prof. dr hab. Tomasz Brzeziński : Publikacje

  1. M. Almulhem, T. Brzeziński
    Skew derivations on generalized Weyl algebras
    J. Algebra 493 (2018), 194-235.
    DOI10.1016/j.jalgebra.2017.09.018
  2. T. Brzeziński
    Differential and Integral Forms on Non-commutative Algebras
    Geometric Methods in Physics XXXV, Workshop and Summer School, Białowieża, Poland, June 26 - July 2, 2016, Jun 26 - Jul 2, Uniwersytet w Białymstoku (conf. org.) (P. Kielanowski, A. Odzijewicz, E. Previato Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, Basel, 2018, pp. 257-261.
    DOI10.1007/978-3-319-63594-1_25
  3. T. Brzeziński, L. Dąbrowski
    A Curious Differential Calculus on the Quantum Disc and Cones
    Geometric Methods in Physics XXXV, Workshop and Summer School, Białowieża, Poland, June 26 - July 2, 2016, Jun 26 - Jul 2, Uniwersytet w Białymstoku (conf. org.) (P. Kielanowski, A. Odzijewicz, E. Previato Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, Basel, 2018, pp. 25-32.
    DOI10.1007/978-3-319-63594-1_4
  4. T. Brzeziński, Ch. Lomp
    Differential smoothness of skew polynomial rings
    J. Pure Appl. Algebra 222 (2018), no. 9, 2413-2426.
    DOI10.1016/j.jpaa.2017.09.020
  5. T. Brzeziński, W. Szymański
    The C∗-algebras of quantum lens and weighted projective spaces
    J. Noncommut. Geom. 12 (2018), no. 1, 195-215.
    DOI10.4171/JNCG/274
  6. T. Brzeziński, A. Sitarz
    Smooth geometry of the noncommutative pillow, cones and lens spaces
    J. Noncommut. Geom. 11 (2017), no. 2, 413-449.
    DOI10.4171/JNCG/11-2-1
  7. T. Brzeziński
    Curved Rota-Baxter systems
    Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 5, 713-720.
  8. T. Brzeziński
    Noncommutative differential geometry of generalized Weyl algebras
    SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), 1-18, (article identifier 059).
    DOI10.3842/SIGMA.2016.059
  9. T. Brzeziński
    Rota-Baxter systems, dendriform algebras and covariant bialgebras
    J. Algebra 460 (2016), 1-25.
    DOI10.1016/j.jalgebra.2016.04.018
  10. T. Brzeziński, N. Ciccoli, L. Dabowski, A. Sitarz
    Twisted Reality Condition for Dirac Operators
    Math. Phys. Anal. Geom. 19 (2016), no. 3, 1-11.
    DOI10.1007/s11040-016-9219-8
Uwagi do prezentowanych tutaj danych bibliograficznych proszę kierować do: libmaster@math.uwb.edu.pl .