An Algebraic Approach to the Weyl Groupoid and Weyl Bundle

Tristan Bice

Cardinal Stefan Wyszyński University

November 26th 2019 IMPAN Workshop Cartan C*-Subalgebras and Noncommutative Dynamics Étale Groupoids, C*-Algebras and *-Semigroups

▶ At the beginning of time (1980), there was Renault's thesis:

LCH Étale Groupoid \rightarrow C*-Algebra.

► What about ← ?

How do we find groupoid models of C*-algebras?

1. Exel's (2008) tight groupoid construction:

Inverse Semigroup \rightarrow (ample) LCH Étale Groupoid.

2. Kumjian (1986) and Renault's (2008) Weyl groupoid:

Cartan C*-Subalgebra \rightarrow (effective) LCH Étale Groupoid.

Could we unify these two constructions? Yes – *-semigroups!

Inverse Semigroups \subseteq *-Semigroups $\stackrel{*-\text{Normalisers}}{\longleftarrow}$ Cartan C*-algebras.

▶ First let's go back to basics – commutative C*-algebras.

Ideals

- How do we recover LCH X from $A = C_0(X)$?
- ▶ Gelfand's (1943) answer : Consider the characters of A.
- \blacktriangleright \approx Gelfand's answer: Consider the (proper) closed ideals of A

$$\mathbf{I}^{A} = \{I \subseteq A : I = I + I = AIA = \operatorname{cl}(I) \neq A\}$$

with the hull-kernel/Jacobson topology, i.e. generated by

$$O_{a} = \{I \in \mathbf{I}^{A} : a \notin I\}.$$

• Every $x \in X$ defines a maximal closed ideal

$$M_x = \{a \in A : a(x) = 0\}.$$

Conversely, every maximal closed ideal is of this form so

 $x \mapsto M_x$ is a homeomorphism from X onto \mathbf{M}^A i.e. $\mathbf{M}^A = \{ M \in \mathbf{I}^A : \nexists I \in \mathbf{I}^A \ (M \subsetneqq I) \}$ recovers X.

Filters

- How do we recover LCH X from $A^1_+ = C_0(X, [0, 1])$?
- Milgram's (1949) answer: Consider the filters $F \subseteq A_+^1$:

 $f,g \in F \quad \Leftrightarrow \quad \exists h \in F \ (h \prec f,g)$ (Filter)

where \prec is the domination relation defined by

 $a \prec b \Leftrightarrow a = ab \Leftrightarrow \operatorname{supp}(a) \subseteq b^{-1}\{1\}$ • Let $\mathbf{U}^{A_+^1}$ denote the ultrafilters (i.e. maximal proper filters) in A_+^1 again with the topology generated by $(O_a)_{a \in A}$ where

$$O_{\boldsymbol{a}} = \{ U \in \mathbf{U}^{A^1_+} : \boldsymbol{a} \in U \}.$$

• Every $x \in X$ defines an ultrafilter

$$U_x = \{ a \in A^1_+ : 1 \in int(a^{-1}\{1\}) \}.$$

• Conversely, every ultrafilter is of this form so $\mathbf{U}^{A_{+}^{1}}$ recovers X, $x \mapsto U_{x}$ is a homeomorphism from X onto $\mathbf{U}^{A_{+}^{1}}$.

Note: Unlike characters or ideals, ultrafilters depend only in the semigroup structure of (the positive unit ball of) A.

Étale Groupoids

▶ Given LCH étale groupoid *G*, consider the *-semigroups

$$S = \{a \in C_0(G, \mathbb{D}) : \operatorname{supp}(a) \text{ is a bisection}\}.$$

 $E = C_0(G^0, \mathbb{D}).$

 $a^*(g) = \overline{a(g^*)}, \quad ab(gh) = a(g)b(h) \text{ for } g \in \mathrm{supp}(a), \ h \in \mathrm{supp}(b).$

Normally, we also consider the C*-algebras they generate

$$A = C_r^*(G) = C^*(S).$$

 $B = C_0(G^0) = C^*(E).$

- Kumjian (1986)/Renault (2008) showed how to recover G from A and B, at least when G is principal/effective:
 - 1. Recover S as the contractive *-normalisers $n \in A$ of B,

$$nBn^* \cup n^*Bn \subseteq B.$$
 (*-Normaliser)

2. Consider the (partial) action of S on the spectrum $\mathbf{\Phi}^{B}$ given by

$$s\phi(a) = \phi(s^*as)/\phi(s^*s)$$
 (when $\phi(s^*s) \neq 0$).

3. Recover G as the groupoid of germs of this action.

*-Domination

• What if we reverse the roles of $B = C_0(G^0)$ and

 $S = \{a \in C_0(G, \mathbb{D}) : \operatorname{supp}(a) \text{ is a bisection}\}?$

• Given $S \subseteq A$, we can certainly recover $B = C^*(|S|^2)$.

- Or let us just take the *-semigroups S and $E = B^1$ as given.
- Claim: This is all we need to recover any LCH étale G.
- Idea: Again consider ultrafilters w.r.t. the relation given by

$$a \precsim b \qquad \Leftrightarrow \qquad \operatorname{supp}(a) \subseteq b^{-1}[\mathbb{T}].$$

► First we need an algebraic characterisation of ∠.

Proposition

 $a \preceq b \qquad \Leftrightarrow \qquad a = ab^*b \quad \text{and} \quad ab^* \in E.$ Proof.

▶ Roughly, $ab^* \in E$ corresponds to $supp(a) \subseteq supp(b)$.

• Then $a = ab^*b$ implies $b[\operatorname{supp}(a)] \subseteq \mathbb{T}$.

Reconstruction

▶ Recall: *G* is a LCH étale groupoid,

 $S = \{a \in C_0(G, \mathbb{D}) : \operatorname{supp}(a) \text{ is a bisection}\}$

and \mathbf{U}^S denotes the \precsim -ultrafilters in S topologised by

$$O_{a} = \{ U \in \mathbf{U}^{S} : a \in U \}.$$

Theorem (B. 2019)

We have a homeomorphism from G onto \mathbf{U}^{S} given by

$$g \mapsto U_g = \{a \in S : g \in \operatorname{int}(a^{-1}[\mathbb{T}])\}.$$

Moreover, for all $g, h \in G$ with $g^*g = hh^*$,

$$U_{g^*} = (U_g)^*$$
 and $U_{gh} = (U_g U_h)^{\precsim}$.

▶ So ultrafilters recover the topology+groupoid structure of *G*.

Reconstruction

We have a homeomorphism from G onto \mathbf{U}^S given by $g\mapsto U_g=\{a\in S:g\in \mathrm{int}(a^{-1}[\mathbb{T}])\}.$

Proof.

- Outline: By Urysohn, each U_g is an ultrafilter.
- Conversely, if U is an ultrafilter, $\bigcap_{a \in U} a^{-1}[\mathbb{T}] \neq \emptyset$.
- ▶ Thus $U \subseteq U_g$, for some $g \in G$, so $U = U_g$ by maximality.
- ▶ So $\mathbf{U}^S = \{U_g : g \in G\}$. By Urysohn, $g \mapsto U_g$ is homeo.
- Certainly $U_{g^*} = (U_g)^*$ and $U_g U_h \subseteq U_{gh}$.
- ▶ Conversely, given $a \in U_{gh}$, take $b \in U_{gh}$ with $b \preceq a$.
- ▶ Taking $c \in U_g$, note $c^*b \in U_{g^*}U_{gh} \subseteq U_h$ so

$$a \succeq cc^* b \in U_g U_h.$$

► Thus $U_{gh} = (U_g U_h)^{\prec}$.

Further Comments

- ▶ $S \subseteq \mathcal{N}^*(E) \subseteq C^*_r(G)$ but $S = \mathcal{N}^*(E)$ only if G is effective.
- ▶ E.g. if G is a group, $\mathcal{N}^*(E) = \mathcal{N}^*(\mathbb{D}1_A) \supseteq$ all unitaries.
- Reconstruction valid if just G^0 is Hausdorff (even if G is not).
- Even works for a Fell bundle *F* (if the fibres have unitaries):
 - 1. $\pi: \mathbf{F} \to \mathbf{G}$ is a Banach bundle.
 - 2. F is a *-category and π is a *-isocofibration.
 - 3. Product is bilinear, * is conjugate linear.
 - 4. $\|ef\| \le \|e\|\|f\|$, $\|ff^*\| = \|f\|^2$ and $ff^* \ge 0$.
- ▶ Then take S = *-semigroup of continuous sections a of F with supp(a) a bisection and $a(g) = \lambda u$, for $\lambda \in \mathbb{D}$ and u unitary.
- Can recover the fibres too if we do now consider $A = C_r^*(F) = C^*(S)$ together with $\Phi(a) = a|_{G^0}$ as

$$a(g)=b(g) \qquad \Leftrightarrow \qquad \inf_{c\in U_g} \|\Phi(ac^*)-\Phi(bc^*)\|=0.$$

Going Abstract

Like with the Gelfand representation and the Kumjian-Renault Weyl groupoid, we can start with an abstract *-semigroup S.

Definition

Call a *-subsemigroup $E \subseteq S$ Cartan if

- 1. *E* is *-normal in *S*, i.e. for all $s \in S$, $sEs^* \subseteq E$.
- 2. The *-squares $|S|^2 = \{ss^* : s \in S\}$ are central in E, i.e.

 $|S|^2 \subseteq E \cap E'.$

- This all we need for our general Weyl groupoid construction, i.e. a *-semigroup S together with a Cartan subsemigroup E.
- Note *E* itself does not have to be commutative.
- This is important well dealing with 'non-commutative Cartan subalgebras' e.g. coming from Fell bundles.

Examples

- ▶ If *S* is an inverse semigroup, the idempotents are Cartan.
 - If S satisfies Lawson's trapping condition then our Weyl groupoid will be the same as Exel's tight groupoid.
- ▶ If S is a group, any normal subgroup is Cartan.
- Every (commutative) Cartan subalgebra E of a C*-algebra A is a Cartan subsemigroup of its *-normaliser *-semigroup

$$S = \mathcal{N}^*(E) = \{s \in A : s^*Es \cup sEs^* \subseteq S\}.$$

- More generally, if A is a topological *-semigroup then any closed commutative *-subsemigroup E containing an approximate unit for A is Cartan in S = N^{*}(E).
- Alternatively, any maximal commutative *-subalgebra E of any *-algebra A is Cartan in the intertwiners of E_{sa} –

$$S = \mathcal{I}(E_{\mathrm{sa}}) = \{s \in A : sE_{\mathrm{sa}} = E_{\mathrm{sa}}s\}.$$

When E is a Cartan subalgebra of a C*-algebra A,

$$\mathcal{N}^*(E) = \overline{\mathcal{I}(E_{\mathrm{sa}})}$$

(Donsig and Pitts (2008) showed $\mathcal{N}^*(E) = \overline{\mathcal{N}(E)}$).

Abstract *-Domination

• Given a *-semigroup S and Cartan $E \subseteq S$, define

 $\begin{array}{lll} a \prec b & \Leftrightarrow & a = ab. & (Domination) \\ a \sim b & \Leftrightarrow & ab^* \in E. & (Compatibility) \\ a \precsim b & \Leftrightarrow & b \sim a \prec b^*b. & (*\text{-Domination}) \end{array}$

Note: if S is an inverse semigroup, ∠ is the canonical order.
As E is Cartan, ∠ has the required properties, e.g.

 $a \precsim b \precsim c \implies a \bowtie c. \quad (Transitivity)$ $a \precsim b \implies a \bowtie \oiint b^*. \quad (*-Invariance)$ $a \precsim b \quad and \quad c \precsim d \implies ac \precsim bd. \quad (Multiplicative)$ $\bullet E.g. for (Multiplicative), say a \precsim b and c \precsim d.$ $\bullet As *-squares are central in E,$ $ac(bd)^*bd = acd^*b^*bd = ab^*bcd^*d = ac.$ $\bullet As E is *-normal in S,$ $ac(bd)^* = acd^*b^* = ab^*bcd^*b^* \in EbEb^* \subseteq E.$

Cosets and Ultrafilters

Definition

 $C \subseteq S$ is a coset if $C = C^{\prec} = CC^*C$.

- When S is a group with normal subgroup E, these are precisely the cosets of subgroups containing E.
- ▶ We consider the topology on cosets **C**^S generated by

$$O_{a} = \{ C \in \mathbf{C}^{S} : a \in C \}.$$

Theorem (B. 2019)

The cosets form an étale groupoid with inverse and product:

$$C\mapsto C^*$$
 and $(B,C)\mapsto (BC)^{\precsim}$ (when $(B^*B)^{\precsim}=(CC^*)^{\precsim}$)

- Proof uses the properties of \precsim just mentioned.
- This extends inverse semigroup results of Lawson-Margolis-Steinberg (2013).
- ▶ The \leq -ultrafilters form an 'ideal' subgroupoid of the cosets.
- ► Thus the ultrafilter groupoid **U**^S is also étale.
- If $S \ni 0$ then the unit ultrafilters are also Hausdorff.

Local Compactness

Theorem (B. 2019)

If S is a *-subsemigroup of the unit ball of a C*-algebra and $E \subseteq S$ is the unit ball of the C*-subalgebra it generates,

$$a \precsim b \qquad \Leftrightarrow \qquad O_a \Subset O_b,$$

i.e. \exists compact *C* with $O_a \subseteq C \subseteq O_b$ (Hausdorff case: $\overline{O_a} \subseteq O_b$).

- Any $U \in \mathbf{U}^{S}$ has neighbourhood base $(O_a)_{a \in U}$.
- Thus U has a compact neighbourhood base.

Corollary

The ultrafilter groupoid \mathbf{U}^{S} is locally compact.

- Even applies to a general class of *-rings A with a commutative lattice ordered *-subring L ⊇ |S|².
- ▶ E.g. applies to Steinberg algebras, real C*-algebras etc.

The Weyl Bundle

► Assume: A is a C*-algebra with conditional expectation Φ and *-subsemigroup $S \subseteq A^1$, $|S|^2 \subseteq \Phi[S]$ and, for all $s \in S$,

$$\Phi(sas^*) = s\Phi(a)s^*.$$

 $ss^*\Phi(a) = \Phi(a)ss^*.$

Then $E = \Phi[S]$ is *-normal and $|S|^2 \subseteq E \cap E'$.

• Each $U \in \mathbf{U}^{S}$ defines a closed subspace $A_U \subseteq A$ by

$$A_U = \{a \in A : \inf_{u \in U} \|\Phi(au^*)\| = 0\}.$$

► Topologise $\mathbf{A}^{S} = \{(U, a + A_U) : U \in \mathbf{U}^{S}, a \in A\}$ by $(a_{s}^{\delta})_{s \in S}^{\delta > 0}$:

$$a_s^\delta = \{(U,b{+}A_U): s\in U \text{ and } \exists t\in U \, \|\Phi(at^*){-}\Phi(bt^*)\| < \delta\}.$$

► Each $a \in A$ defines a continuous section $\hat{a}(U) = (U, a + A_U)$. Theorem (B. 2019)

The Weyl bundle \mathbf{A}^{S} is a Fell bundle with involution and product

$$(U, a + A_U)^* = (U^*, a^* + A_{U^*}).$$

 $(U, a + A_U)(V, b + A_V) = ((UV)^{\preceq}, ab + A_{(UV)^{\preceq}}).$

Hilbert C*-Modules and Hilbert-Fell Bundles

 Say X is a Hilbert A-module with 'conditional expectation' Ψ, i.e. Ψ is an idempotent linear map on X compatible with Φ:

$$\Psi(\Psi(x)a) = \Psi(x)\Phi(a) = \Psi(x\Phi(a)).$$

$$\Phi(\langle \Psi(x)|y\rangle) = \langle \Psi(x)|\Psi(y)\rangle = \Phi(\langle x|\Psi(y)\rangle).$$

▶ Again each $U \in \mathbf{U}^S$ defines a closed subspace $X_U \subseteq X$ by

$$X_U = \{x \in X : \inf_{u \in U} \|\Psi(xu^*)\| = 0\}.$$

• Topologise
$$\mathbf{X}^{S} = \{(U, a + A_U) : U \in \mathbf{U}^{s}, a \in A\}$$
 by $(x_s^{\delta})_{s \in S}^{\delta > 0}$.

$$x_s^\delta = \{(U, y+X_U) : s \in U \text{ and } \exists t \in U || \Psi(xt^*) - \Psi(yt^*) || < \delta\}.$$

► Each $x \in X$ defines a continuous section $\hat{x}(U) = (U, x + X_U)$. Theorem (B. 2019)

The Weyl bundle X^{S} is a 'Hilbert A^{S} -bundle' where

$$(U, x + X_U)(V, a + A_V) = ((UV)^{\prec}, xa + X_{(UV)^{\prec}}) : \quad (U^*U)^{\prec} = (VV^*)^{\prec}.$$

$$\langle (U, x + X_U) | (V, y + X_V) \rangle = ((U^*V)^{\prec}, \langle x | y \rangle + A_{(U^*V)^{\prec}}) : \quad (UU^*)^{\prec} = (VV^*)^{\prec}.$$

A Very Twisted Fell Bundle

Question (Sims 2018)

Does every Weyl twist admit a continuous global section?

- $\equiv\,$ Do all Fell line bundles have cts nowhere vanishing sections?
- A counterexample comes from Pedersen-Petersen (1971).
- There they defined a C*-algebra A as cts sections of

$$B = \{ \begin{pmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{pmatrix}, V \} : \mathbf{a}, d \in \mathbb{C} \text{ and } \mathbf{b}, \overline{\mathbf{c}} \in V \in \mathbb{C}P^1 \},$$

where $\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} a' & \mathbf{b}' \\ \mathbf{c}' & d' \end{bmatrix} = \begin{bmatrix} aa' + \mathbf{b} \cdot \mathbf{c}' & a\mathbf{b}' + d'\mathbf{b} \\ a'\mathbf{c} + d\mathbf{c}' & \mathbf{c} \cdot \mathbf{b}' + dd' \end{bmatrix}.$

• $A = C_r^*(F)$ where F is a Fell line bundle over (principal)

$$G = \mathbb{C}P^1 \times \{0,1\}^2.$$

A is 2-homogeneous but $A \not\approx PC(X, M_n)P$ (B.-Farah 2012).

A Very Twisted Fell Bundle

Say we have cts **b** on $\mathbb{C}P^1$ with $\mathbf{b}(V) \in V$ and $\|\mathbf{b}(V)\| = 1$.

- Identify the 3-sphere S^3 with $\{\mathbf{e} \in \mathbb{C}^2 : \|\mathbf{e}\| = 1\}$.
- Define $f : S^3 \to \mathbb{T}(\approx S^1)$ by $f(\mathbf{e})\mathbf{e} = \mathbf{b}(\mathbb{C}\mathbf{e})$.

• For all
$$\mathbf{e} \in S^3$$
, note that

$$f(-\mathbf{e}) = -f(\mathbf{e})$$

i.e. we have a continuous map from a higher to lower dimensional sphere preserving antipodal points.

- This contradicts the Borsuk-Ulam Theorem.
- Thus continuous sections always vanish somewhere.
- So Kumjian's twists are more general than Renault's cocycles.