text{ is properly infinite } \iff \forall_{\varepsilon > 0} \ \exists_{x, y \in aA} \quad x^* x \approx_{\varepsilon} a, \quad y^* y \approx_{\varepsilon} a, \quad x^* y \approx_{\varepsilon} 0$

Prop. $a \in A^+ \setminus \{0\}$ is properly infinite if and only if

for every ideal I in A the image of a in A/I is either zero or infinite.

Def. (Rørdam, Kirchberg 2000)

 C^* -algebra A is **purely infinite** \iff every $a \in A^+ \setminus \{0\}$ is properly infinite.

A has the ideal property (IP) if projections in A separate ideals in A

Thm. (Pasnicu, Rørdam 2007) If A has (IP) then

A is purely infinite \iff A is strongly purely infinite

Bartosz Kwaśniewski Purely infinite C*-algebras associated to Fell bundles

Def. (Fell 1969)

A **Fell bundle** \mathcal{B} over G is consists of Banach spaces $\{B_g\}_{g \in G}$ equipped with

$$\cdot: B_g imes B_h \longmapsto B_{gh}, \qquad *: B_g \longmapsto B_{g^{-1}}, \qquad g, h \in G,$$

such that $\bigoplus_{g \in G} B_g$ becomes a *-algebra admitting a C^* -norm. The **full cross sectional** C^* -**algebra** of \mathcal{B} is $C^*(\mathcal{B}) := \overline{\bigoplus_{g \in G} B_g}^{\|\cdot\|_{max}}$ where $\|\cdot\|_{max}$ is the maximal C^* -norm on $\bigoplus_{g \in G} B_g$.

Def. (Exel, Quigg 1996)

The reduced cross sectional C^* -algebra of \mathcal{B} is $C^*_r(\mathcal{B}) := \overline{\bigoplus_{g \in G} B_g}^{\|\cdot\|_{min}}$ where $\|\cdot\|_{min}$ is the minimal C^* -norm on $\bigoplus_{g \in G} B_g$ such that

$$\|a_e\| \le \|\sum_{g \in G} a_g\|$$
 for all $\sum_{g \in G} a_g \in \bigoplus_{g \in G} B_g.$

Rem. There is a faithful conditional expectation $E : C_r^*(\mathcal{B}) \to B_e$ onto the unit fiber C^* -algebra B_e .

Def. Fix a Fell bundle $\mathcal{B} = \{B_g\}_{g \in G}$.

An ideal in \mathcal{B} is $\mathcal{J} = \{J_g\}_{g \in G}$ where J_g is a closed subspace of B_g , and

 $B_g J_h \subseteq J_{gh}$ $J_g B_h \subseteq J_{gh}$, for all $g, h \in G$.

An ideal *I* in B_e is \mathcal{B} -invariant if $B_g I B_g^* \subseteq I$ for every $g \in G$.

Rem. Relation $J_e = I$ establishes a bijection between ideals $\{J_g\}_{g \in G}$ in \mathcal{B} and \mathcal{B} -invariant ideals I in B_e .

If
$$\mathcal{J} = \{J_g\}_{g \in G}$$
 is an ideal in $\mathcal{B} = \{B_g\}_{g \in G}$ then

$$0 \longrightarrow C^*_r(\mathcal{J}) \longrightarrow C^*_r(\mathcal{B}) \longrightarrow C^*_r(\mathcal{B}/\mathcal{J}) \longrightarrow 0.$$

Def. \mathcal{B} is **exact** if the above sequence is exact for every ideal \mathcal{J} in \mathcal{B} .

Rem. G is exact $\Longrightarrow B$ is exact B is amenable, i.e. $C_r^*(B) = C^*(B) \Longrightarrow B$ is exact

Aperiodicity and ideal structure of $C_r^*(\mathcal{B})$

Concept abstracted from the work of: Connes 1976, Elliot, 1980, Kishimoto 1981, Olesen-Pedersen, 1982, Muhly-Solel 2000, Giordano-Sierakowski 2014

Def.

A Fell bundle $\mathcal{B} = \{B_g\}_{g \in G}$ is **aperiodic** if for each $g \in G \setminus \{e\}$, each $b_g \in B_g$ and every hereditary subalgebra D of B_e ,

 $\inf\{\|ab_ga\|: a \in D^+, \|a\| = 1\} = 0.$

 \mathcal{B} is **residually aperiodic** if \mathcal{B}/\mathcal{J} is aperiodic for any ideal \mathcal{J} in \mathcal{B} .

Thm. Suppose that \mathcal{B} is exact and residually aperiodic.

We have a bijection between ideals in $C_r^*(\mathcal{B})$ and \mathcal{B} -invariant ideals in B_e :

$$C^*_r(\mathcal{B}) \triangleright J \longrightarrow J \cap B_e \triangleleft B_e.$$

Prop. Suppose that $\mathcal{B} = \{B_g\}_{g \in G}$ is aperiodic.

For every $b \in C^*_r(\mathcal{B})^+ \setminus \{0\}$ there is $a \in B^+_e \setminus \{0\}$ such that $a \precsim b$

Pure infiniteness criterion

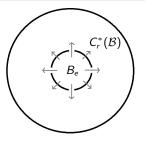
Thm. Suppose that \mathcal{B} is exact and residually aperiodic.

If either B_e has (IP) or \mathcal{B} is minimal, i.e. are no non-trivial \mathcal{B} -invariant ideals in B_e , then the following statements are equivalent:

- (i) $C_r^*(\mathcal{B})$ is purely infinite.
- (ii) Every element in $B_e^+ \setminus \{0\}$ is properly infinite in $C_r^*(\mathcal{B})$.

If $RR(B_e) = 0$, each of the above conditions is equivalent to

(ii') Every non-zero projection in B_e is properly infinite in $C_r^*(\mathcal{B})$.



Paradoxicality

Def. (Banach-Tarski 1924, Sierakowski-Rørdam 2012)

Let $\Theta = \{\theta_g\}_{g \in G}$ be a group action on a locally compact Hausdorff Ω . A non-empty open set $V \subseteq \Omega$ is called Θ -**paradoxical** if there are open sets $V_1, ..., V_{n+m}$ and elements $t_1, ..., t_{n+m} \in G$, such that

$$V = \bigcup_{i=1}^{n} V_i = \bigcup_{i=n+1}^{n+m} V_i, \quad \theta_{t_i}(V_i) \subseteq V \text{ and } \theta_{t_i}(V_{t_i}) \cap \theta_{t_j}(V_{t_j}) = \emptyset \text{ for all } i \neq j.$$

Def. Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be a Fell bundle.

An element $a \in B_e^+ \setminus \{0\}$ is \mathcal{B} -paradoxical if for every $\varepsilon > 0$ there are elements $a_i \in aB_{t_i}$, where $t_i \in G$ for i = 1, ..., n + m, such that

$$a \approx_{\varepsilon} \sum_{i=1}^{n} a_i^* a_i, \quad a \approx_{\varepsilon} \sum_{i=n+1}^{n+m} a_i^* a_i, \quad \text{and} \quad \|a_i^* a_j\| < \varepsilon / \max\{n^2, m^2\} \text{ for } i \neq j.$$

Rem. If $a \in B_e^+$ is \mathcal{B} -paradoxical, then for $x := \sum_{i=1}^n a_i$ and $y := \sum_{i=n+1}^{n+m} a_i$

$$a \approx_{2\varepsilon} x^* x, \qquad a \approx_{2\varepsilon} y^* y, \qquad x^* y \approx_{\varepsilon} 0.$$

Hence *a* is properly infinite in $C_r^*(\mathcal{B})$.

Bartosz Kwaśniewski

Purely infinite C^* -algebras associated to Fell bundles

Residual Infiniteness

Def. Let $\mathcal{B} = \{B_g\}_{g \in \mathcal{G}}$ be a Fell bundle.

An element $a \in B_e^+ \setminus \{0\}$ is \mathcal{B} -infinite if there is $b \in B_e^+ \setminus \{0\}$ such that for every $\varepsilon > 0$ there are elements $a_i \in aB_{t_i}$, where $t_i \in G$ for i = 1, ..., n + m, and

$$a \approx_{\varepsilon} \sum_{i=1}^{n} a_i^* a_i, \quad b \approx_{\varepsilon} \sum_{i=n+1}^{n+m} a_i^* a_i, \quad \text{and} \quad \|a_i^* a_j\| < \varepsilon / \max\{n^2, m^2\} \text{ for } i \neq j.$$

We say that $a \in B_e^+ \setminus \{0\}$ is **residually** \mathcal{B} -infinite if for every ideal $\mathcal{J} = \{J_g\}_{g \in G}$ the element $a + J_e$ is either zero in B_e/J_e or it is \mathcal{B}/\mathcal{J} -infinite.

Def. Let $\Theta = \{\theta_g\}_{g \in G}$ be a group action on a locally compact Hausdorff Ω .

A non-empty open set $V \subseteq \Omega$ is called Θ -infinite if there are open sets $V_1, ..., V_n$ and elements $t_1, ..., t_n \in G$, such that

$$V = \bigcup_{i=1}^{n} V_{i}, \quad \overline{\bigcup_{i=1}^{n} \theta_{t_{i}}(V_{i})} \subsetneq V \text{ and } \theta_{t_{i}}(V_{t_{i}}) \cap \theta_{t_{j}}(V_{t_{j}}) = \emptyset \text{ for } i \neq j.$$

Thm. Suppose that $\mathcal{B} = \{B_g\}_{g \in G}$ is an exact, residually aperiodic Fell bundle.

 $C_r^*(\mathcal{B})$ is purely infinite and has (IP) whenever one of the following conditions holds:

- (i) B_e has (IP) and every element in $B_e^+ \setminus \{0\}$ is residually \mathcal{B} -infinite,
- (i') $RR(B_e) = 0$ and every non-zero projection in B_e is residually \mathcal{B} -infinite,
- (ii) \mathcal{B} is minimal and every element in $B_e^+ \setminus \{0\}$ is \mathcal{B} -infinite.

Cor. (Sierakowski-Rørdam)

Let α be an exact group action on $C_0(\Omega)$ induced by residually topologically free action $\Theta = \{\theta_g\}_{g \in G}$ on a totally disconnected space Ω . If every non-empty compact and open set is paradoxical, then $A \rtimes_{\alpha,r} G$ is purely infinite.

Strong boundary and *n*-filling actions

Def. (Laca-Spielberg 1996)

A group action $\Theta = \{\theta_t\}_{t \in G}$ on a compact Hausdorff space Ω (which is not finite as a set) is **strong boundary action** if for every two nonempty open subsets U_1 , U_2 of Ω there are $g_1, g_2 \in G$ such that $\theta_{g_1}(U_1) \cup \theta_{g_2}(U_2) = \Omega$.

Def. (Jolissaint-Robertson 2000)

A group action $\alpha = {\alpha_t}_{t\in G}$ on a unital C^* -algebra A with infinite dimensional corners is called *n*-filling, for $n \ge 2$, if, for all elements $b_1, ..., b_n \in A^+$ of norm one, and for all $\varepsilon > 0$, there exist $g_1, ..., g_n \in G$ such that $\sum_{i=1}^n \alpha_{g_i}(b_i) \ge 1 - \varepsilon$.

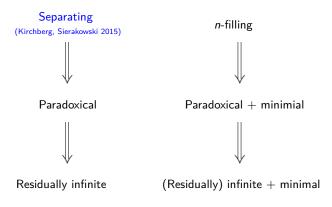
Lem.

Let α be an *n*-filling action and \mathcal{B} the corresponding Fell bundle. Then \mathcal{B} is minimal and any element $a \in \mathcal{A}^+ \setminus \{0\}$ is residually \mathcal{B} -infinite.

Cor. (Laca-Spielberg, Jollisaint-Robertson)

Let α be an *n*-filling action on A and suppose that either $A = C(\Omega)$ and the dual action is topologically free, or that A is separable and α is a properly outer action. Then $A \rtimes_{\alpha,r} G$ is simple and purely infinite.

General relationship between various actions



Question:

Our theorem works for $A \rtimes_{\alpha}^{r} G$ with A being G-simple or for A with (IP). To what extent can we extend it?

Separating actions (Kirchberg-Sierakowski 2015 preprint)

Def.

A group action $\alpha = \{\alpha_t\}_{t \in G}$ on a C^* -algebra A is called G-separating if for every $a, b \in A_+$, $c \in A$, $\varepsilon > 0$, there exist $s, t \in A$ and $g, h \in G$ such that

$$\|s^*as - \sigma_g(a)\| < \varepsilon, \quad \|t^*at - \sigma_h(a)\| < \varepsilon, \quad \|s^*ct\| < \varepsilon.$$

Lem.

A group action $\alpha = {\alpha_t}_{t \in G}$ on a commutative C^* -algebra $A = C_0(\Omega)$ is G-separating if and only if for every $U_1, U_2 \subseteq \Omega$ and compact $K_1, K_2 \subseteq \Omega$ with $K_1 \subseteq U_1, K_2 \subseteq U_2$, there exist $g, h \in G$ such that

 $\theta_g(K_1) \subseteq U_1, \qquad \theta_h(K_2) \subseteq U_2, \qquad \theta_g(K_1) \cap \theta_h(K_2) = \emptyset,$

where $\Theta = \{\theta_t\}_{t \in G}$ is the action dual to α .

Thm.

Let α be a *G*-separating action on *A* and suppose that either $A = C_0(\Omega)$ and the dual action is residually topologically free, or that *A* is separable and α is residually properly outer action. Then $A \rtimes_{\alpha,r} G$ is strongly purely infinite.