Badania naukowe : Publikacje

  1. S. Breaz, T. Brzeziński
    The Baer-Kaplansky theorem for all abelian groups and modules
    Bull. Math. Sci. (2021), (on-line first).
  2. T. Brzeziński, W. Szymański
    An algebraic framework for noncommutative bundles with homogeneous fibres
    Algebra and Number Theory 15 (2021), no. 1, 217-240.
    DOI:  10.2140/ant.2021.15.217
  3. A. Dobrogowska, G. Jakimowicz
    Generalization of the concept of classical r-matrix to Lie algebroids
    J. Geom. Phys. 165 (2021), 1-15, (Available online: 26.03. 2021, article no 104227).
    DOI:  10.1016/j.geomphys.2021.104227
  4. B. Kwaśniewski, R. Meyer
    Essential Crossed Products for Inverse Semigroup Actions: Simplicity and Pure Infiniteness
    Doc. Math. 26 (2021), 271-335, (Published online: April 2021).
    DOI:  10.25537/dm.2021v26.271-335
  5. I. Malinowska
    Influence of complemented subgroups on the structure of finite groups
    Int. J. Group Theory 10 (2021), no. 2, 65-74.
    DOI:  10.22108/ijgt.2019.119105.1570
  6. A. McKee
    Weak amenability for dynamical systems
    Studia Math. 258 (2021), 53-70, (Published online 15 October 2020.).
    DOI:  10.4064/sm200227-20-7
  7. M. Pankov, K. Petelczyc, M. Żynel
    Generalized Grassmann graphs associated to conjugacy classes of finite-rank self-adjoint operators
    Linear Algebra Appl. 627 (2021), 1-23.
    DOI:  10.1016/j.laa.2021.06.004
  8. K. Petelczyc
    Correction to: Configurational axioms derived from Möbius configurations
    Acta Math. Hungar. 163 (2021), no. 1, 334.
    DOI:  10.1007/s10474-020-01127-1
  9. K. Petelczyc, K. Prażmowski
    Multiplied configurations induced by quasi difference sets
    Bull. Iranian Math. Soc. 47 (2021), no. 1, 111-133, (Published: 21 March 2020).
    DOI:  10.1007/s41980-020-00370-0
  10. K. Petelczyc, K. Prażmowski, M. Żynel
    Geometry of the parallelism in polar spine spaces and their line reducts
    Ars Math. Contemp. (2021), (on-line first).
    DOI:  10.26493/1855-3974.2201.b65
  11. M. Prażmowska, K. Prażmowski
    Configurations representing a skew perspective; a classification of (15_4 20_3)-configurations reflecting abstract properties of a perspective between tetrahedrons
    Bull. Inst. Combin. Appl. 91 (2021), 41-79.
  12. B. Rybołowicz, T. Brzeziński, S. Mereta
    From pre-trusses to skew braces
    Publ. Mat. (2021), (to appear,
Uwagi do prezentowanych tutaj danych bibliograficznych proszę kierować do: