dr hab. Alina Dobrogowska : Publikacje

  1. A. Dobrogowska, G. Jakimowicz, M. Szajewska, K. Wojciechowicz
    Deformation of the Poisson Structure Related to Algebroid Bracket of Differential Forms and Application to Real Low Dimensional Lie Algebras
    Proceedings of the XX-th International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, Jun 2-7, Bulgarian Academy of Sciences, Technical University of Varna, Tokyo University of Science (conf. org.) (I. M. Mladenov, V. Pulov, A. Yoshiaka Ed(s).), Geom. Integrability & Quantization vol. 20, 2019, pp. 122-130, (on-line first).
    DOI10.7546/giq-giq-20-2019-122-130
  2. A. Dobrogowska, M. N. Hounkonnou
    Factorization method and general second order linear difference equation
    Differential and difference equations with applications, ICDDEA, Amadora, Portugal, June 2017, Jun 5-9, (S. Pinelas, T. Caraballo, P. Kloeden, J.R. Graef Ed(s).), PROMS vol. 230, (publ. by) Springer Verlag, 2018, pp. 67-77, (see also https://arxiv.org/abs/1709.07496).
    DOI10.1007/978-3-319-75647-9_6
  3. A. Dobrogowska, G. Jakimowicz
    Factorization method and second order q - and (q,h) - difference equations
    International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2016), Rhodes, Greece, Sep 19-25, REGALSCOPE LIMITED 1 Pallados Street, PC 8046, Paphos, CYPRUS (conf. org.) (T. E. Simos, Ch. Tsitouras Ed(s).), AIP Conf. Proc. vol. 1863, (publ. by) American Institute of Physics, 2017, pp. 1-4, (article identifier140005).
    DOI10.1063/1.4992312
  4. A. Dobrogowska, G. Jakimowicz
    Factorization method applied to the second order difference equations
    Appl. Math. Lett. 74 (2017), 161-166.
    DOI10.1016/j.aml.2017.05.022
  5. A. Dobrogowska, G. Jakimowicz
    Tangent lifts of bi-Hamiltonian structures
    J. Math. Phys. 58 (2017), no. 8, 1-15.
    DOI10.1063/1.4999167
  6. A. Dobrogowska, T. S. Ratiu
    Erratum to: Integrable Systems of Neumann Type
    J. Dynam. Differential Equations 29 (2017), no. 1, 343-343, (Erratum to: J Dyn Diff Equat (2015) 27:533–553 DOI 10.1007/s10884-013-9314-5, published on-line in 2016).
    DOI10.1007/s10884-016-9540-8
  7. A. Dobrogowska, G. Filipuk
    Factorization Method Applied to Second-Order (q; h)-Difference Operators
    Int. J. Difference Equ. 11 (2016), no. 1, 3-17.
  8. A. Dobrogowska
    R-matrix, Lax pair, and multiparameter decompositions of Lie algebras
    J. Math. Phys. 56 (2015), no. 11, 1-11, (article identifier 113508).
    DOI10.1063/1.4935935
  9. A. Dobrogowska, T. Goliński
    Examples of Hamiltonian Systems on the Space of Deformed Skew-symmetric Matrices
    Geometric Methods in Physics, XXXIII Workshop 2014, Białowieża, Poland, Jun 29 - Jul 5, Uniwersytet w Białymstoku (conf. org.) (P. Bieliavsky, P. Kielanowski, A. Odzijewicz, M. Schlichenmaier, T. Voronov Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, Basel, 2015, pp. 247-255.
    DOI10.1007/978-3-319-18212-4_19
  10. A. Dobrogowska, G. Jakimowicz
    Factorization Method for (q,h)-Hahn Orthogonal Polynomials
    Geometric Methods in Physics, XXXIII Workshop 2014, Białowieża, Poland, Jun 29 - Jul 5, Uniwersytet w Białymstoku (conf. org.) (P. Bieliavsky, P. Kielanowski, A. Odzijewicz, M. Schlichenmaier, T. Voronov Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, Basel, 2015, pp. 237-246.
    DOI10.1007/978-3-319-18212-4_18
  11. A. Dobrogowska, T. S. Ratiu
    Integrable Systems of Neumann Type
    J. Dynam. Differential Equations 27 (2015), no. 3, 533-553, (published on-lin in 2013).
    DOI10.1007/s10884-013-9314-5
  12. A. Dobrogowska
    The q-deformation of hyperbolic and trigonometric potenials
    Int. J. Difference Equ. 9 (2014), no. 1, 45-51.
  13. A. Dobrogowska, T. Goliński
    Lie bundle on the space of deformed skew-symmetric matrices
    J. Math. Phys. 55 (2014), no. 11, 1-14, (article identifier 113504).
    DOI10.1063/1.4901010
  14. A. Dobrogowska, G. Jakimowicz
    Factorization method applied to the second order q -difference operators
    Appl. Math. Comput. (2014), no. 228, 147-152, (published on line in 2013).
    DOI10.1016/j.amc.2013.11.102
  15. A. Dobrogowska, G. Jakimowicz
    Symplectic dual pair related to so_{a_1,...,a_{n-1}}(n)
    XXIInd International Conference on Integrable Systems and Quantum Symmetries (ISQS22), (conf. 1), Jun 23-29, Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University  (conf. org.) (Cz. Burdik, O. Navrátil, S. Pošta Ed(s).), J. Phys.: Conf. Ser. vol. 563, (publ. by) Institute of Physics Publishing, 2014, pp. 1-8, (article identifier 012009).
    DOI10.1088/1742-6596/563/1/012009
  16. A. Dobrogowska, A. Odzijewicz
    Integrable Systems Related to Deformed so(5)
    SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), 1-18.
    DOI10.3842/SIGMA.2014.056
  17. A. Dobrogowska, A. Odzijewicz
    Symplectic Dual Pair Related to Deformed so(5)
    Geometric Methods in Physics, XXXII Workshop 2013, Białowieża, Poland, Jun 30 - Jul 6, Uniwersytet w Białymstoku (conf. org.) (P. Bieliavsky, P. Kielanowski, A. Odesskii, A. Odzijewicz, M. Schlichenmaier, T. Voronov Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, Basel, 2014, pp. 121-130.
    DOI10.1007/978-3-319-06248-8_10
  18. S. Hilger, G. Filipuk, R. Kycia, A. Dobrogowska
    On the (q, h)-Discretization of Ladder Operators
    Int. J. Difference Equ. 9 (2014), no. 1, 67-76.
  19. A. Dobrogowska
    Integrable Hamiltonian systems generated by antisymmetric matrices
    XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21), (conf. 1), Jun 12-16, Department of Mathematics Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University (conf. org.) (C. Burdik, O. Navrátil, S Pošta Ed(s).), J. Phys.: Conf. Ser. vol. 474, (publ. by) Institute of Physics Publishing, 2013, pp. 1-6, (article identifier 012015).
    DOI10.1088/1742-6596/474/1/012015
  20. A. Dobrogowska
    The q-deformation of the Morse potential
    Appl. Math. Lett. 26 (2013), no. 7, 769-773.
    DOI10.1016/j.aml.2013.02.009
  21. A. Dobrogowska, A. Odzijewicz
    Integrable relativistic systems given by Hamiltonians with momentum-spin-orbit coupling
    Regul. Chaotic Dyn. 17 (2012), no. 6, 492-505.
    DOI10.1134/S1560354712060020
  22. A. Odzijewicz, A. Dobrogowska
    Integrable Hamiltonian systems related to the Hilbert-Schmidt ideal
    J. Geom. Phys. 61 (2011), no. 8, 1426-1445.
    DOI10.1016/j.geomphys.2011.03.006
  23. A. Dobrogowska, K. Janglajew
    The factorization of the (q, h)-difference operators
    J. Differ. Equations Appl. 13 (2007), no. 12, 1171-1177.
  24. A. Dobrogowska, A. Odzijewicz
    Solutions of the q-deformed Schrödinger equation for special potentials
    J. Phys. A Math. Theor. 40 (2007), no. 9, 2023-2036.
    DOI10.1088/1751-8113/40/9/008
  25. A. Dobrogowska, A. Odzijewicz
    Second order q-difference equations solvable by factorization method
    J. Comput. Appl. Math. 193 (2006), no. 1, 319-346.
    DOI10.1016/j.cam.2005.06.009
  26. A. Dobrogowska, T. Goliński, A. Odzijewicz
    Change of variables in factorization method for second order functional equations
    Czech. J. Phys. 54 (2004), no. 11, 1257-1263, (Presented at the 13th International Colloquium on Quantum Groups, Prague 2002, Jun 17-19).
    DOI10.1007/s10582-004-9787-x
  27. A. Odzijewicz, A. Ryżko
    The Darboux-like transform and some integrable cases of the q-Riccati equation
    J. Phys. A Math. Gen. 35 (2002), no. 3, 747-757.
    DOI10.1088/0305-4470/35/3/318
  28. A. Odzijewicz, A. Ryżko
    Coherent states for deformed Jaynes-Cummings model
    Rep. Math. Phys. 40 (1997), no. 2, 277-283.
    DOI10.1016/S0034-4877(97)85925-3
Uwagi do prezentowanych tutaj danych bibliograficznych proszę kierować do: libmaster@math.uwb.edu.pl .