dr Ma³gorzata Prażmowska : Publikacje

  1. K. Maszkowski, M. Prażmowska, K. Prażmowski
    Configurations representing a skew perspective
    arXiv.org (2018), (on-line first).
  2. K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel
    Hyperplanes, parallelism and related problems in Veronese spaces
    Turk. J. Math. 42 (2018), no. 3, 1221-1235.
    DOI10.3906/mat-1703-55
  3. M. Prażmowska, K. Prażmowski
    On a class of (15_4 20_3)-configurations reflecting abstract properties of a perspective between tetrahedrons
    arXiv.org (2018), (on-line first).
  4. M. Prażmowska, K. Prażmowski
    Binomial partial Steiner triple systems containing complete graphs
    Graphs Combin. 32 (2016), no. 5, 2079-2092.
    DOI10.1007/s00373-016-1681-3
  5. E. B³aszko, M. Prażmowska, K. Prażmowski
    Relative complements and a `switch'-classification of simple graphs
    arXiv.org (2015), (on-line first).
  6. K. Petelczyc, M. Prażmowska, K. Prażmowski
    A complete classification of the (15_4 20_3 ) -configurations with at least three K_5 -graphs
    Discrete Math. 338 (2015), no. 7, 1243-1251.
    DOI10.1016/j.disc.2015.02.002
  7. K. Petelczyc, M. Prażmowska, K. Prażmowski
    Binomial partial Steiner triple systems with complete graphs: structural problems
    arXiv.org (2015), (on-line first).
  8. K. Petelczyc, M. Prażmowska, K. Prażmowski
    Configurational axioms derived from M{\"o}bius configurations
    Acta Math. Hungar. 145 (2015), no. 2, 304-308.
    DOI10.1007/s10474-015-0490-0
  9. K. Petelczyc, M. Prażmowska, K. Prażmowski
    A complete classification of the (15_4 20_3 ) -configurations with at least three K_5 -graphs
    arXiv.org (2014), (on-line first).
  10. K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel
    Parallelisms, hyperplanes, and related problems in the theory of Veronese Spaces
    arXiv.org (2014), (on-line first).
  11. M. Prażmowska, K. Prażmowski
    Binomial partial Steiner triple systems containing complete graphs
    arXiv.org (2014), (on-line first, prev. title: Binomial configurations which contain complete graphs: K_n -subgraphs of a ((n+1 2 )_( n−1) (n+1 3 )_3 ) -configuration).
  12. M. Prażmowska, K. Prażmowski
    Operation of weaving partial Steiner triple systems
    arXiv.org (2014), (on-line first).
  13. M. Prażmowska, K. Prażmowski
    Projective realizability of Veronese Spaces
    Recent Results in Pure and Applied Mathematics, Podlasie 2014 (A. Gomoliñska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel Ed(s).), Bia³ystok Technical University Publishing Office, 2014, pp. 61-69.
  14. M. Prażmowska, K. Prażmowski
    The Cox, Clifford, Möbius, Miquel, and other related configurations and their generalizations
    arXiv.org (2014), (on-line first).
  15. M. Prażmowska, K. Prażmowski
    The Cremona-Richmond Configuration revisited and generalized
    arXiv.org (2014), (on-line first).
  16. K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel
    A note on characterizations of affine and Hall triple systems
    Discrete Math. 312 (2012), no. 15, 2394-2396.
    DOI10.1016/j.disc.2012.03.037
  17. M. Prażmowska, K. Prażmowski, M. Żynel
    Projective symplectic geometry on regular subspaces; Grassmann spaces over symplectic copolar spaces
    arXiv.org (2012), (on-line first).
  18. M. Prażmowska, K. Prażmowski
    Semi-Pappus configurations; combinatorial generalizations of the Pappus configuration
    Des. Codes Cryptogr. 61 (2011), no. 1, 91-103.
    DOI10.1007/s10623-010-9440-6
  19. K. Petelczyc, M. Prażmowska
    Twisted Fano spaces and their classification, linear completions of systems of triangle perspectives
    Des. Codes Cryptogr. 54 (2010), no. 3, 241-251.
    DOI10.1007/s10623-009-9321-z
  20. M. Prażmowska
    On the existence of projective embeddings of multiveblen configurations
    Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 2, 259-273.
  21. M. Prażmowska, K. Prażmowski, M. Żynel
    Grassmann spaces of regular subspaces
    J. Geom. 97 (2010), no. 1-2, 99-123.
    DOI10.1007/s00022-010-0040-4
  22. A. Owsiejczuk, M. Prażmowska
    Combinatorial generalizations of generalized quadrangles of order (2, 2)
    Des. Codes Cryptogr. 53 (2009), no. 1, 45-57.
    DOI10.1007/s10623-009-9291-1
  23. K. Petelczyc, M. Prażmowska
    $10-3$-configurations and projective realizability of multiplied configurations.
    Des. Codes Cryptogr. 51 (2009), no. 1, 45-54.
    DOI10.1007/s10623-008-9242-2
  24. M. Prażmowska
    On some regular multi-Veblen configurations, the geometry of combinatorial quasi-Grassmannians
    Demonstratio Math. 42 (2009), no. 2, 387-402.
  25. M. Prażmowska, K. Prażmowski, M. Żynel
    Affine polar spaces, their Grassmannians, and adjacencies
    Math. Pannon. 20 (2009), no. 1, 37-59.
  26. M. Prażmowska, K. Prażmowski, M. Żynel
    Metric affine geometry on the universe of lines
    Linear Algebra Appl. 430 (2009), no. 11-12, 3066-3079.
    DOI10.1016/j.laa.2009.01.028
  27. J. Gorodowienko, M. Prażmowska, K. Prażmowski
    Elementary characterizations of some classes of reducts of affine spaces
    J. Geom. 89 (2008), no. 1-2, 17-33.
    DOI10.1007/s00022-008-2056-6
  28. M. Prażmowska
    Twisted projective spaces and linear completions of some partial Steiner triple systems
    Beitr. Algebra Geom. 49 (2008), no. 2, 341-368.
  29. M. Prażmowska, K. Prażmowski
    Combinatorial Veronese structures, their geometry, and problems of embeddability
    Result. Math. 51 (2008), no. 3-4, 275-308.
    DOI10.1007/s00025-007-0279-8
  30. M. Prażmowska, K. Prażmowski, M. Żynel
    Euclidean geometry of orthogonality of subspaces
    Aequationes Math. 76 (2008), no. 1-2, 151-167.
    DOI10.1007/s00010-007-2911-9
  31. B. Jankowska, M. Prażmowska, K. Prażmowski
    Line graphs, their Desarguesian closures, and corresponding groups of automorphisms
    Demonstratio Math. 40 (2007), no. 4, 971-986.
    DOI10.1515/dema-2007-0420
  32. I. Golonko, M. Prażmowska, K. Prażmowski
    Adjacency in generalized projective Veronese spaces
    Abh. Math. Sem. Univ. Hamburg 76 (2006), 99-114.
    DOI10.1007/BF02960859
  33. A. Klimczak, M. Prażmowska
    Desarguesian closure of binomial graphs
    Demonstratio Math. 39 (2006), no. 2, 245-253.
    DOI10.1515/dema-2006-0202
  34. M. Prażmowska
    Multiple perspectives and generalizations of the Desargues configurations
    Demonstratio Math. 39 (2006), no. 4, 887-906.
    DOI10.1515/dema-2006-0418
  35. M. Prażmowska, K. Prażmowski
    Grassmann spaces over hyperbolic and quasi hyperbolic spaces
    Math. Pannon. 17 (2006), no. 2, 195-220.
  36. M. Prażmowska, K. Prażmowski
    Some generalization of Desargues and Veronese configurations
    Serdica Math. J. 32 (2006), no. 2-3, 185-208.
  37. M. Prażmowska, K. Prażmowski
    The convolution of a partial Steiner triple system and a group
    J. Geom. 85 (2006), no. 1-2, 90-109.
    DOI10.1007/s00022-006-0051-3
  38. M. Prażmowska
    A proof of the projective desargues axiom in the desarguesian affine plane
    Demonstratio Math. 37 (2004), no. 4, 921-924.
    DOI10.1515/dema-2004-0413
  39. M. Prażmowska
    Spread construction of affine partial linear spaces
    J. Geom. 72 (2001), no. 1-2, 163-171.
    DOI10.1007/s00022-001-8578-9
  40. M. Prażmowska, D. Wszeborowski
    Some remarks about projective Pappus' axiom on an affine plane
    Geom. Wykr. i Graf. Inż. 5 (1999), 5-8.
  41. M. Prażmowska
    Struktura p³aszczyzn w przestrzeni quasi-hiperbolicznej
    Geom. Wykr. i Graf. Inż. 4 (1998), 9-13.
  42. M. Prażmowska
    A proof of Pasch's axiom in the absolute theory of oriented parallelity
    J. Geom. 46 (1993), no. 1-2, 66-81.
    DOI10.1007/BF01231001
  43. H. Oryszczyszyn, M. Prażmowska, K. Prażmowski
    Classical and Non--classical Pasch Configurations in Ordered Affine Planes
    Form. Math. 1 (1990), no. 4, 677-680.
  44. M. Prażmowska, K. Prażmowski
    Remarks concerning foundations of ordered affine geometry
    Bull. Polish Acad. Sci. Math. 38 (1990), no. 1-12, 113-116.
  45. M. Prażmowska, K. Prażmowski
    An axiom system describing degenerate hyperbolic planes in terms of directed parallelity
    Demonstratio Math. 21 (1988), no. 4, 913-941.
  46. M. Grochowska
    An axiom system for the class of groups of dilatations in fano-pappian affine planes
    Colloq. Math. 53 (1987), no. 2, 169-175.
  47. M. Prażmowska
    Ordered affine geometry based on the notion of positive dilatation groups
    J. Geom. 27 (1986), no. 2, 103-111.
    DOI10.1007/BF01224548
  48. M. Grochowska, K. Prażmowski
    Dimension free ordered affine geometry and its axiomatics
    Bull. Polish Acad. Sci. Math. 32 (1984), no. 1-2, 77-80.
  49. M. Prażmowska
    Euclidean two-dimensional equidistance theory
    Demonstratio Math. 17 (1984), no. 3, 593-607.
  50. M. Prażmowska
    An axiom system for oriented euclidean parallelity
    Demonstratio Math. 16 (1983), no. 4, 937-943.
Uwagi do prezentowanych tutaj danych bibliograficznych proszê kierowaĉ do: libmaster@math.uwb.edu.pl .