C*-rigidity of topological dynamical systems Toke Meier Carlsen Cartan C*-subalgebras and noncommutative dynamics IMPAN Warsaw, Poland 25–28 November 2019

UNIVERSITY OF The faroe islands

C*-algebras of topological dynamical systems

There is a long tradition for constructing C^* -algebras from dynamical systems. Motivations for doing this include:

- constructing new examples of C*-algebras which can be studied via dynamical systems,
- **2** use operator algebra theory to study dynamical systems.
- C^* -rigidity of dynamical systems is the principle that dynamical systems can be recovered, up to a suitable notion of equivalence, from C^* -algebraic data associated to them.

Cantor minimal systems

- A Cantor minimal system is a pair (X, φ) where X is a totally disconnect compact metric space with no isolated points and φ : X → X is a homeomorphism such that there is no non-trivial closed subspace C ⊆ X such that φ(C) = C. The latter condition is equivalent to the condition that the orbit orb(x) := {φⁿ(x) : x ∈ Z} of any x ∈ X is dense in X.
- Two Cantor minimal systems (X, ϕ) and (Y, ψ) are strong orbit equivalent if there is a homeomorphism $h: X \to Y$ and maps $m, n: X \to \mathbb{Z}$ such that $h(\phi(x)) = \psi^{m(x)}(h(x))$ and $h(\phi^{n(x)}(x)) = \psi(h(x))$ for $x \in X$, and m and n each have at most one point of discontinuity.

Theorem (Elliott 1993 and Giordano+Putnam+Skau 1995)

Let (X, ϕ) and (Y, ψ) be Cantor minimal systems. TFAE:

1 $C(X) \rtimes_{\phi} \mathbb{Z}$ and $C(Y) \rtimes_{\psi} \mathbb{Z}$ are isomorphic.

- 2 $K_0(C(X) \rtimes_{\phi} \mathbb{Z})$ and $K_0(C(Y) \rtimes_{\psi} \mathbb{Z})$ are isomorphic by an order preserving isomorphism that maps the class of the unit to the class of the unit.
- **(** X, ϕ) and (Y, ψ) are strong orbit equivalent.

Cantor minimal systems

- Two Cantor minimal systems (X, ϕ) and (Y, ψ) are *continuously orbit* equivalent if there is a homeomorphism $h : X \to Y$ and continuous maps $m, n : X \to \mathbb{Z}$ such that $h(\phi(x)) = \psi^{m(x)}(h(x))$ and $h(\phi^{n(x)}(x)) = \psi(h(x))$ for $x \in X$;
- and they are flip conjugate if there is a homeomorphism $h: X \to Y$ such that either $h(\phi(x)) = \psi(h(x))$ for all $x \in X$, or $h(\phi(x)) = \psi^{-1}(h(x))$ for all $x \in X$.

Theorem (Boyle 1983 and Giordano+Putnam+Skau 1995)

Let (X, ϕ) and (Y, ψ) be Cantor minimal systems. TFAE:

- **1** $C(X) \rtimes_{\phi} \mathbb{Z}$ and $C(Y) \rtimes_{\psi} \mathbb{Z}$ are isomorphic by an isomorphism that maps C(X) onto C(Y).
- **2** (X, ϕ) and (Y, ψ) are continuously orbit equivalent.
- **3** (X, ϕ) and (Y, ψ) are flip conjugate.

Topologically transitive dynamical systems on compact spaces

A topologically dynamical system (X, ϕ) consisting of a topological space X and a homeomorphism $\phi : X \to X$ is *topologically transitive* if there is an $x \in X$ such that orb(x) is dense in X.

Theorem (Boyle 1983 and Tomiyama 1996)

Let (X, ϕ) and (Y, ψ) be topologically transitive dynamical systems on compact metric spaces X and Y. TFAE:

- **1** $C(X) \rtimes_{\phi} \mathbb{Z}$ and $C(Y) \rtimes_{\psi} \mathbb{Z}$ are isomorphic by an isomorphism that maps C(X) onto C(Y).
- **2** (X, ϕ) and (Y, ψ) are continuously orbit equivalent.
- **3** (X, ϕ) and (Y, ψ) are flip conjugate.

Topologically free dynamical systems on compact spaces

A topologically dynamical system (X, ϕ) consisting of a topological space X and a homeomorphism $\phi : X \to X$ is topologically free if the set $\{x \in X : \phi^n(x) \neq x \text{ for all } n \neq 0\}$ is dense in X.

Theorem (Boyle and Tomiyama 1998)

Let (X, ϕ) and (Y, ψ) be topologically free dynamical systems on compact Hausdorff spaces X and Y. TFAE:

- **1** $C(X) \rtimes_{\phi} \mathbb{Z}$ and $C(Y) \rtimes_{\psi} \mathbb{Z}$ are isomorphic by an isomorphism that maps C(X) onto C(Y).
- **2** (X, ϕ) and (Y, ψ) are continuously orbit equivalent.
- **3** There exist decompositions $X = X_1 \sqcup X_2$ and $Y = Y_1 \sqcup Y_2$ such that X_1, X_2, Y_1, Y_2 are clopen and invariant, $\phi|_{X_1}$ is conjugate to $\psi|_{Y_1}$, and $\phi|_{X_2}$ is conjugate to $\psi^{-1}|_{Y_2}$.

Homeomorphisms of compact Hausdorff spaces

Theorem (Carlsen+Ruiz+Sims+Tomforde 2017)

Let X and Y be second-countable compact Hausdorff spaces and $\phi : X \rightarrow X$ and $\psi : Y \rightarrow Y$ homeomorphisms. TFAE:

- **1** $C(X) \rtimes_{\phi} \mathbb{Z}$ and $C(Y) \rtimes_{\psi} \mathbb{Z}$ are isomorphic by an isomorphism that maps C(X) onto C(Y).
- 2 There exist decompositions $X = X_1 \sqcup X_2$ and $Y = Y_1 \sqcup Y_2$ such that X_1 , X_2 , Y_1 , Y_2 are clopen and invariant, $\phi|_{X_1}$ is conjugate to $\psi|_{Y_1}$ and $\phi|_{X_2}$ is conjugate to $\psi^{-1}|_{Y_2}$.

C*-dynamical systems

Two actions (A, α) and (B, β) of a locally compact group G on two C^* -algebras Aand B are *conjugate* if there is an isomorphism $\psi : A \to B$ such that $\psi \circ \alpha_{\gamma} = \beta_{\gamma} \circ \psi$ for each $\gamma \in G$, and they are *outer conjugate* if (A, α) is conjugate to an action β' on B such that there is a strictly continuous unitary map $u : G \to M(B)$ such that $u_{\gamma_1 \gamma_2} = u_{\gamma_1} \beta_{\gamma_1}(u_{\gamma_2})$ for $\gamma_1, \gamma_2 \in G$, and $\beta'_{\gamma} = \operatorname{Ad} \circ \beta_{\gamma}$ for $\gamma \in G$.

Theorem (Pedersen 1982, Kaliszewski+Omland+Quigg 2018)

Let G be a locally compact group, let α be an action of G on a C*-algebra A, and let β be an action of G on a C*-algebra B. TFAE:

- **1** $\phi : A \rtimes_{\alpha} G$ and $\phi : B \rtimes_{\beta} G$ are isomorphic by an isomorphism that maps A onto B and intertwines the dual coactions $\hat{\alpha}$ and $\hat{\beta}$.
- **2** (A, α) and (B, β) are outer conjugate.

Theorem (Takesaki 1972, Imai+Takai 1978)

Let G be a locally compact group, let α be an action of G on a C^{*}-algebra A, and let β be an action of G on a C^{*}-algebra B. TFAE:

- **1** ϕ : A $\rtimes_{\alpha} G$ and ϕ : B $\rtimes_{\beta} G$ are isomorphic by an isomorphism that intertwines the dual coactions $\hat{\alpha}$ and $\hat{\beta}$.
- **2** $(A \otimes \mathcal{K}(L^2(G)), \alpha \otimes \operatorname{Ad} \rho)$ and $(B \otimes \mathcal{K}(L^2(G)), \beta \otimes \operatorname{Ad} \rho)$ are conjugate (here ρ is right regular representation of G on $\mathcal{K}(L^2(G))$).

Theorem (Kaliszewski+Omland+Quigg 2019)

Let G be a discrete group, let α be an action of G on a C^{*}-algebra A, and let β be an action of G on a C^{*}-algebra B. TFAE:

- **1** ϕ : A $\rtimes_{\alpha} G$ and ϕ : B $\rtimes_{\beta} G$ are isomorphic by an isomorphism that intertwines the dual coactions $\hat{\alpha}$ and $\hat{\beta}$.
- **2** (A, α) and (B, β) are outer conjugate.

Theorem (Kaliszewski+Omland+Quigg 2019)

Let $G \cap X$ and $G \cap Y$ be actions of a locally compact group on locally compact Hausdorff spaces. TFAE:

- **1** $C_0(X) \rtimes G \rightarrow C_0(Y) \rtimes G$ are isomorphic by an isomorphism that intertwines the dual coactions.
- **2** The actions $G \cap X$ and $G \cap Y$ are conjugate.

One-sided topological Markov shifts

- Let A be an $n \times n$ matrix with entries in {0, 1} and with no zero rows and no zero columns.
- We let $X_A := \{(x_i)_{i \in \mathbb{N}} : A(x_i, x_{i+1}) = 1 \text{ for all } i \in \mathbb{N}\}$, equip X_A with the product topology, and define $\sigma_A : X_A \to X_A$ by $\sigma_A((x_i)_{i \in \mathbb{N}}) = (x_{i+1})_{i \in \mathbb{N}}$. Then σ_A is a surjective local homeomorphism.
- We say that two one-sided topological Markov shifts (X_A, σ_A) and (X_B, σ_B) are *continuously orbit equivalent* if there is a homeomorphism $h: X_A \to X_B$ and continuous maps $k, l: X_A \to \mathbb{N}$ and $k', l': X_B \to \mathbb{N}$ such that $\sigma_B^{k(x)}(h(\sigma_A(x))) = \sigma_B^{l(x)}(h(x))$ for $x \in X_A$, and $\sigma_A^{k'(x')}(h^{-1}(\sigma_B(x'))) = \sigma_A^{l'(x')}(h^{-1}(x'))$ for $x' \in X_B$.
- We say that two one-sided topological Markov shifts (X_A, σ_A) and (X_B, σ_B) are *eventually conjugate* if there is a homeomorphism $h: X_A \to X_B$ and continuous maps $k: X_A \to \mathbb{N}$ and $k': X_B \to \mathbb{N}$ such that $\sigma_B^{k(x)}(h(\sigma_A(x))) = \sigma_B^{k(x)+1}(h(x))$ for $x \in X_A$, and $\sigma_A^{k'(x')}(h^{-1}(\sigma_B(x'))) = \sigma_A^{k'(x')+1}(h^{-1}(x'))$ for $x' \in X_B$.

Cuntz-Krieger algebras

- Let A be an $n \times n$ matrix with entries in {0, 1} and with no zero rows and no zero columns.
- We let \mathcal{O}_A be the Cuntz-Krieger algebra of A and \mathcal{D}_A be the C^* -subalgebra $\overline{\text{span}}\{s_{i_1} \dots s_{i_k}s_{i_k}^* \dots s_{i_1}^* : i_1 \dots i_k \in \{0, 1\}^*\}.$
- We let γ^A denote the gauge action on \mathcal{O}_A . So γ^A_z is for each $z \in \mathbb{T}$ the automorphism of \mathcal{O}_A that satisfies that $\gamma^A_z(s_i) = zs_i$ for each *i*.

Continuous orbit equivalence and eventual conjugacy of one-sided topological Markov shifts and Cuntz-Krieger algebras

Theorem (Matsumoto 2010, Carlsen+Eilers+Ortega+Restorff 2019)

Let (X_A, σ_A) and (X_B, σ_B) be one-sided topological Markov shifts. TFAE: **1** There is an isomorphism $\psi : \mathcal{O}_A \to \mathcal{O}_B$ such that $\psi(\mathcal{D}_A) = \mathcal{D}_B$.

2 (X_A, σ_A) and (X_B, σ_B) are continuously orbit equivalent.

Theorem (Matsumoto 2017, Carlsen+Rout 2017)

Let (X_A, σ_A) and (X_B, σ_B) be one-sided topological Markov shifts. TFAE:

- **1** There is an isomorphism $\psi : \mathcal{O}_A \to \mathcal{O}_B$ such that $\psi(\mathcal{D}_A) = \mathcal{D}_B$ and $\gamma_z^B \circ \psi = \psi \circ \gamma_z^A$ for every $z \in \mathbb{T}$.
- **2** (X_A, σ_A) and (X_B, σ_B) are eventually conjugate.

Two-sided topological Markov shifts

- Let A be an $n \times n$ matrix with entries in {0, 1} and with no zero rows and no zero columns.
- We let $\bar{X}_A := \{(x_i)_{i \in \mathbb{Z}} : A(x_i, x_{i+1}) = 1 \text{ for all } i \in \mathbb{Z}\}$, equip \bar{X}_A with the product topology, and define $\bar{\sigma}_A : \bar{X}_A \to \bar{X}_A$ by $\bar{\sigma}_A((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}$. Then $\bar{\sigma}_A$ is a homeomorphism.
- We say that two two-sided topological Markov shifts $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent if there is a homeomorphism $h : (\bar{X}_A \times \mathbb{R})/\sim \rightarrow (\bar{X}_B \times \mathbb{R})/\sim$ that maps flow lines onto flow lines in an orientation preserving way, where \sim is the equivalence relation on $\bar{X}_A \times \mathbb{R}$ generated by $(\bar{\sigma}_A(x), t) \sim (x, t+1)$, and a flow line is a set of the form $\{[x, t] : t \in \mathbb{R}\}$.
- We say that two two-sided topological Markov shifts $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are *conjugate* if there is a homeomorphism $h : \bar{X}_A \to \bar{X}_B$ such that $h(\bar{\sigma}_A(x)) = \bar{\sigma}_B(h(x))$ for $x \in \bar{X}_A$.
- We let *K* denote the *C**-algebra of compact operators on *I*²(ℕ) and let *C* be the *C**-subalgebra span{*θ_{ii}* : *i* ∈ ℕ}.

Flow equivalence and conjugacy of two-sided topological Markov shifts and Cuntz-Krieger algebras

Theorem (Cuntz+Krieger 1980, Matsumoto+Matui 2014, Carlsen+Eilers+Ortega+Restorff 2019)

- Let $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ be two-sided topological Markov shifts. TFAE: **1** $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ are flow equivalent.
 - **2** There is an isomorphism $\psi : \mathcal{O}_A \otimes \mathcal{K} \to \mathcal{O}_B \otimes \mathcal{K}$ such that $\psi(\mathcal{D}_A \otimes \mathcal{C}) = \mathcal{D}_B \otimes \mathcal{C}$.

Theorem (Cuntz+Krieger 1980, Cuntz 1981, Carlsen+Rout 2017)

- Let $(\bar{X}_A, \bar{\sigma}_A)$ and $(\bar{X}_B, \bar{\sigma}_B)$ be two-sided topological Markov shifts. TFAE: ($\bar{X}_A, \bar{\sigma}_A$) and $(\bar{X}_B, \bar{\sigma}_B)$ are conjugate.
 - **2** There is an isomorphism $\psi : \mathcal{O}_A \otimes \mathcal{K} \to \mathcal{O}_B \otimes \mathcal{K}$ such that $\psi(\mathcal{D}_A \otimes \mathcal{C}) = \mathcal{D}_B \otimes \mathcal{C}$ and $(\gamma_z^B \otimes id) \circ \psi = \psi \circ (\gamma_z^A \otimes id)$ for every $z \in \mathbb{T}$.

C*-rigidity of étale groupoids

- A *groupoid* is a small category in which every morphism has an inverse.
- A topological groupoid is *étale* if $r: G^{(1)} \to G^{(0)}$ (equivalently $s: G^{(1)} \to G^{(0)}$) is a local homeomorphism.
- A second-countable locally compact Hausdorff étale groupoid G is topologically principal (or effective) if the interior of $\{\eta \in G^{(1)} : r(\eta) = s(\eta)\}$ is $\{1_x : x \in G^{(0)}\}$.

Theorem (Renault 2008)

Let G_1 and G_2 be topologically principal second-countable locally compact Hausdorff étale groupoids. TFAE:

1 There is an isomorphism $\psi : C_r^*(G_1) \to C_r^*(G_2)$ such that $\psi(C_0(G_1^{(0)})) = C_0(G_2^{(0)}).$

2 G_1 and G_2 are topologically isomorphic.

Graded groupoids

- Let Γ be a topological group. A *cocycle* from G to Γ is a map $c : G^{(1)} \to \Gamma$ such that $c(\eta^{-1}) = c(\eta)^{-1}$ for $\eta \in G^{(1)}$, and $c(\eta_1 \eta_2) = c(\eta_1)c(\eta_2)$ for $(\eta_1, \eta_2) \in G^{(2)}$.
- A continuous cocycle $c: G^{(1)} \to \Gamma$ induces a Γ -grading $\{c^{-1}(\gamma)\}_{\gamma \in \Gamma}$ of $G^{(1)}$ (i.e., $\bigcup_{\gamma \in \Gamma} c^{-1}(\gamma) = G^{(1)}, c^{-1}(\gamma_1) \cap c^{-1}(\gamma_2) = \emptyset$ for $\gamma_1 \neq \gamma_2$, and $\eta_1 \eta_2 \in c^{-1}(\gamma_1 \gamma_2)$ if $(\eta_1, \eta_2) \in G^{(2)}, \eta_1 \in c^{-1}(\gamma_1)$, and $\eta_2 \in c^{-1}(\gamma_2)$).
- It also induces a coaction $\delta_c : C_r^*(G) \to C_r^*(G) \otimes C_r^*(\Gamma)$ such that $\delta_c(f) = f \otimes \lambda_g$ whenever $g \in \Gamma$ and $f \in C_c(G^{(1)})$ with $\operatorname{supp}(f) \subseteq c^{-1}(g)$ (here λ is the left-regular representation of Γ on $C_r^*(\Gamma)$).

Theorem (Carlsen+Ruiz+Sims+Tomforde 2017)

Let Γ be a discrete group and let (G_1, c_1) and (G_2, c_2) be Γ -graded second-countable locally compact Hausdorff étale groupoids such that the interior of $\{\eta \in c^{-1}(e) : r(\eta) = s(\eta)\}$ is torsion-free and abelian. TFAE:

1 There is an isomorphism $\psi : C_r^*(G_1) \to C_r^*(G_2)$ such that

$$\psi(C_0(G_1^{(0)})) = C_0(G_2^{(0)}) \text{ and } \delta_{c_2} \circ \psi = (\psi \otimes id) \circ \delta_{c_1}.$$

2 There is a topological isomorphism $\phi : G_1 \rightarrow G_2$ such that $c_2 \circ \phi = c_1$.

Thank you for your attention.