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Étale Groupoids, C*-Algebras and *-Semigroups

I At the beginning of time (1980), there was Renault’s thesis:

LCH Étale Groupoid → C*-Algebra.

I What about ← ?

How do we find groupoid models of C*-algebras?

1. Exel’s (2008) tight groupoid construction:

Inverse Semigroup → (ample) LCH Étale Groupoid.

2. Kumjian (1986) and Renault’s (2008) Weyl groupoid:

Cartan C*-Subalgebra → (effective) LCH Étale Groupoid.

I Could we unify these two constructions? Yes – *-semigroups!

Inverse Semigroups ⊆ *-Semigroups
*-Normalisers←−−−−−−−− Cartan C*-algebras.

I First let’s go back to basics – commutative C*-algebras.



Ideals

I How do we recover LCH X from A = C0(X )?

I Gelfand’s (1943) answer : Consider the characters of A.

I ≈ Gelfand’s answer: Consider the (proper) closed ideals of A

IA = {I ⊆ A : I = I + I = AIA = cl(I ) 6= A}

with the hull-kernel/Jacobson topology, i.e. generated by

Oa = {I ∈ IA : a /∈ I}.

I Every x ∈ X defines a maximal closed ideal

Mx = {a ∈ A : a(x) = 0}.

I Conversely, every maximal closed ideal is of this form so

x 7→ Mx is a homeomorphism from X onto MA

i.e. MA = {M ∈ IA : @I ∈ IA (M $ I )} recovers X .



Filters
I How do we recover LCH X from A1

+ = C0(X , [0, 1])?
I Milgram’s (1949) answer: Consider the filters F ⊆ A1

+:

f , g ∈ F ⇔ ∃h ∈ F (h ≺ f , g) (Filter)

where ≺ is the domination relation defined by

a ≺ b ⇔ a = ab ⇔ supp(a) ⊆ b−1{1}
I Let UA1

+ denote the ultrafilters (i.e. maximal proper filters) in
A1
+ again with the topology generated by (Oa)a∈A where

Oa = {U ∈ UA1
+ : a ∈ U}.

I Every x ∈ X defines an ultrafilter

Ux = {a ∈ A1
+ : 1 ∈ int(a−1{1})}.

I Conversely, every ultrafilter is of this form so UA1
+ recovers X ,

x 7→ Ux is a homeomorphism from X onto UA1
+ .

I Note: Unlike characters or ideals, ultrafilters depend only in
the semigroup structure of (the positive unit ball of) A.



Étale Groupoids
I Given LCH étale groupoid G , consider the *-semigroups

S = {a ∈ C0(G ,D) : supp(a) is a bisection}.
E = C0(G 0,D).

a∗(g) = a(g∗), ab(gh) = a(g)b(h) for g ∈ supp(a), h ∈ supp(b).

I Normally, we also consider the C*-algebras they generate

A = C ∗r (G ) = C ∗(S).

B = C0(G 0) = C ∗(E ).

I Kumjian (1986)/Renault (2008) showed how to recover G
from A and B, at least when G is principal/effective:

1. Recover S as the contractive *-normalisers n ∈ A of B,

nBn∗ ∪ n∗Bn ⊆ B. (*-Normaliser)

2. Consider the (partial) action of S on the spectrum ΦB given by

sφ(a) = φ(s∗as)/φ(s∗s) (when φ(s∗s) 6= 0).

3. Recover G as the groupoid of germs of this action.



*-Domination
I What if we reverse the roles of B = C0(G 0) and

S = {a ∈ C0(G ,D) : supp(a) is a bisection}?

I Given S ⊆ A, we can certainly recover B = C ∗(|S |2).
I Or let us just take the *-semigroups S and E = B1 as given.
I Claim: This is all we need to recover any LCH étale G .
I Idea: Again consider ultrafilters w.r.t. the relation given by

a - b ⇔ supp(a) ⊆ b−1[T].

I First we need an algebraic characterisation of -.

Proposition

a - b ⇔ a = ab∗b and ab∗ ∈ E .

Proof.

I Roughly, ab∗ ∈ E corresponds to supp(a) ⊆ supp(b).

I Then a = ab∗b implies b[supp(a)] ⊆ T.



Reconstruction

I Recall: G is a LCH étale groupoid,

S = {a ∈ C0(G ,D) : supp(a) is a bisection}

and US denotes the --ultrafilters in S topologised by

Oa = {U ∈ US : a ∈ U}.

Theorem (B. 2019)

We have a homeomorphism from G onto US given by

g 7→ Ug = {a ∈ S : g ∈ int(a−1[T])}.

Moreover, for all g , h ∈ G with g∗g = hh∗,

Ug∗ = (Ug )∗ and Ugh = (UgUh)-.

I So ultrafilters recover the topology+groupoid structure of G .



Reconstruction

We have a homeomorphism from G onto US given by

g 7→ Ug = {a ∈ S : g ∈ int(a−1[T])}.

Proof.

I Outline: By Urysohn, each Ug is an ultrafilter.

I Conversely, if U is an ultrafilter,
⋂

a∈U a−1[T] 6= ∅.
I Thus U ⊆ Ug , for some g ∈ G , so U = Ug by maximality.

I So US = {Ug : g ∈ G}. By Urysohn, g 7→ Ug is homeo.

I Certainly Ug∗ = (Ug )∗ and UgUh ⊆ Ugh.

I Conversely, given a ∈ Ugh, take b ∈ Ugh with b - a.

I Taking c ∈ Ug , note c∗b ∈ Ug∗Ugh ⊆ Uh so

a % cc∗b ∈ UgUh.

I Thus Ugh = (UgUh)-.



Further Comments

I S ⊆ N ∗(E ) ⊆ C ∗r (G ) but S = N ∗(E ) only if G is effective.

I E.g. if G is a group, N ∗(E ) = N ∗(D1A) ⊇ all unitaries.

I Reconstruction valid if just G 0 is Hausdorff (even if G is not).
I Even works for a Fell bundle F (if the fibres have unitaries):

1. π : F → G is a Banach bundle.
2. F is a *-category and π is a *-isocofibration.
3. Product is bilinear, ∗ is conjugate linear.
4. ‖ef ‖ ≤ ‖e‖‖f ‖, ‖ff ∗‖ = ‖f ‖2 and ff ∗ ≥ 0.

I Then take S = *-semigroup of continuous sections a of F with
supp(a) a bisection and a(g) = λu, for λ ∈ D and u unitary.

I Can recover the fibres too if we do now consider
A = C ∗r (F ) = C ∗(S) together with Φ(a) = a|G0 as

a(g) = b(g) ⇔ inf
c∈Ug

‖Φ(ac∗)− Φ(bc∗)‖ = 0.



Going Abstract

I Like with the Gelfand representation and the Kumjian-Renault
Weyl groupoid, we can start with an abstract *-semigroup S .

Definition
Call a *-subsemigroup E ⊆ S Cartan if

1. E is *-normal in S , i.e. for all s ∈ S , sEs∗ ⊆ E .
2. The *-squares |S |2 = {ss∗ : s ∈ S} are central in E , i.e.

|S |2 ⊆ E ∩ E ′.

I This all we need for our general Weyl groupoid construction,
i.e. a *-semigroup S together with a Cartan subsemigroup E .

I Note E itself does not have to be commutative.

I This is important well dealing with ‘non-commutative Cartan
subalgebras’ e.g. coming from Fell bundles.



Examples
I If S is an inverse semigroup, the idempotents are Cartan.

I If S satisfies Lawson’s trapping condition then our
Weyl groupoid will be the same as Exel’s tight groupoid.

I If S is a group, any normal subgroup is Cartan.
I Every (commutative) Cartan subalgebra E of a C*-algebra A

is a Cartan subsemigroup of its *-normaliser *-semigroup

S = N ∗(E ) = {s ∈ A : s∗Es ∪ sEs∗ ⊆ S}.
I More generally, if A is a topological *-semigroup then

any closed commutative *-subsemigroup E containing an
approximate unit for A is Cartan in S = N ∗(E ).

I Alternatively, any maximal commutative *-subalgebra E of any
*-algebra A is Cartan in the intertwiners of Esa –

S = I(Esa) = {s ∈ A : sEsa = Esas}.

I When E is a Cartan subalgebra of a C*-algebra A,

N ∗(E ) = I(Esa)

(Donsig and Pitts (2008) showed N ∗(E ) = N (E )).



Abstract *-Domination
I Given a *-semigroup S and Cartan E ⊆ S , define

a ≺ b ⇔ a = ab. (Domination)

a ∼ b ⇔ ab∗ ∈ E . (Compatibility)

a - b ⇔ b ∼ a ≺ b∗b. (*-Domination)

I Note: if S is an inverse semigroup, - is the canonical order.
I As E is Cartan, - has the required properties, e.g.

a - b - c ⇒ a - c . (Transitivity)

a - b ⇒ a∗ - b∗. (*-Invariance)

a - b and c - d ⇒ ac - bd . (Multiplicative)

I E.g. for (Multiplicative), say a - b and c - d .
I As *-squares are central in E ,

ac(bd)∗bd = acd∗b∗bd = ab∗bcd∗d = ac.

I As E is *-normal in S ,

ac(bd)∗ = acd∗b∗ = ab∗bcd∗b∗ ∈ EbEb∗ ⊆ E .



Cosets and Ultrafilters

Definition
C ⊆ S is a coset if C = C- = CC ∗C .

I When S is a group with normal subgroup E , these are
precisely the cosets of subgroups containing E .

I We consider the topology on cosets CS generated by

Oa = {C ∈ CS : a ∈ C}.
Theorem (B. 2019)

The cosets form an étale groupoid with inverse and product:

C 7→ C ∗ and (B,C ) 7→ (BC )- (when (B∗B)- = (CC ∗)-)

I Proof uses the properties of - just mentioned.
I This extends inverse semigroup results of

Lawson-Margolis-Steinberg (2013).
I The --ultrafilters form an ‘ideal’ subgroupoid of the cosets.
I Thus the ultrafilter groupoid US is also étale.
I If S 3 0 then the unit ultrafilters are also Hausdorff.



Local Compactness

Theorem (B. 2019)

If S is a *-subsemigroup of the unit ball of a C*-algebra and
E ⊆ S is the unit ball of the C*-subalgebra it generates,

a - b ⇔ Oa b Ob,

i.e. ∃ compact C with Oa ⊆ C ⊆ Ob (Hausdorff case: Oa ⊆ Ob).

I Any U ∈ US has neighbourhood base (Oa)a∈U .

I Thus U has a compact neighbourhood base.

Corollary

The ultrafilter groupoid US is locally compact.

I Even applies to a general class of *-rings A with a
commutative lattice ordered *-subring L ⊇ |S |2.

I E.g. applies to Steinberg algebras, real C*-algebras etc.



The Weyl Bundle
I Assume: A is a C*-algebra with conditional expectation Φ and

*-subsemigroup S ⊆ A1, |S |2 ⊆ Φ[S ] and, for all s ∈ S ,

Φ(sas∗) = sΦ(a)s∗.

ss∗Φ(a) = Φ(a)ss∗.

I Then E = Φ[S ] is *-normal and |S |2 ⊆ E ∩ E ′.
I Each U ∈ US defines a closed subspace AU ⊆ A by

AU = {a ∈ A : inf
u∈U
‖Φ(au∗)‖ = 0}.

I Topologise AS = {(U, a + AU) : U ∈ US , a ∈ A} by (aδs )δ>0
s∈S :

aδs = {(U, b+AU) : s ∈ U and ∃t ∈ U ‖Φ(at∗)−Φ(bt∗)‖ < δ}.
I Each a ∈ A defines a continuous section â(U) = (U, a + AU).

Theorem (B. 2019)

The Weyl bundle AS is a Fell bundle with involution and product

(U, a + AU)∗ = (U∗, a∗ + AU∗).

(U, a + AU)(V , b + AV ) = ((UV )-, ab + A(UV )-).



Hilbert C*-Modules and Hilbert-Fell Bundles
I Say X is a Hilbert A-module with ‘conditional expectation’ Ψ,

i.e. Ψ is an idempotent linear map on X compatible with Φ:

Ψ(Ψ(x)a) = Ψ(x)Φ(a) = Ψ(xΦ(a)).

Φ(〈Ψ(x)|y〉) = 〈Ψ(x)|Ψ(y)〉 = Φ(〈x |Ψ(y)〉).
I Again each U ∈ US defines a closed subspace XU ⊆ X by

XU = {x ∈ X : inf
u∈U
‖Ψ(xu∗)‖ = 0}.

I Topologise XS = {(U, a + AU) : U ∈ Us , a ∈ A} by (xδs )δ>0
s∈S .

xδs = {(U, y+XU) : s ∈ U and ∃t ∈ U ‖Ψ(xt∗)−Ψ(yt∗)‖ < δ}.
I Each x ∈ X defines a continuous section x̂(U) = (U, x + XU).

Theorem (B. 2019)

The Weyl bundle XS is a ‘Hilbert AS -bundle’ where

(U, x + XU)(V , a + AV ) = ((UV )-, xa + X(UV )-) : (U∗U)- = (VV ∗)-.

〈(U, x + XU)|(V , y + XV )〉 = ((U∗V )-, 〈x |y〉+ A(U∗V )-) : (UU∗)- = (VV ∗)-.



A Very Twisted Fell Bundle

Question (Sims 2018)

Does every Weyl twist admit a continuous global section?

≡ Do all Fell line bundles have cts nowhere vanishing sections?

I A counterexample comes from Pedersen-Petersen (1971).

I There they defined a C*-algebra A as cts sections of

B = {(
[

a b
c d

]
,V ) : a, d ∈ C and b, c ∈ V ∈ CP1},

where

[
a b
c d

] [
a′ b′

c′ d ′

]
=

[
aa′ + b · c′ ab′ + d ′b
a′c + dc′ c · b′ + dd ′

]
.

I A = C ∗r (F ) where F is a Fell line bundle over (principal)

G = CP1 × {0, 1}2.

I A is 2-homogeneous but A 6≈ PC (X ,Mn)P (B.-Farah 2012).



A Very Twisted Fell Bundle

I Say we have cts b on CP1 with b(V ) ∈ V and ‖b(V )‖ = 1.

I Identify the 3-sphere S3 with {e ∈ C2 : ‖e‖ = 1}.
I Define f : S3 → T(≈ S1) by f (e)e = b(Ce).

I For all e ∈ S3, note that

f (−e) = −f (e)

i.e. we have a continuous map from a higher to lower
dimensional sphere preserving antipodal points.

I This contradicts the Borsuk-Ulam Theorem.

I Thus continuous sections always vanish somewhere.

I So Kumjian’s twists are more general than Renault’s cocycles.


